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Applied mathematics has become an extremely important and useful discipline in
the context of development of powerful computers	 On the one hand� mathemat
ics �in a broad sense� is the most e�cient approach to model reality� especially
complex reality	 Moreover� it provides the best possibilities of reasoning	 With
cheap powerful computers� mathematics becomes implementable and unavoid
able in designing� producing� deciding � � �

On the other hand� mathematics has evolved considerably to extend its appli
cability to real problems	 This is why applied mathematics is so alive and fast
progressing	 Needless to say� the connection between applied mathematics and
information technology is an extremely fruitful approach to new ideas and a basic
source of research topics	 This is a line to which Professor Cor Baayen has al
ways dedicated his e�orts	 He has greatly contributed to closing the gap between
mathematics and computer science	 To give an exhaustive presentation of all
directions of applied mathematics in a short talk is of course out of reach� and
beyond the possibilities of one speaker	 So the purpose of this lecture is more to
outline some signi�cant features� among many others	

�� Scientific computing

The traditional applications of mathematics arise in Physics� Mechanics� � � � �
Powerful computing means and supercomputers have permitted �

� to study completely new areas of physical sciences�

� to consider new numerical techniques

� to investigate new approaches�
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���� New Areas of physical sciences

It would be particularly unrealistic to be exhaustive here� Nevertheless� among
important developments in several �elds� we emphasize the Numerical Simu�
lation of Reactive �ow� It applies indeed to combustion� aeronomy� partially

ionized plasmas� aerodynamics� gas dynamic lasers� astrophysics� general mul�

tiphase and magneto�hydrodynamic �ows� � � � �

The model takes into account the coupling between �uid dynamics and chemical
reactions� and thus opens the door to a large family of complex problems�

The traditional model of an homogeneous� viscous� incompressible �ow with
no chemical reactions and no external forces consists of Navier Stokes equations
�
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T 	 is the velocity tensor� The internal energy density
is cT �

In general� all variables are coupled and appear as the solution of a complex
system of P�D�E�

The main unknown are the mass density �� the velocity of the ow u� the
number densities ni of the individual chemical species and the total energy
density E�

The system of equations is the following �
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where � is the pressure tensor� q the heat ux� qr the radiative heat ux� a
i

represent external forces� and Qi� Li represent the chemical production rates
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and losses of species i� ui is the di�usion velocity of species i� They are highly
nonlinear expressions of the unknowns� including the temperature T �

In view of the complexity� a modular approach is useful� Each physical
process is calculated accurately and calibrated separately �

The physical properties should be incorporated in the numerical algorithms
and a mathematical analysis of the behaviour of the algorithms should be
performed� For more details� see �����

���� Numerical methods

We shall illustrate the general idea of decoupling the di�culties in the case of
Navier Stokes equations�
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u � g on �

Z
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	 � g d� � �

The two main di�culties are non linearities and incompressibility condition�
Operator splitting will realize the decoupling�

Let 
 be a parameter in ��� �� 	 and �� � with �� � � ��

Knowing un� we compute fun��� pn��g� un���� and fun��� pn��g by the
iteration �
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��	 is nonlinear and solved by a least square technique � and conjugate gradient
minimization� ��	 and ��	 are linear and can be reformulated as variational
problems for the pressure p�
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Various possibilities of �nite element approximation� multigrid methods and
domain decomposition can then be used at the discretization stage�

E�cient software packages result in the combination of all these techniques�
For more details� see �����

��	� New approaches

We present two new directions �

��	��� Wavelets An alternative to Fourier analysis has been developed in re�
cent years� with applications to signal and image processing� sound analysis
and numerical analysis� It has foundations in quantum �eld theory� statistical
mechanics and pure mathematics �geometry of Banach spaces	� This is the
Wavelet analysis�

It combines advantages of the Haar system and of the trigonometrical sys�
tem� The Haar system is de�ned by �

�x	 �

�������
�� � � x �

�

�

�� �

�
� x � �

� otherwise
m�n�x	 � �

�m

� ���mx� n	� m� n � Z�

The m�n form an orthonormal basis of L��R	� �and even Lp	 but not for
Sobolev spaces �unlike trigonometric series for periodic Sobolev spaces	� On
the other hand� the m�n have good localization properties unlike trigonometric
functions �the reverse being true for their Fourier transforms	�

