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The Z��equivariant planar vector �eld �z � ei�z � ei�zjzj� � b�z� models the
dynamics near a closed orbit losing its stability in ��� resonance
 It is known
that there are at least �� regions in the �b� ���plane of constants	 corresponding
to equivalence classes of unfoldings in the parameter �
 It is a conjecture by
Arnol�d that there are not any more such regions


We propose to disregard the distinction	 typical for models from bifurcation
theory and many applications	 between unfolding parameters and constants de�
termining the nonlinear terms
 In this spirit we present the bifurcation set for
the above model in �b� �� ���space	 which represents all known information in a
condensed way
 This approach leads to new support for the above conjecture	
notably through the study of bifurcations at in�nity of the phase space and the
use of numerical techniques


�� The periodically forced oscillator

This paper is derived from my Ph�D��thesis ����� which contains a more com�
plete treatment of the problem discussed here� Further details can be found
there and in ��	�� ��
�� ����� As general references for the concepts of dynamical
systems and bifurcation theory see ���� ��� ����� ����

Consider the up�and�down motion of the front wheel of a motor bike riding
on an evenly corrugated road� The wheel is suspended by a damped nonlinear
spring and is excited as the bike rides along� �All e�ects of other parts of the
bike are neglected�� There are two parameters in the system� the amplitude
and the frequency of the excitation� given by the �badness� of the road and the
speed of the motor bike� respectively�
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If the road is not too bad the wheel follows its shape and we observe a pe�
riodic motion of the wheel in the external frequency of the corrugation� As the
road gets worse� typically an additional internal oscillation with small ampli�
tude appears on top of the original one� the wheel starts bouncing a little� The
original periodic motion is now unstable� and is consequently not observed� For
certain speeds the two frequencies are in resonance� meaning that their ratio is
a rational number p�q� Important resonances occur for q � �� �� � �� Close to
such a resonance the wheel may exhibit more complicated motions� which can
have catastrophic e�ects on both rider and bike� We are concerned with the
most complicated and the only unsolved case of ��� resonance� when the ex�
ternal frequency is exactly a quarter of the internal frequency as the originally
stable periodic motion disappears�

The front wheel is an admittedly not perfect example of a periodically forced
oscillator� Concrete examples are the forced Van der Pol equation and the
damped forced pendulum� By setting z � x � i �x � C and assuming that the
forcing has the constant frequency one� the forced oscillator can be written as
the vector �eld

�z � f����z� �z� t�

�t � � ���

on the phase space C � �R�Z��
By performing a suitable change of coordinates� we may assume that fz �

�g is a periodic orbit� independently of the parameters � and �� The ques�
tion is what happens as this orbit loses its stability� which can be studied
by means of the Poincar�e map P��� � In the present situation this is simply
the stroboscopic map of the forcing period �which was set to one�� that is�
�P����z�� �� � ������z� ��� where �t��� is the �ow of ���� We may assume that

DP������ has eigenvalues e����i� � so that the loss of stability of the origin
occurs for � � �� Under the genericity condition � �� p�q for q � �� �� � � an
invariant circle bifurcates from the origin for � � � in a Hopf bifurcation for
maps� also called a Neimark�Sacker bifurcation� The question is what happens
if the genericity condition � �� p�q for q � �� �� � � is violated� in which case
one speaks of a strong resonance�

�� A model system

If � � � and � � p�q� where p and q are relatively prime� system ��� undergoes
a Hopf bifurcation with p�q resonance and the linear part DP��p�q��� is the
rotation over the angle �� p�q� The key tool in this situation is a classical
normal form theorem that reduces the problem to the study of a planar vector
�eld by averaging away the time�variable t in ���� compare ����

Theorem � ����� �����
In a neighborhood of �z� �� �� � ��� �� p�q� the map P��� can be approximated up
to any prescribed order by the time�one map of a Zq�equivariant planar vector
�eld X���� composed with Jp�q �� DP��p�q���� the rotation over ��p�q�
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This theorem reduces the p�q resonance problem to �nding all versal unfold�
ings of codimension two of Zq�equivariant vector �elds� An unfolding describes
all possible dynamics near the singularity in question with the amount of pa�
rameters given by the codimension� It is called versal if it is the most general
unfolding in some sense� for the rather technical de�nitions see ���� ����� Except
for q � �� these versal unfoldings are known� relevant references are ���� ���� ���
�	�� �
�� ���� ����� ����� As was mentioned earlier� for q � � an invariant circle is
born in the Hopf bifurcation just like in the absence of resonance� one speaks
of weak resonances in this case� The case of ��� resonance marks the transition
between the weak and the strong resonances� For Z��equivariant planar vector
�elds there is a well�known conjecture�

Conjecture �� 	�

All versal unfoldings of codimension two of a Z��equivariant planar vector �eld
are contained in the model equation

�z � �z �Azjzj� �B�z�� ���

where �� A�B � C �

As part of this conjecture Arnol�d found �� regions in �A�B��space of unfoldings
in the parameter �� We will see later that this gives a total of eleven di�er�
ent unfoldings if one takes into account some additional symmetry of phase
portraits� It has not been proved that there cannot be other than the known
unfoldings and that they are versal� It is the purpose of the approach presented
here to give arguments in favour of Conjecture �� Note that the two nonlinear
terms in ��� are of the same order� so that their relative in�uence is determined
exclusively by the coe�cients A and B� This is the reason why this case is the
most di�cult one�

System ��� has a four�dimensional �A�B��space of constants and a two�
dimensional ��plane of the unfolding parameter� By scaling the phase plane
one can see that two real constants are enough to determine the nonlinearity�
Furthermore� all bifurcation curves in the ��plane are straight lines from the
origin� so that considering only what happens for values on the unit circle
� � ei� in the ��plane still gives all information about an unfolding� We choose
to work with the reduced equation

�z � ei�z � ei�z jzj� � b�z�� ��

where b � R� and 	 � ���� ��� Due to re�ectional symmetries in phase space�
it is su�cient to consider the case 
 � ��� ����� In the literature the reader
will �nd the equivalent system �z � ei�z � Az jzj� � �z�� We use �� because
the interesting behavior occurs in a compact piece of parameter space� see ��
��
���� for a geometrical interpretation of the two reductions�

The bifurcation sequence for �xed �b� 
� is the sequence of topologically
di�erent phase portraits as 	 varies� Two bifurcation sequences are equivalent if
the same types of bifurcations occur in the same order and the respective phase
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Figure �� The �b� 
��plane of �� with the equivalence classes of di�erent
bifurcation sequences �roman numerals��

portraits are topologically equivalent� Clearly� two unfoldings are equivalent if
the corresponding bifurcation sequences are� The problem can now be stated
as follows�

�� Find all equivalence classes of bifurcation sequences in the �b� 
��plane�

�� Show that they represent versal unfoldings�

This was studied in ���� ���� ���� �for the equivalent model�� which lead to the
picture of the �b� 
��plane as illustrated in Figure �� The list of all known
bifurcation sequence can be found in ��	�� �����

	� The extended parameter space

Because we believe that our approach can be useful in other situations� we
present it in a general setting� Consider a polynomial model system of �xed
degree

�x � F �x��� c�� ���
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where x � Rn is a phase variable� � � Rm is an unfolding parameter and
c � Rl is a constant� One can think of F as a polynomial model or as the
truncation of a Taylor series in normal form� The general question is� what is
the behavior of ��� as � is varied� once c has been �xed to a non�exceptional� or
generic value� In other words� one wants to know the partition of c�space into
regions of equivalent unfoldings in �� The values where c is exceptional are of
particular importance as they form the boundaries between di�erent regions in
c�space�

The clear distinction between the unfolding parameter � and the constant
c is quite typical� We propose to give up this distinction and to study the
bifurcation set in the extended parameter �c� ���space� The bifurcation set
divides this space into regions of topologically equivalent phase portraits� an
easier notion than the equivalence of unfoldings� By projection in the direction
of � the information on the equivalence classes of unfoldings in c�space can be
retrieved from the bifurcation set� By  drilling! in the direction of � for a �xed
c the unfolding can be found�

Also in the context of applying numerical techniques it is very natural to
consider the extended parameter space� Drawing phase portraits numerically
allows one to get an idea of how this space is structured� Furthermore� the
important idea of following an object in phase space by continuation under the
variation of parameters typically gives a new object in the product of the phase
space with the extended parameter space� see Section 	 for more on numerical
methods�

The boundaries in c�space are either projections of bifurcations of codimen�
sion �m� �� or correspond to bifurcations at in�nity of the phase space� The
fact that bifurcations at in�nity become important may be somewhat surpris�
ing� However� typically there are boundaries in c�space� crossing which leads to
the escape of equilibria or limit cycles to in�nity in phase space� This can be
described by bifurcations at in�nity� that is� by bifurcations at the boundary
of the phase space Rn of ���� The study of bifurcations at in�nity can be very
useful for �nding all phase portraits� �Recall that ��� is of �xed degree� To
�nd all phase portraits we do not need to add higher order terms�� We note
here that often only those bifurcations at in�nity are of importance that lead
to a topological change of phase portraits in the phase space Rn �

The general program for �nding the bifurcation set of ��� is the following�
First one calculates all local hypersurfaces for which one knows parametriza�
tions� These may include bifurcations at in�nity� Then one uses topological
arguments and numerical continuation to �nd the nonlocal hypersurfaces for
which no parametrizations are known� such as for example those correspond�
ing to saddle connections� The bifurcation set represents all information in
a condensed form� Unfortunately� visualizing �c� ���space has its limits if the
dimensions m and l are too big�
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Surface Characterizing property

� � First and second Hopf bifurcation at �
S� S� First and second saddle�node bifurcation
T� Hopf bifurcation at secondary equilibria
t� Pitchfork bifurcation at �
S� Saddle�node bifurcation at �
� Hopf bifurcation at �

Homoclinic loop at secondary equilibria
�� �� First and second square connection

Clover connection
Saddle�node of limit cycles

Curve Characterizing property

S Hopf bifurcation at � coincides with
second saddle�node bifurcation

BT Bogdanov�Takens bifurcation
T Clover connection with zero trace
S� Clover connection coincides with

�rst saddle�node bifurcation
�S� �S� Square connection coincides with

�rst or second saddle�node bifurcation

Table �� Symbols for surfaces of codimension�one bifurcations and for curves
of codimension�two bifurcations�


� The bifurcation set

We now apply the ideas from the last section to the model for ��� resonance ����
The dimensions are ideal since we are dealing with a three�dimensional extended
�b� 
� 	��space� Furthermore� the phase space is two�dimensional which largely
facilitates the study of bifurcations at in�nity� We present all known surfaces of
codimension�one bifurcations in the bifurcation set� which divide �b� 
� 	��space
into regions of topologically equivalent phase portraits� For details and proofs
we refer to ��
�� ����� The symbols we use to label the surfaces can be found in
Table �� We begin by presenting the local surfaces in the bifurcation set�

Lemma 	� The following local surfaces are in the bifurcation set�

�a� Two planes � and � of Hopf bifurcations at  given by 	 � �����

�b� Two surfaces S� and S� of saddle�node bifurcations given by 	 � 
 � � �
arcsin b� where � � b � ��

�c� The surface T� of Hopf bifurcations of secondary equilibria� where the trace
is zero at the nodes� given by

tan	 �
sin
�

p
b� � cos� 


� cos

� where � � arccos

r
b���� b��

b� � �
� 
 �

�

�
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Figure �� Possible saddle connections of codimension one� called a square
connection �left� and a clover connection �right�� respectively�

�d� The plane t� of pitchfork bifurcations at � given by b � ��

�e� The surface � of Hopf bifurcations at � given by 
 � ���� where b �
��� ���

The local surfaces form the skeleton of the bifurcation set� They intersect each
other and also the yet unknown nonlocal surfaces in lifts of the boundary curves
in the �b� 
��plane of Figure �� The nonlocal surfaces and their intersection
curves with other surfaces involve saddle connections of square and clover type
as depicted in Figure ��

Lemma 
� On the local surfaces one �nds the following curves of codimension�
two bifurcations� �We use the same notation for the lifted curves as for their
projections��

�a� The curve S� given by 
 � � � arccos b� 	 � ���� where S� and �

intersect�

�b� The curve BT of Bogdanov�Takens bifurcations� given by


 � � � arccos
q

b����b��
�b��� � 	 � 
� � � arcsin b� where S� meets T��

�c� The system is Hamiltonian along the intersections of � and of � with the
plane f
 � ���g� given by 
 � ���� 	 � �����

�d� The curves �S� on S� and �S� on S�� where there is a square connection
at the moment of the respective saddle�node bifurcation�

�e� The curve S� on S�� where there is a clover connection at the moment of
the �rst saddle�node bifurcation�

�f� The curve T lies on a surface where the trace is zero at the saddles� which
is not part of the bifurcation set� but can be parametrized like T��
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All nonlocal surfaces were shown to bifurcate from Hamiltonian lines in �����
This information was important for �nding all unfoldings� We use this together
with topological arguments to �nd the global structure of the nonlocal surfaces�
where we assume that the known surfaces intersect only in the known curves of
codimension�two bifurcations� This assumption can be checked by numerical
techniques� see Section 	�

Theorem �� The following nonlocal surfaces are in the bifurcation set�

�a� Two surfaces �� and �� of square connections� The upper surface ��

extends from the curve �S� on S� to the Hamiltonian line 
 � ���� 	 �
���� b � ��� ��� The lower surface �� extends from the Hamiltonian line 
 �
���� 	 � ���� to the curve �S� on S� for b 	 �� and to the Hamiltonian
line 
 � ���� 	 � ���� for b � ��

�b� The surface of clover connections� extending from the curve


