/ ﬁ Quarterly Volume 7 (2) 1994, pp. 175 — 185

Shared Data Spaces for Distributed Computing and
Parallelism in Scientific Visualization Systems

Michel Grave

ONERA/DI

29, Avenue de la Division Leclerc
F-92322 Chatillon Cedex, France

In a first part, this paper reviews the architecture principles of some visu-
alization systems from the family of so-called application builders, focusing
on their ability to be run in distributed environments. In a second part some
points concerning the efficiency of distributed execution, and strategies for
executing on parallel systems are discussed. Finally the main lines of a ba-
sic layer for handling data sharing and processes synchronisation, presently
developed at ONERA, are presented.

1. INTRODUCTION

Scientific Visualization requires more and more complex processing, usually
obtained by assembling several elementary operations. This complexity is of-
ten hidden when turnkey systems are used, but it is always present. Since
requirements evolve quickly, a new generation of systems, called Application
Builders has emerged during the last years, and Visualization applications in
Scientific Computing are more and more often built today as interconnections
of several cooperating processes. In addition, applications are more and more
used in distributed environments, where different types of servers (for database
handling, graphics, or cpu-intensive computing) are connected, and processes
are running each on the best suited servers, or on the more available ones. This
also applies for parallel computer architectures, and in that case, some of the
processes can also be designed so that each of them can exploit parallelism.
Finally, with the progresses in high-speed networking there is an increasing
demand for Computer-Supported Cooperative Working (CSCW) applications,

175



in which several persons in different locations, could work at the same time
on the same distributed application. All these factors have led several groups
to study software architectures for such environments. In the first part of this
paper, elements of the organisation of a few existing visualization systems are
presented, mainly focusing on the communication and synchronisation features.
The second part of this paper presents some requirements induced by the need
to run visualization applications on parallel systems, and some of the problems
to be solved for building CSCW applications. Finally, an approach for design-
ing visualization systems is presented, and the basic kernel of a communication
system currently being developed at ONERA and allowing the implementation
of such new systems is presented.

2. ARCHITECTURE OF EXISTING APPLICATION BUILDERS

A general organisation of modular visualization systems based on the data-flow
paradigm has been described by HABER and MCNABB [9]. It shows clearly how
different components are interconnected in a pipeline transforming step by step
data into images, and where users interact with the system. This scheme is
very close to what has been implemented in many systems. However, the
data handling mechanism or the data transmission between modules, as well
as the way the overall process is controlled does not clearly appear, and it is in
fact in these features that real systems differ. The way these mechanisms are
designed has a great influence on the ability of systems to handle distribution
or parallelism.

AVS In AVS [12], a unique process, named Flow Executive, controls the flow
of data and the execution of the different modules. It has a description of all of
them, and decides when a module must be executed, based on the availability of
data it needs. It also centralises user’s interactions with the modules. In princi-
ple, each module is executed as a process, and communicates through classical
mechanisms in UNIX environments. In reality, shared memory is used, when
possible, between modules running on the same computer, in order to reduce
data replication, and several modules are grouped in single programs in order
to reduce the number of running processes, as well as the data communication
overhead. In general, a module has a predefined number of typed input and
output ports, and an input port can receive information from only one out-
put port of an other module. This is however not the case for some specific
modules, like for example the geometry viewer which can receive geometrical
objects from many different sources and combine them into a unique scene, in
order to produce a unique image. It is also possible to divide a pipeline at any
stage, and replicate the output of a module, in order to feed several instances
downstream.