A wavelet system is de�ned by a function �x	 and

m�n�x	 � �
�m

� ���mx� n	

with the property

L��R	 � �m�ZWm

Wm � span fm�ng� orthogonal spaces

fm�n� n � Zg is an orthonormal basis for Wm�

Y� Meyer has constructed a wavelet system with �C� with rapide decay
�faster that any power	� Later one has constructed a wavelet system with �Ck

with exponential decay� and �nally I� Daubechies has shown the existence of
wavelet systems with compact support and arbitrary regularity� They will be
very useful for all kinds of applications�
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They are obtained from sequences hn� with compact support� satisfying
additional assumptions by the following procedure �
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The most compact support corresponds to the two possible choices �
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For more details� see ����� ����

��	��� Cellular Automata The availability of massively parallel computers� has
motivated the use of cellular automata on large lattices for obtaining solutions
to P�D�E�� in particular the incompressible Navier Stokes equations� A lot of
work is necessary to justify this approach�

We describe here a model due to B�M� BOGHOSIAN� C�D� LEVERMORE�����
See also U� FRISCH� B� HASSLACHER� Y� POMEAU� �����

Consider Burgers� equation �
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This can be simulated �approximately� by the stochastic process �
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where ��� �� take the values �� �� w is random and takes the values �� or �� The
random variables are independent and �

Ew �
c

�	

x

It can be proved that �

u�x� t	 � E��� � ��	

The process ��� �� is a cellular automata which can be simulated on a massively
parallel computer�

Reseach on similar types of stochastic processes is important in the context
of solving nonlinear P�D�E� on massively parallel machines�

�� Control� identification� estimation�

The applications of these techniques are extremely diversi�ed and come from
physical sciences as well as from economic or even social sciences�

We describe some �

� new areas of applications

� new algorithms

� new approaches �

���� New areas of application

������ Environmental studies� The program 
Global Change� In view of the
growing importance of environmental issues� a worldwide program of research
has been developing in recent years� under the name of �Global Change�� It
connects specialists of Climate Dynamics� Oceanography� Planetary Physics�� � �
It seems that this direction is a source of important mathematical problems� of
somewhat new nature�
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The basic problem deals with the prediction of physical quantities� solutions
of a set of nonlinear evolution P�D�E�� with unknown parameters and unknown
initial state� Nonlinearity creates an important sensitivity with respect to initial
data and unknown quantities� resulting in a lack of predictability beyond some
length of time� A fundamental question is to identify the important regimes
of the physical variables� those which contain the main futures of interest and
are persistent� There are several ways to give a mathematical meaning to this
question� The interesting feature is that they result in a mixture of statistical
and dynamical methods� A lot of work is needed in that direction� even for
simple nonlinear systems�

The point of view of dynamical systems is to obtain the stationary solutions
of the nonlinear P�D�E� �or system of P�D�E�	 and the long�time behaviour of
solutions� This is the theory of attractors�

A complementary statistical theory has been developed� for which we de�
scribe only two ideas� that of persistent anomalies and that of EOF analysis

�Empirical orthogonal functions	�

Consider a vector representing physical variables �typically a ow	 which
is computable through a model� which is not in general completely known
�this is an important di�culty� which we leave aside	� We represent it by
k�t	� k � � � � �N where k may represent a point xk on a grid� or a component
if the solution is obtained by an expansion�

We set � k �� average of k�t	 over some record of data�

The instantaneous anomaly is de�ned by �

ek�t	 � k�t	� � k �

The pattern correlation between an anomaly at time t and at a later time t� �
is de�ned by �

p�t� �	 �

P
k
ek�t	 ek�t� �	� �Pk

ek�t		�Pk
ek�t� �		

��t	��t � �	

where

��t	� �
X
k

ek�t	� � �X
k

ek�t		��
We say that an anomaly ek�t�	 persists from t � t�� to t � t� � J� � if �

p�tj � �	 	 p�� where tj � t� � j�� j � � � � � J � �
and p� represents the persistence criterion� What is expected is that the anoma�
lies which satisfy a reasonable persistence criterion fall into a small number of
easily identi�able patterns� related to the attractors of dynamical system�

The EOF analysis goes as follows� Let �
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�k� �� ek e� �
Consider the eigenvalues of the matrix � �� � � � �N � ranked in decreasing order
and e� � � � eN are the corresponding eigenvectors� called the �st EOF� the �nd
EOF� � � �

