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A report is given on the Minisymposium held in honour of Jaroslav Hajek on
8th June 1994 in Prague.

1. INTRODUCTION

Twenty years ago Jaroslav Hajek died in Prague on the 10th June 1974 at
the early age of 48. To commemorate Hajek and his work, The Department of
Probability and Mathematical Statistics, Charles University, Prague, organized
an one-day Symposium on 8th June 1994. This meeting brought together about
thirty researchers working in various areas of mathematical statistics, where the
significant impact of Hajek’s results and ideas is still present even today: the
theory of rank tests, efficiency problems in estimation theory, sampling from
a finite population, and a few miscellaneous topics. Véaclav Dupac (Prague)
gave the opening talk on Jaroslav Hajek and the influence of his work on Czech
statistics (see also [1]); Hajek’s widow and two daughters also attended the
meeting.

In this report I shall give a brief overview of the talks, which at the same
time will emphazise the lasting importance of Hajek’s work in mathematical
statistics. At this point it should also be mentioned that Hajek initiated the
Prague Symposia on Asymptotic Statistics. The first of these meetings was held
in August 1973. Since then, these symposia have been held each five years and
have greatly stimulated contacts between Czech mathematical statisticians and
their colleagues from abroad. This was especially important before the ‘Velvet
Revolution’ took place in November 1989.
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A forthcoming issue of Kybernetika will contain the invited papers of the Mini-
symposium as well as a number of contributed papers.

2. THEORY OF RANK TESTS
The heading of this section is also the title of the famous research monograph by
HAJEK AND SIDAK ([6]) which was published in 1967. Many graduate students
at the time (including myself) learned about contiguity, the three Lemmas of
LeCam, and many results on rank tests from this beautiful book. The book by
WITTING AND NOLLE [17] was another very good source on these matters.

At the meeting Jana Jureckovd (Prague) and H. Witting (Freiburg) gave
invited lectures on different topics in this area. Jana Jureckova gave a survey
of Hajek’s asymptotic theory of linear rank tests and also discussed some recent
extensions (see, e.g., GUTTENBRUNNER AND JURECKOVA [3]) of Hajek’s results
to the linear regression model. To give the flavour of some of Héjek’s ideas in
this area we need first to introduce a bit of notation.

Let X1,...,X,, be independent observations, where X; has continuous dis-
tribution function (df) F; (1 <i < n). Let R,; denote the rank of X; among
Xi,..., Xy de.

Rpi= Ijpoo)(Xi—X;), 1<i<m (1)
Jj=1
where Iy o) denotes the indicator function of the set [0,00). The rank of X; is
nothing but the number of observations among X, ..., X,,, which are smaller
than or equal to X;.
Statistics of the form

n

=1
are called simple linear rank statistics. Here (¢p1, ..., Cnn) are given ‘regression
constants’ and (a(1),...,a(n)) denote the ‘scores’. These scores are usually

assumed to be generated by a function ¢(t), 0 < t < 1; e.g. by simply setting

)=o) 15i<n 3)

n+1

Another well-known choice is to take a,(i) = E¢(U;n), 1 < i < n, where
U;., denotes the ith order statistic of a sample of size n from the uniform
distribution on (0,1).

Simple linear rank statistics play a very important role in the nonparametric
theory of rank tests. These statistics are useful in a variety of nonparamet-
ric testing problems, e.g. the two-sample problem (take c,;=1 or 0), test-
ing for randomness against trend, etc. In HAJEK AND SIDAK [6] a wealth
of asymptotic results on teststatistics of type S, under the null-hypothesis
F, =...=F, and contiguous (local) alternatives can be found. In the impor-
tant paper H4jek(1968) the asymptotic normality of S,, under general alterna-
tives (Fi, ..., F,) was investigated.
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Let us now briefly review the interesting methodology of the latter paper.
Héjek’s idea is first to approximate S, by a suitable sum of independent random
variables (r.v.) L, = Y1, £;(X;), to which the classical central limit theorem
can be applied. The functions ¢; are completely arbitrary, but must satisfy
E0?2(X;) < co. Here and elsewhere E denotes the expectation operator, while
E( |X) refers to the conditional expectation given X. The best choice for
L, is to take the ‘projection’ of S,, on the subspace L of all statistics L,, in
the Hilbert space of all square integrable statistics based on Xi, ..., X,. The

resulting ‘projection’ S, is easily found:
Sn = E(S4|Xi) — (n—1)ES, (4)
i=1

where ES,, = ES,. In addition, one has the very useful relation:
E(Sy — S0)? = 0%(Sn) — 0%(Sn) (5)
whereas E(S, — L,)? = E(S, — S’n)2 + E(S’n — Ly)?, so that indeed S, is

‘best possible’ in a ‘mean square’ sense. (Here and elsewhere 02(Z) denotes the
variance of ar.v. Z.) With the aid of this simple projection argument Héjek was
able to prove the asymptotic normality of S,, for score generating functions ¢
with a bounded second derivative, provided degeneration of the variance o2(S,,)
is avoided. This is achieved by proving that the ‘remainder’term S,, — S, is of
negligible order of magnitude.