Iris Explorer In IrRIS EXPLORER [11], there is also a centralised process,
named Global Communications server (GC) that centralises user’s interactions,
and initialises the different modules to be executed, but it does not directly su-

176



pervise the execution of the modules. On each computer involved the GC
communicates with a Local Communications server (LC), that will start mod-
ules, establish connections between them, or manage shared memory. When
modules are started there is no other control on their execution. There is no
decision of execution outside the modules themselves. Modules start processing
when they have received enough data on their input ports. The fact that this
decision is taken locally in each module is visible to the users, since they have
the possibility to directly ”fire” modules individually, which is not possible with
AVS. In the version 2 of Iris Explorer, mechanisms for handling parallel data
flows have been introduced, and fan-in of input data of modules is allowed.
Several instances of a pipeline can then run in parallel, with a merging occur-
ring not necessarily at the level of the display module. It is also possible to
build modules sending out data as soon as subsets of them are ready. This
allows a module to start processing only with a part of its input data, and not
only at completion of it predecessors.

Khoros KHOROS [14], has many differences with AVS and Iris Explorer al-
though it also has a visual programming interface (named Cantata). Modules
are autonomous entities that can be utilised individually, as ”shell” commands.
Networks created with Cantata can be saved in files as ”shell scripts”, and run
afterwards under no other environment than the operating system itself. Com-
munication between modules can be implemented in different ways (regular
files, shared memory or UNIX ”sockets”), and different modules can be run
on different computers in a network. In that case a communication managing
process executes on each computer involved, which manages the transfers be-
tween modules. Cantata can also be requested to detect parallel branches of
networks of modules, and arrange their parallel execution.

3. REQUIREMENTS FOR NEXT GENERATION OF SYSTEMS

3.1. Data Curculation

Todays computational environments include very powerful supercomputers,
and the amounts of data produced by a single simulation can be very large.
For example, in Computational Fluid Dynamics, meshes containing one mil-
lion grid points are common, and in unsteady flows simulation, thousands of
time steps need to be computed, each producing Megabytes of information.
This means that the amount of data produced are measured in Gigabytes. It
is then clear that if all that information circulates between nodes of parallel
computers or on networks, communication problems can easily become the real
bottleneck, diminishing seriously the benefit of using high performance com-
puters. In addition, data replication, like for example when it has to circulate
between processes can also lead to serious limitations in the use of visualiza-
tion systems, if it makes them usable only on small size problems. Most of
the systems address today this second point, mainly by using shared memory
mechanisms, when possible, but since modules are interconnected and assigned
to CPUs before execution, no optimisation of data circulation can be performed

177



at run time, depending on data location and modules usage. Low level data
handling mechanisms have to be designed for that purpose.

3.2. Parallelism

As seen above, in many cases a visualization system can be considered as
a pipeline of processes progressively transforming simulation or experimental
data into images. The same idea also applies in the rendering stage itself,
at least in systems based on the model where objects are projected from the
application’s space onto the image space [1], which is the case in most of those
not using the ray-tracing method. A first obvious way of taking advantage
of parallel architectures consists in assigning different stages of the pipeline
to different processors, processing the data concurrently as they flow through
them. This is usually referred to as the Procedural Parallelism scheme. In
this case, parallelism can be achieved only if there is a rather continuous flow
of data. This can happen when for example a time dependent phenomenon is
processed, or when the input data can be split into parts that can be sent to the
pipeline each after the other. A second method consists in using multiple copies
of the visualization pipeline, each processing a part of the data. This is the
scheme named Data Parallelism. In this second approach, a merging stage has
to be included at a certain level, in order to produce a unique common image
at the end. There are different criteria for splitting data into different subset
and for distributing them between pipelines [13]. The choice of an approach
depends very much on the context in which the visualization system is used,
and on the type of processing it has to perform. Of course, Procedural and
Data parallelism can be combined. Since processing can be distributed, an
important issue is the design of a communication system between processes.
Figure 1 illustrates different architectures. On the left part figure, the different
pipelines are independent from each other, and merging appears only at the
end, when the different partial images are combined !. On the right one,
merging happens after each stage of the pipeline (merging need not necessarily
happen physically at one place, and in some cases can be implemented just by
broadcasting data).