Next expand the vector e�t	 � � ek�t		 on the basis e� � � � eN � hence �
e�t	 � NX

i��

�i�t	e
i

then one can easily check that �

� �i�j �� �i�ij �

The coe�cients �i�t	 are called the principal components� The EOF are in�
terpreted as directions of variability of the anomaly� �i representing the part
of the variance related to EOF ei �the total variance being �� � � � � � �N 	�
The important conjecture is that the main OEF are related to the patterns
associated to persistent anomalies�

In ���� theses connections are exhibited experimentally on some models�

Is there a general theory for these phenomenon� at least for some class of
nonlinear dynamical systems � This is an open question� which has a crucial
importance for the understanding of the variability of atmospheric dynamics�

������ Computer vision

�������� The segmentation problem An image can be represented by a function
g�x	 measuring the strength of the light signal striking a plane at point x�
Such a function is expected to have discontinuities reecting edges of objects�
and shadows� Outside such lines the function g is expected to behave more
smoothly�

Having this in mind� one de�nes a segmentation of a region  � as a set
of open connected subsets  i� i � � � � �n� each one with a piecewise smooth
boundary and � is the union of the parts of the boundaries of the  i inside  �

An approximation of g is a function u which is di�erentiable on  ��� One
de�nes a cost function �

J�u��	 � �

Z
	

�u� g	�dx�

Z
	��

jDuj�dx� 	j�j

The segmentation problem consists in minimizing the functional J over the pair
�u��	� Note that if 	 � �� infJ � ��

This is a new class of problems in the calculus of variations� introduced in
�����
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It has attracted a lot of interest and some progress has been made� con�
cerning existence� and approximation�

It is interesting to consider the one dimensional problem� in which  �
��� �	�� � fa�! � � �aN � with � � a� � a� � � � � aN � �g and j�j � N � One has �

J�u� a�� � � � � aN 	 � �

Z �

�

�u� g	�dx�

NX
i��

Z ai��

ai

u��dx� 	N

and we have de�ned a� � �� aN�� � ��

Since we do not impose continuity at points ai� we may write preferably �

J�u�� � � � � uN ! a�� � � � � aN 	 � �

NX
i��

Z ai��

ai

��ui � g	� � u���dx� 	N

There is a probabilistic interpretation of J � Consider in the segment �ai� ai��	
a process xi such that �

xi�t	 � xi�ai	 � wi�t	� t � �ai� ai���
where xi�ai	 is not random� and wi�t	 is a standardWiener process� We observe
on �ai� ai��	 the process yi�t	 with �

dyi�t	 � xi�t	dt� dbi yi�ai	 � �

where bi is Wiener process independent from wi�

The �a priori probability� of the trajectory xi�t	 to coincide with a given
function ui�t	 which is H

��ai� ai � �	 is �

exp��
�

Z ai��

ai

��u��i � u�i 	dt� �uidyi�

For details see �����

Considering independent processes in each interval� we obtain �

exp��
�

NX
i��

Z ai��

ai

��u��i � u�i 	dt� �uidyi�

and the maximization of this probability results in minimizing J � up to the
correspondence dyi 
 g on �ai� ai��	� It would be extremely interesting to
treat the � dimensional problem� which is the real one� by similar probabilistic
methods� It is an open problem�
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�������� Axiomatic derivation of image processing models We describe here a
new approach to image processing due to L� Alvarez� F� Guichard� P�L� Lions
and J�M� Morel ���� Consider the signal g�x	 representing the image� We look
at it at a scale t� measuring roughly speaking the size of details of the image
�small t means �ne scale� while large t means coarse scale	� An analysis at scale
t is a transformation Ttg� A multiscale analysis is thus a family� parametrized
by t 	 �� of nonlinear operators �or �lters	�

Of course� some conditions have to be made on the operator Tt� in order to
ful�ll physical requirements of the �lter� These restrictions or axioms are such
that the function u�x� t	 � �Ttg	�x	 appears as the solution of a fully nonlinear�
parabolic� possibly degenerate second order equation

�u

�t
� F �Du�D�u	

u�x� �	 � g�x	�
��	

In fact� the choice of the function F is equivalent to the choice of the family
Tt� Among physical requirements� one has the following main one

F �p�A	 � F �p�B	��p�A � B

which is in fact the condition which su�ces to give a meaning to ��	 in viscosity
sense�

Examples �

� The Gaussian pyramid� It corresponds simply to the heat equation

F �p�A	 �
�

�
trA

� Quasilinear �lters �

F �p�A	 � a�jpj	trA � a��jpj	 �Ap� p	jpj
where

a 	 �� a�jpj	 � a��jpj	jpj 	 �
� Morphological �lters �

F �p	 � inf
q�S

p�q

where S is a compact set of R��

� Curvature operators

F �p�A	 � jpjG� �jpj �trA �
Ap � p
jpj� 		

with possible G�s	 � s or jsj���s �in particular � � �

�
	�
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������	� Mobile Robotics Consider the problem of a mobile robot which tries
to recover its environment� during its motion �the environment is assumed to
be static	� The robot is equipped with a camera� which takes images between
time intervals� One way of approaching the problem is to extract tokens from
the images in the sequence� match them from image to image and recover the
motion and the structure of the environment�

Naturally� the tokens we compute in the images should be closely related
to objects in the scene� if we want the matches to be meaningful� They are in
general surface markings� shadows� depth discontinuities�

Let us explain the general ideas in the case of a pointM � which is the object
to be recognized by the mobile robot �see Figure �	� So M is the real point�

Figure ��

C�� C� represent the motion of the camera �installed on the robot	� m��m� the
images ofM � The motion is decomposed into a rotation R with a rotation axis
going through C�� and a translation t � C�C��

If we consider a coordinate system attached to the camera� then we can
measure C�m� and C�m� with the local coordinate system� The coordinates
with respect to a common coordinate system� that related to C� are C�m�

and RC�m�� Then one expresses the planarity constraint� namely that C�m��
C�m� and t are coplanar ! it amounts to �

C�m� � �t � RC�m�	 � ��

The vector t has coordinate tx� ty� tz but from the linearity� we can assume
that ktk � �� hence � parameters are enough� The matrix R depends of �
parameters which characterize the unit rotation axis �� parameters	 and the
rotation angle�

��



Conceptually� what is important is to recognize that the previous relations
amounts to �

f�x� a	 � �

where a is a vector of parameters � lRn� and x is a vector of measurement � lRn
and f is a nonlinear relation�

Each successive image leads to a relation �

f�xk� a	 � �

However the observation is not exact and rather described by the model

zk � xk � 	k

where 	k is a white noise of covariance �� Considering that

ak�� � ak � a

we are in the framework on nonlinear �ltering if we can express xk as a function
of ak� It is of course natural to linearize around a given estimate of a� and to
use extended Kalman �ltering� Once t� R is obtained� one can recover M by
expressing the relations �

�C�m� � t� �RC�m�

where �� � are unknown scalars� In this relation again t� R are known random
variables� as well as C�m�� C�m� � Thus we are in a situation similar to the
above and can use again a Kalman �lter�

These techniques have been extensively used in the context of mobile robotics
by O� FAUGERAS and his team� see for instance �����

���� New algorithms

������ Parallel algorithms The development of multiprocessors has generated a
substantial interest in the obtaining of parallel algorithms� A thorough analysis
is needed� since surprises can arise in comparison with the sequential approach�

Take for instance Jacobi and Gauss Seidel iterations for obtaining a �xed
point of �

x � f�x	 x � lRn

A Jacobi iteration is the following �

xk��i � fi�x
k	� i � � � � �n

and a Gauss Seidel is �

xk��i � fi�x
k��
� � � � � � xk��i�� � x

k
i � � � � � xkn	
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The advantage of Gauss Seidel iteration is that it converges more frequently
that Jacobi� and sequentially it performs much better �the convergence rate of
Gauss Seidel iteration is better	�

Parallel implementation will change the situation considerably�

Consider the case when there are n processors� and the sequence xk such
that �

xk�� � f�xk	

denoted by xk�J �Jacobi sequence	 converges towards the �xed point� Suppose
also f monotone� i�e� f�x	 � f�y	 �x� y with x � y� Then take a sequence xk�U

de�ned by �

xk���Ui � fi�x
k�U 	� �i � Uk

xk���Ui � xk�Ui � �i �� Uk

Uk is a subset of f�� � � � � ng�
One can prove �T�N� TSITSIKLIS	 that if one starts with the same initial

value x� and f�x�	 � x� or x� � f�x�	� then �

x� � xk�J � xk�U � �k
where x� is the limit �xed point� Hence Jacobi iteration performs better than
any parallel version of Gauss Seidel iteration� When they are less than n
processors available� or the assumption of monotonicity is not satis�ed� no
general statement can be made �see ���	