The second important step in Hajek’s proof is to remove the restrictive re-
quirement that ¢ possesses a bounded second derivative. In fact Hjek showed
that this assumption is completely superfluous and can be replaced by the much
weaker assumption that ¢ can be expressed as ¢ = p; — 3, where the p;’s
(i=1,2) are both nondecreasing, square integrable and absolutely continuous
inside (0,1). To prove this Héjek established the following intriguing inequal-
ity:

o*(Sn) < 21 max (cin — &) ;(an(i) — @)’ (6)

where ¢, = n7 'Y | ¢in and @, = n7t Y07 an(i). The ¢;,’s are arbitrary
constants and a,(1) < ... < a,(n) are non-decreasing constants. No condition
(except continuity) is imposed on the underlying df’s Fi,...,F,. With the
aid of this variance inequality Hajek showed in fact the following: Suppose
asymptotic normality of S, is proved for a certain class ®9 = {po} of score-
generating functions, then it also holds for the class ® = {¢} consisting of
functions ¢ possessing the following property: for every € > 0, there exists a
po € ®¢ and non-decreasing functions ¢; and @9 such that ¢ = @¢+¢1 —p2 and
fol (P2 +p32)dt < e. If we take for ® the class of all score-generating functions ¢
on (0,1) which can be expressed as ¢ = 1 — 2, where the @;’s (i=1,2) are both
nondecreasing, square integrable and absolutely continuous inside (0,1), then it
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turns out that ®, may be taken as the class of all polynomials. This choice of ®
is related to the well-known fact that the set of all polynomials is a dense subset
of the L;-space of integrable functions. Since any polynomial ¢y € ®( possesses
a bounded second derivative, Hajek’s proof of the asymptotic normality of S,
is now complete. The result of HAJEK [7] was extended by DUPAC AND HAJEK
[2] to the case of discontinuous ¢, while in HOEFFDING [11] it was shown that
the centering constant E.S,, employed by H&jek in his ‘asymptotic normality’
result, can be replaced by a simpler, more practical, constant u, provided the
square integrability condition on ¢; and ¢ is slightly strengthened.

H&jek’s method of proof was subsequently succesfully applied by STIGLER
[14, 15] to the problem of establishing the asymptotic normality of L-statistics
(or ‘linear combinations of order statistics’). In addition, I should perhaps also
note at this point that Hajek’s ‘projection’ idea is nothing but a very special
case of the well-known Hoeffding decomposition for general statistics with finite
second moment. This decomposition was in recent years employed by many
researchers (including the present author) in problems connected with the rate
of convergence to normality, Edgeworth expansions and jackknife/bootstrap
resampling methods.

H. Witting spoke about some old and new results concerning rank tests for
scale in the nonparametric two-sample problem obtained at Freiburg during the
past 15 years. Two Ph.D theses (by W. SCHAFER (1979) and H.U. BURGER
(1991)) were written on this topic. Several dispersion orderings and their ap-
plications to nonparametric tests were discussed. A nice review of all this is
given in WITTING [18]. C. Domaiiski (Lodz) discussed problems concerning the
approximation of critical values of the well-known Wilcoxon two-sample rank
test for location in the case of discrete distributions; i.e. with probability one
ties are present.

Marie Huskovd (Prague) gave a talk on a rank statistics approach to general-
ized bootstrap resampling schemes. The interesting basic idea, due to M ASON
AND NEWTON [13], is as follows: let X7,..., X, be a random sample of size n
from the distribution function F, let #(F) be a parameter of interest and 8(F,)
its estimator, where E}, denotes the empirical distribution function based on
X1,...,X,. Efron’s by now classical bootstrap is to take bootstrap samples
from the distribution F'n; the corresponding bootstrapped empirical distribu-
tion function is then given by