All the systems analysed above can easily handle procedural parallelism,
since the different steps of a pipeline can be distributed over different processors.
However, except in the case of Iris Explorer 2 in which some flow partitioning
functionalities are available, parallel execution of the different steps only occurs
when there is a continuous flow of data feeding the pipeline, since each step
waits for having all the data it has to receive from the previous one before
starting to execute. When the data flow is not continuous, the data produced
at each step should be split in smaller parts, and the modules receiving these
data should be able to start to execute as soon as a part is available.

L An image can be +partial; in many different ways. For example, each of them can cover
a limited portion of the screen, or each of them can represent only a subset of the initial
data, and the merging techniques are then different, but their study is out of the scope of
this paper

178



FiGURE 1. Examples of parallelisation strategies

For Data Parallelism, present systems are able to handle it by replicating
parts of the pipeline, but only in the scheme presented on the left part of
Figure 1. This means in particular that the numbers of modules assigned to
each step will be identical, and that load balancing will be impossible between
the different steps. In addition since connections are fixed, a module can only
send data to a predefined following one, even if it is already running while an
other one of that stage is idle. This is another difficulty for easily handling load
balancing.

3.3. Cooperative working

For Cooperative Working there are two main needs. First, it must be possible
to present at different locations an image of the same simulation, and in most
cases, users would like to have the same image. This implies not only that
the output of a visualization system must be replicable, but also that there
exists a synchronisation mechanism, especially in the case of animated images,
in order to ensure that the different users see the same thing at the same time.
An other important feature needed is synchronisation of the user interfaces,
including feedback of actions at one location on the interfaces of all others. In
that case handling of distributed computing at the level of the visualization
pipeline is not sufficient.

Current visualization systems can satisfy the first requirement, since ren-
dering modules can either be replicated, or can at least generate images on
different screens, and they have synchronisation mechanisms that can be ex-
plicitly added between modules. However, it is not possible for a new user to
enter a session in which others are already working, without requiring a modi-
fication of the network of modules, performed by the person responsible of it.
The second requirement is much more difficult to fulfil, and not implemented
properly in those systems. This issue will also not be addressed in the rest of
this paper.

179



FiGURE 2. The Shared Data Space approach

In this approach, a module has the possibility to produce shared data objects

180



without knowing if another module is ready to use them. Further, if a data
object is not explicitly destroyed, it can persist even if no module is connected
to it, until the data space is destroyed itself. In addition to this idea of Shared
Data Space, it should be possible to partition date objects, which means that
a module should be able to access only a part of an object, without knowing
what other modules access other parts of it.

Since there is no explicit connection between modules, any number of mod-
ules can access an object. As mentioned in the requirements of CSCW applica-
tions, a user can connect a new module to an object as soon as it gets its name,
without asking anyone else to do the work. However, it is clear from Figure 2
that the SDS approach can handle synchronisation between operators only at
the data level, and that synchronisation at the user level must be handled by
other mechanisms.

For building a system based on such partitioned shared data objects a low
level mechanism for handling communication and data sharing is needed, and
for that, a basic library named DS2 has been designed at ONERA. Such a layer
must hide the explicit sending of messages between tasks, even if this is used
internally for communication, through a tool like PVM for example [4]. Even
if other similar work has been done in other places, (see [7] for an analysis of
some of them), a new development was started, mainly because the software
has to be available on a network including workstations, a CRAY YMP, and
an Intel PARAGON, without making any change inside the operating systems
(unlike most of the other work we know). However, porting of the DS2 interface
as it is presented below but also in further versions, on another software layer
will be considered if an appropriate such basic layer is found. Upper layers of
the system, including libraries of more applications specific objects are being
developed on top of it.