������ Simulated Annealing and global optimization This type of algorithm has
been developed in the recent years in order to obtain a global minimum for a
function U�x	� over x � B�B compact� in the case when U is smooth� It is
clear that such a problem occurs in many applications� Simulated annealing
has �rst been used in the context of image processing�

The algorithm consists in a discrete version of the following stochastic dif�
ferential equation�

dxt � �DU�xt	dt� ct��xt	dwt� x��	 � x

where the following assumptions are made

� U is C� from B to ���	 and

Minx�BU�x	 � �� DU�x	 � x � �� �x � B �
�

B�

where B is a ball in lRn� centered at the origin� and B� is an other ball�
also centered at the origin and strictly included in B�
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� � is Lipschitz continuous from B to ��� ��� with � � �� for x � B�� � � � for

x � �B� � � � on
�
B

� ct �
c

Logt
� for t large� c � ��

� wt standard Wiener process in lR
n

� ���x	 �
�

Z�
�exp � �U�x	

��
	��B with

R
���x	dx � � converges weakly to a

probability � as �
 ��

Note that � is a probability concentrated on the set of global minima of
U��	�

Then the following result can be proved �

Ef�xt	
 ��f	

�f bounded� continuous� as t 
 � uniformly for x �the initial value	 in B�
�For more details see ���	�

��	� New approaches

Let us just mention the developments related to H� theory and which permit
to obtain protection of dynamic systems from disturbances via feedback control
� We just mention some recent results concerning linear systems�

Let us consider the linear system

"x � Ax�Bu�Dw�

y � Cx

where w represents a disturbance� and u a control� We consider feedback con�
trols� u � Ky� The transfer matrix TK�s	 is given by

TK�s	 � C�sI � �A�BK	���D

and we consider those K for which A�BK is stable� The H� norm is de�ned
by �

kTKk� �
� �
��

Z ��

��

tr TK��j�	�TK�j�	d�
� �
�

and the H� norm is de�ned by �

kTKk� � sup
��R

� tr TK��j�	�TK�j�		 ��

which are �nite since A�BK is stable�

The problem of H� or H� control consists in minimizing the above norms
with respect to K�
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Note that

kTKk� � sup
w

��Z �

�

jy�t	j�dt� �� j�Z �

�

jw�t	j�dt� �� � �	
and thus this norm expresses the sensitivity of the system with respect to ex�
ternal disturbances�

Among the important results obtained recently� it has been proven that we
can chose a K such that kTKk� � ���� given� if there exists � such that one
can solve the Riccati equation

PA�A�P � �

�
PBB�P �

�

�
PDD�P �

�

�
CC� � �I � �

In fact K � �B
�P

��
will serve for this purpose �for more details� see ����	�

�� Discrete systems

	��� Discrete event systems

New applications strongly related to information technology have created the
need to develop a theory of DEDS� discrete event dynamic systems� Such appli�
cations are production or assembly lines� computer#communication networks�
tra�c systems� � � �A special issue of IEEE� Jan� ���� is devoted to dynamics
of discrete event systems�

Many new mathematical techniques have been developed in this context�
We describe here one of them� the use of an algebraic structure� called dioid�
in the modelling of timed event graphs�

Let us just recall the basic de�nition of a dioid� It is a set D provided with
two inner operations � and � �addition and multiplication	 such that

� they are both associative

� addition is commutative

� multiplication is right distributive with respect to addition

� there exists a null and identity elements

�� � D � �a � D� a� � � a

�e � D � �a � D� a� e � e� a � a

� the null element is absorbing

�a � D� a� � � �� a � �

��



� the addition is idem potent

�a � D� a� a � a�

When addition is commutative� the dioid is called commutative� As an
example take D � Z � f�g � f�g and

� � max� � � �
� � �� e � �

�note that we impose the rule ��	� ��	 � ��		�
We can also consider

� � min� � � �
� � �� e � �

�in which case ��	� ��	 � �	�

A dioid is a structure somewhere between linear algebra and lattices�
One can de�ne a partial order relation

a 	 b� a � a� b

and a pseudo left inverse denoted anc which is the greatest subsolution of

a� x � c�

Starting with these premises a�ne equations can be solved� as well as matrices
de�ned and a matrix calculus is available� Matrix equations can also be solved�
Let us see briey how these concepts apply to timed event graphs�

Times event graphs are a special kind of Petri nets� They are directed
graphs with two types of edges� places and transitions

In Figure ��� the transitions are u�� u�� x�� x�� x�� y and the places are
denoted by x�ju�� x�ju�� x�jx�� x�jx�� x�jx�� yjx�� yjx�� x�jx�� x�jx��

There is a single transition upstream and downstream� at each place�
In places� there are tokens or not� Tokens are created or consumed when

transitions are �red� more precisely when a transition t is �red one token is
consumed at each place which precedes t and one is created at each place
which succeeds it�

Let us assume that transitions are immediate� but a token must stay at a
place an amount of time called the holding time� which depends on the place�
The following symbols are used

For instance consider the places which precede x�� we complete the infor�
mation as follows

Let for a transition x� xn be date at which transition x has been �red for
the nth time� We can write the relation

��



Figure ��

Figure ��

�x�	n � max��x�	n��� �u�	n � ��

and of course similar relations for other transitions�

If the dates take values in Z � f�g � f�g� then we can work with the
dioid considered above D� with the operations � � max� � � ��

The preceding relation writes

�x�	n � �x�	n�� � ��u�	n
where ��u�	n � �� �u�	n to simplify the notation�

One of the objectives of research in these directions is to obtain a theory
similar to that of linear dynamic systems� In particular a theory of stability is
being developed� This is important to obtaining an evaluation of performances
for the real system which is modelled by the event graph� �See ���	�

��
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	��� Hybrid systems

An hybrid system is a system whose state contains continuously as well as
�nitely valued variables� When the discrete variables take a given set of values�
the continuous variables behave as the solutions of di�erential equations� Tran�
sitions between the possible sets of values of the discrete variables are obtained
through the action of a monitor �a controller	� The action of the controller may
be instantaneous or require some delay� The objective is in general to keep the
continuous variables within a given range� Decisions are taken as feedbacks�

An hybrid system will be characterized by a given feedback� and the problem
is to prove that this feedback rule ful�lls the goal�

Example �� Suppose we want to control the temperature of a room through
a thermostat� which can turn instantaneously a heater on and o�� The tem�
perature is the continuous variable x�t	� 	�t	 � � or � according whether the
heater is on or o� is the discrete variable� We have �

"x � �Kx if 	 � �

"x � K�h� x	 if 	 � �

If d�t	 is the decision taken by the thermostat� d�t	 � � or � and we have�

	�t� �	 � d�t	

We want to maintain x�t	 between m and M � Then we take

d�t	 � � if x�t	 � m and 	�t	 � �

d�t	 � � if x�t	 � M and 	�t	 � �

and d�t	 � 	�t	 otherwise � Such a feedback full�lls the objective�

Example �� Suppose we control the water level in a tank through a monitor
which can turn a pump on and o�� The water level is x�t	� and we set 	�t	 � �
if the pump is on� and 	�t	 � � if it is o�� We have

��



"x � �� if 	�t	 � �

"x � � if 	�t	 � �

Let d�t	 be the decision taken by the monitor� d�t	 � � or � and suppose
there is a delay of � before the decision is executed then �

	�t	 � d�t� �	
We wish to keep the water level between � and ��� We then consider the
feedback

d�t	 � � if x�t	 � � and 	�t	 � �

d�t	 � � if x�t	 � �� and 	�t	 � �

and d�t	 � 	�t	 otherwise such a feedback ful�lls the desired behaviour� In
general� proving that a speci�c feedback satis�es a given objective of the con�
tinuous variables is not easy� Results on decidability of such a problem are
available for a particular class of Hybrid systems �cf� R� Alur et al� ���	�

�� New areas of information technology

Let us mention only some recent mathematical problems motivated by I�T�
�again this is by no means exhaustive	�

��� Arti�cial intelligence

Since arti�cial intelligence needs to deal with qualitative aspects� more than
with quantitative aspects �or in connection with them	� this has motivated the
development of qualitative simulation �or qualitative physics	 in particular at
Xerox Parc� Note that the economists needed much before similar techniques�
in the context of the theory of comparative economics �P�A� SAMUELSON	�

Our presentation here relies on some recent work of J�P� AUBIN�

We pose the problem of the qualitative evolution of solutions to a di�erential
equation