Fr(z)=n"" Z I{X; < 2} M; (7)

where I{A} denotes the indicator of the set A and (M, ..., M,) has the multi-
nomial distribution M (n; %, cee %) MAasSON AND NEWTON [13] proposed to
replace (Mj,...,M,) by weights (nwy1,...,nwyy,), that are nonnegative ez-
changeable random variables, satisfying certain mild conditions. The condi-
tional distribution (given X1,...,X,) of Y. | I(X; < )wy; is now the same
as the (conditional) one of ! | I(X; < z)w,g, (The conditioning here is on
both Xi,...,X, and wi,,...,W,,; the randomness comes only through the
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ranks Ry,...,R,), where Ry,..., R, is a random permutation of 1,...,n. In
this way the problem of the consistency of such generalized weighted bootstrap
resampling schemes reduces to the study of the limit behaviour of a certain
class of rank tests. Hdajek’s 1961 ([5]) theorem on the limit distributions of
simple linear rank statistics turns out to be a very powerful tool here. Results

for specific statistics 6(F},) such as the sample mean, U-statistics and sample
quantiles were presented.

3. EFFICIENCY PROBLEMS IN ESTIMATION THEORY

Two famous results of Hégjek - the convolution theorem and the LAM (local
asymptotic minimax) theorem - obtained in the early seventies, became mile-
stones in this area. This topic plays an important role in present day statistics,
(see, e.g., VAN DER VAART [16], LECAM [12]). While Héjek considers estima-
tion of a parameter in ‘smooth’ parametric models {Fy, 6 € O} (the parameter
6 takes values in ©, an open subset of R¥), recent work in this area concentrates
on nonparametric and semiparametric models.

Rudy Beran (Berkeley) gave an invited talk on the Hijek-LeCam convolution
theorem, the LAM theorem and its connection with superefficiency, Stein esti-
mation, and the bootstrap. Suppose X1, X, ..., X, is a random sample of size
n from Py and let € be a vector-valued parameter, which we want to estimate.
Let T, = T,,(X1,...,X,) denote an estimator of 6, and let H,(f) denote the
distribution of /n(T}, — #). The sequence {T},} is called Héjek regular at 6y if
H,(0,) = H(), as n — oo, whenever 6,, = 6y +n~2h, for any fixed h € R,
Here = denotes weak convergence. In HAJEK [8] it is shown that if the model
satisfies the LAN (Local Asymptotic Normality) property at 6y and {7} is
Hajek regular at 6y, then H(6p) is the convolution of an optimal normal distri-
bution and some other distribution (depending on the sequence {1} at hand).
In other words: asymptotically, for any regular estimator T, v/n(T;, — 6) can
be viewed as the sum of a normally distributed random variable - with variance
equal to the inverse of the Fisher information number (Cramér-Rao bound) -
and an independent ‘noise’ variable. As a consequence, an estimator sequence
is called asymptotically efficient (i.e. ‘best possible’ within the class of all regu-
lar estimators) when it has a limiting normal distribution, with variance equal
to the Cramér-Rao bound.

Regularity excludes superefficient estimators, such as the famous Hodges
example — as it was presumably intended to do — and the well-known Stein
shrinkage estimators. At this point one should recall that, when estimating
the mean of a k-variate normal distribution, the Stein shrinkage estimator
is admissible for quadratic loss functions, while the classical sample mean is
inadmissible, if the dimension k& > 3. So, perhaps lack of regularity is not
always a bad thing.

In HAJEK [9] the celebrated LAM-theorem is established. It asserts that if
the model satisfies the LAN property one cannot estimate 6 any better than
in the normal limit problem. The lowerbound is in terms of risks (instead
of distribution functions, as in the convolution theorem) and is valid for any
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estimator sequence {7, }. In addition Héjek showed that, when k=1, any esti-
mator sequence {71}, } satisfying LAM —i.e. attaining the lower bound in terms
of risks - is necessarily regular. When k& > 3, however,this is no longer true any
more: The Stein shrinkage estimators also achieve the lower bound; i.e. the
improvement over the sample mean is not captured by LAM alone.