"x � f�xt	 x � lRn

and more precisely to the qualitative evolution of a set of functionals

V��xt	� � � � � Vm�xt	

which are of importance �energy� entropy� indicators� � � � 	�
The qualitative behavior is expressed by the evolution of the functions sign

�
d

dt
Vj�xt		 with values in Rm � f��� ����gm�

��



This is the problem of interest� But we want to obtain this evolution�
without solving the equation� since some independence should be obtained
with respect to the initial condition�

Since sign �
d

dt
Vj�xt		 � sign �DVj�xt	f�xt		 it is convenient to introduce

in the closed subspace K of lRn� where lives xt� the qualitative cells

Ka � fx � Kj sign �DVj�x	f�x		 � ajg
where a � Rm� and their closure �large qualitative cells	

$Ka � fx � Kj sign �DVj�x	f�x		 � aj or �g�
Let D�f� V 	 be the subset of qualitative states a such that Ka is not empty� Let
also denote by x�t!x�	 the solution of the di�erential equation corresponding
to an initial date x�� One is interested in the study of transitions between

qualitative cells�
If b � D�f� V 	� we say that c � D�f� V 	 is a successor of b� if �x� � $Kb� $Kc�

there exists � � �� such that x�t!x�	 � Kc� for all t ���� � ��
A qualitative state a is a qualitative equilibrium� if it is its own successor�

It is said to be a qualitative repellor if �x� � $Ka� there exists t � � such that
x�t!x�	 �� $Ka�

The theory developed by J�P� Aubin permits to characterize the map of
successors� the qualitative equilibria� and the qualitative repellors�

It has been applied to the so�called �replicator systems�� a prototype of
which is the di�erential system ����	

"xi � xi��i �
nX
j��

�jxj	

��� Neural networks

The basic neural network can be viewed as an undirected graph with n nodes�
to which are attached a pair �W� 
	 where

W is an n � n symmetric matrix� Wij is the weight attached to the edge
�i� j	� Wii � �


 is an n vector� 
i is the threshold attached to the node i�
Nodes are called neurons� Each neuron has two possible states �����	� Let

v be the state of the neural network� vi being the state of neuron i�
Let

Ei�v	 � �
nX
j��

Wijvj � 
i

then the following calculation is performed by the network

��



vk��i � sign �Ei�v
k		� for i � Sk

vk��i � vki for i �� Sk

where Sk is a subset of the neurons�
For instance if

k � hn� j j � � � � � n� �
and Sk � fj � �g� the network operates in serial mode�

Note that in our notation

sign �a	 �



� if a 	 �
�� if a � �

A stable state is a state such that

vk�� � vk � v�

A basic theorem of HOPFIELD is that if the network operates in serial mode�
then it will converge to a stable state�

The applicability of neural networks in practice arises from the possibility of
interpreting the stable states� For instance� in pattern recognition� the stable
states are known patterns� and for a given input pattern� the network will
converge to the known pattern which is the closest to the input� It is clear that
the neural network realizes the following search problem

minE�v	 � ��
�

X
ij

Wijvivj �
X
i


ivi vi � f�����g

and attains a local minimum�

One can clearly consider many variants of the above problem� For instance
consider the following model in continuous time

vi�t	 � g�ui�t		

dui
dt

� �Ei�v�t		

where g is an increasing function from R to ��� �� and Ei�v	 �
�

�vi
E�v	� E�v	

energy function �for instance the above	� It will converge towards a local min�
imum of E�v	� It can be realized as an analog integrated circuit�

In the spirit of simulated annealing� considered above� one can try to attain
a global minimum of the Energy function� by considering a stochastic version
of the preceding model� This has been done by E� WONG�

Consider the model
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vi�t	 � g�ui�t		

dui � �Ei�v�t		dt �

s
�T

g��ui�t		
dwi

where T is a constant� and wi are independent standard Wiener processes� The
stationary probability density of the process v�t	 is

p�v	 �
�

Z
exp� �

T
E�v	

where Z is the normalization factor�
The simulated annealing adaptation of the preceding algorithm �for instance

take T �t	 
 � as t 
 	 remains to be done� For more details� see ��� and
����	�

�	� Analytic analysis of algorithms

Computer science leads quite frequently to combinatorial algorithms� A quite
interesting approach of P� Flajolet ���� has shown how generating functions and
complex analysis provide a way to treat these problems� In particular� formal
languages� tree enumerations� comparison based searching and sorting� digital
structures� hashing and occupancy have been interesting applications�

A class of combinatorial structures is a pair of a �nite or denumerable set
A� whose elements are called the atoms�

Each atom � � A will have a size j�j� We can perform the following
operations �

The product relation C � A�B �

C � f� � Cj� � ��� �	� � � A� � � Bg with j�j � j�j� j�j

The union relation C � A� B C � A � B where A� B are disjoint�
The sequence C � A�

C � f�g�A�A�A�A�A�A� � � �
where j�j � �� The set construction C � ��A	� is the collection of all subsets
of A�

C � ff��� � � � � �k� � � �gj ��� � � � � �k� � � � inA� ��� � � ��k � � � di�erentg�

The multi set construction C �M�A	 allows repetitions�
The cycle construction � C�A	 is the set whose elements are �non empty	

cycles of elements of A�
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Let An be the number of elements of A� whose elements are �non empty	
cycles of elements of A� Let An be the number of elements of A� whose size
is n� then the interesting problem is to calculate the Cn corresponding to the
more complex structure C� This is where the generating functions are useful�
De�ne

A�z	 �
X
n

Anz
n �

X
��A

z
��

and

C�z	 �
X
n

Cnz
n �

X
	�C

z
	�

It is possible to express C�z	 in function of A�z	� For instance� for C � A�B
one has �

C�z	 �
X


��
��A�B

zj�j�j
j � A�z	B�z	

For C � A� B

C�z	 �
X
��A

z
�	 �
X

�B

zj
j � A�z	 �B�z	

For C � A�

C�z	 � � �A�z	 �A�z	� � � � �
�

�

��A�z	

For C � ��A	� we note that
��A	 � %��A�f�g� f�g	

hence

C�z	 � %��A�� � zj�j	 � %n�� � zn	An

� exp�A�z	� A�z�	

�
�
A�z�	

�
� � � �	

For C �M�A	 we have
M�A	 � %��Af�g�

hence

C�z	 � %��A
�

�� zj�j
� %n��� zn	An

� exp�A�z	� A�z�	

�
�
A�z�	

�
� � � �	
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Consider further C �M��A	� the collection of subsets of A with cardinality ��
with possible repetition� Then

C�z	 �
X

j��j�j��j

zj��j�j��j �
X
�

z�j�j

�
�

�

X
j��j	�j��j

zj��j�j��j �
X
�

z�j�j

�
�

�

X
�����

zj��j�j��j �
�

�

X
�

z�j�j

hence

C�z	 �
�

�
�A�z		� �

�

�
A�z�	�

From the previous structures� it is possible to construct further complex struc�
tures� which will lead to functional equations� For instance� consider in Figure
� the structure of binary trees �the size of a binary tree is the number of leaves	

� �

�
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�
�

�
�
�

�
�
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J
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J
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J
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�
�
�� Q
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Figure ��

Let A � fleafg� then
B � A� B � B

hence
B�z	 � z � �B�z		�

which yields a unique formal power series solution

B�z	 �
�

�
���p�� �z	

Similarly consider trees with multiples branches �at least �	� each branch having
at least � leaves� one has

B � A� B � B � B � B � B � � � �
hence

B�z	 � z �
�B�z		�

��B�z	

��



which obtains

B�z	 �
�

�
�� � z �

p
�� �z � z�	�

Formulas like ��	 allow among other things to study the asymtotic behavior
of Bn� This is governed by the singularities of the generating function B�z	�
according to a famous theorem of Darboux�
Suppose we consider the class of mathematical expressions involving constants�
the vaiable x� ex and additions or products of similar type of expressions� We
can visualize the set of such expressions by �

E � fcg � fxg �
���

�
� n
� �

�� �
���

�
� n
� �

�� �
���
exp
j
�

��
This permits to represent an element of � as a tree� for instance the expression
x � ee

x�x is represented by Figure �� The size of an expression will be the

�

�

x exp

exp x

x

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure ��

number of nodes of the tree� The above tree has size ��
Let E�z	 to be the generating function corresponding to E � then we have the
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functional equation
E�z	 � �z � �zE�z	� � zE�z	

Let �zn�E�z	 to be the coe�cient of zn in the formal series E�z	� it repre�
sents the number of expressions of size n�
Among possible uses of this machinery� one can compute the complexity of
formal di�erentiation� One can estimate the asymptotic average size of deriva�
tives� Many more applications can be given�
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