A nice connection between Hajek regularity and bootstrap resampling was
also discussed by Beran. The bootstrap estimator of H,(f) is simply given by
Hn(én), where 6,, = én(Xl, ..., X,) estimates 6 consistently. Beran showed
that if you have LAN at 6y and H,(6,) = H(6y), whenever /n(8, — 6y) —
h € ®* and the sequence {/n(6, — 6)} is tight at 6y, then H,(6,) = H(6)
in probability under 6y; i.e. the bootstrap estimator Hn(én) is asymptotically
consistent. The assumption on {H,(#,)} implies regularity and hence H(6))
has convolution structure. So, there appears to be a close link between boot-
strap convergence and an appropriate ‘stochastic regularity’ condition. Beran
also proved that if you have LAN at 6, Hn(én) = H(6y) in probability under
By, and \/ﬁ(én —0p) = Y under 6y, where the random variable Y has full
support in R¥, then H(f,) has convolution structure. Extensions to nonpara-
metric models (infinite dimensional parameter case) were also discussed. We
note in passing that section 3.2 of the article by M.C. van Pul in this volume
contains a somewhat similar consistency result for parametric bootstrapping in
the context of software reliability.

Chris Klaassen (Amsterdam) discussed a result, which is, in a way, in be-
tween the LAM-theorem and the convolution theorem: no assumptions on the
estimator sequence {T7,} but still an assertion (though one which is a bit weaker
than a convolution statement) in terms of distributions, like in the Hajek convo-
lution theorem. I. Vincze (Budapest) spoke about some questions in connection
with a non-regular Cramér-Rao type inequality.

4. SAMPLING FROM A FINITE POPULATION
The heading of this section is the title of another (posthumously published)
book of HAJEK ([10]).

P.K. Sen (Chapel Hill) gave an invited lecture on Hajek’s asymptotic results
for finite population sampling, such as rejective sampling and sampling with
varying probabilities, and their extensions developed later on.

Zuzana Préaskova (Prague) showed how a conjecture of Hajek (Conjecture
14.11in [10]), concerning the relation between rejective sampling and conditional
Poisson sampling, for the case when the population is divided into several
strata, can be resolved in the affirmative. More precisely: Let S be a population
of N units,s C S a sample and P a probability distribution defined on the set
of all subsets of S. Let I;(s) denote the inclusion indicator of unit i and let
m; = EI;(s) be the probability of inclusion of the unit ¢ in the sample s. Poisson
sampling with parameters pi,...,pn is the probability sampling scheme in
which the inclusion indicators are independent zero-one random variables, with
probabilities of inclusion 7; = p;, for ¢ = 1,..., N. Rejective sampling of size
n can be viewed as conditional Poisson sampling, under the condition that
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the sample size is fixed and equal to n. An asymptotic approximation of the
inclusion probabilities 7; of the rejective sampling scheme in terms of py, ..., pyx
was given by HAJEK([10]). The same problem for the case that the population
S is divided into strata Sy,...,S.,, was considered by Praskova. Let K; =
|s N Spl, h =1,...,m denote the sample sizes in the strata Sy, h =1,...,m.
It can easily be checked that the including probabilities m; can be written as

P(Klznla---aKm:nm|Ii:1)

=y i=1,...,N
e p P(Ki=n1,...,Kpn =np) T e
where nq,...,n,, are the fixed strata sample sizes. Praskova now establishes a
multivariate Edgeworth expansion for the probabilities P(K; = ny,..., K, =
N ) and combined with a similar result for P(K; =nq,..., Ky =npy | [; = 1)

obtains her result.

The present author gave a talk on ‘wild bootstrapping in finite populations’.
This is work in progress at CWI joint with Marten Wegkamp (Leiden). The
basic probabilistic tool we employ in our analysis is the celebrated Erd6s-Rényi
central limit theorem for samples drawn without replacement from a finite
population. HAJEK [4] showed that the Lindeberg type condition needed for
asymptotic normality here is not only sufficient but necessary as well.

5. MISCELLANEOUS

J. Andeél (Prague) discussed a Bayesian approach to the periodogram and J.
Dupacova (Prague) gave a talk entitled: ‘Hajek and optimization’. J. Stépan
(Prague) spoke about a problem formulated by Héjek in 1969: What are ge-
ometrical and measure theoretical properties to characterize the Borel sets D
in the unit square that support at most one probability measure P with given
marginals P, and P,? What is the relation of these sets to extremal mea-
sures in the compact convex set of all probability distributions with marginals
Py, P,? The other talks dealt with a problem in numerical analysis, namely
the computation of stationary probability vectors of large scale stochastic ma-
trices (P. Mayer (Prague); joint work with I. Marek (Prague)) and confidence
sets of fixed form and size with predetermined level of confidence (S. Holm
(Goteborg)). In his lecture Sture Holm discussed an exact three stage method
for obtaining confidence sets of a given general form and size in the ANOVA
model with normally distributed observations. This is related to the classical
two-stage Stein method for obtaining a confidence interval of fixed length and
given confidence level for the mean of a normal distribution with unknown
variance.
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