5. THE DS2 LIBRARY

5.1. Definitions

In DS2, objects are collections of Pieces, themselves being arrays of homoge-
neous basic type elements (such as integers, characters). Objects are shared
and acted upon by Modules, the unit of access to objects being the piece.
Objects belong to a Shared Data Space (SDS), common to all the modules in-
volved in a given application. Modules can access objects by sending requests
to a Data Manager (DM). Of course, the object-oriented approach hides this
communication to the user of DS2, who is not aware of the existence of a DM:
all he manipulates are SDSes, objects and pieces. The physical space used
by the SDS can be distributed over the different machines on which modules
execute. In that case, the data manager itself is distributed, and consists of
several cooperating Local Data Managers.

Figure 3 shows the general principles of DS2. Four processes (P1-P4) are
shown distributed on 2 computers. P2 and P4 use different pieces of a common
object (Object_1), and pointers to those pieces have been provided by the
Local Data Managers, which handled requests from the processes, and coop-

181



FIGURE 3. General Principles of DS2

5.2. Mechanisms

Before gaining access to shared objects, a module has to enter an SDS, ref-
erenced by a name. When it no longer needs to access objects, it leaves the
space. For that purpose, a module uses requests of the following type (C++
-like syntax has been used in the examples):

SharedDataSpace SDS1(data-space-name) ;
SDS1.EnterSpace();

-- reference objects belonging to SDS1 --
SDS1.LeaveSpace() ;

In order to access an object, a module has to open it first, possibly creating
it, in which case a structure has to be specified in terms of pieces (number,
sizes, basic types). Once processing an object is completed, a close operation
has to be issued. The corresponding requests are the following;:

Object SHOB1(SDS1, object-name [,pieces-structure]);
SHOB1.0penObject () ;

-- access pieces of SHOB1 --

SHOB1.CloseObject (destruction) ;

182



Between OpenObject and CloseObject calls, the module can access pieces of
the object. Pieces are accessed by only one module at a time (mutual exclusion
of modules). The system takes care of the validity of this access. Therefore,
a module first requests access to the piece, and finally sends another request
once it has completed the operations it had to perform on it, so that other
modules can access the piece again. When a piece has been acquired, the data
it holds are available to the module by the use of a mere pointer. Therefore, it
can perform any action on it, except re-sizing the area or moving the pointer.
The following requests are used:

Piece PIEC1(SHOB1,piece-number);

BasicType *data = PIEC1.GetPiece(mode [,testflag][,tag-rangel);
-- work on the data: datalxx] = yy; --
PIEC1.ReleasePiece(destruction [, newflag] [, newtagl);

The system provides the user with multiple ways of selecting a piece from
an object. First of all, it is possible to specify a mode of access, as blocking
or non-blocking. This means that if the piece of the specified number is not
immediately available (because it is held by another module or it does not
satisfy the criteria described below), a call to GetPiece with a blocking mode
will wait for the piece to become available, whereas a non-blocking mode will
cause an unsuccessful return. Besides, two values are attached to a piece: a flag
(group of bits) and a tag (numerical value). The piece will be made available
to the module on a Get-Piece call only if its tag is in the tag-range and its flag
verifies the formula

(testflag && flag)== TRUE

Note that the use of testflag and tag-range is optional.

Two types of flags are defined: free flags, which meaning is chosen by the
user, and special flags, describing the status of a piece on a system point of
view (for e.g. created).

The piece selection mechanism has been defined so that it allows the han-
dling of time-dependent objects, for which tags can be used as computational
time-step information. Besides, it is also possible to realise non-deterministic
access to pieces, by iterative non blocking requests until finding a piece that
meets a condition (flag). Complex requests can be expressed, like for example:
I (module) want to access any piece of object O that is available for processing.
By this means, automatic load balancing is achieved. Finally, the implementa-
tion of application synchronisation (triggering of modules) can be done without
any external mechanism, by the use of special flags and blocking facilities.

6. CONCLUSIONS AND FURTHER DEVELOPMENTS

The new visualization tools under development have been designed for allowing
scientists to analyse results produced on distributed memory parallel comput-
ers. A classical way of parallelising a code in such environments consist in

183



decomposing the computational domain into pieces with data exchanges be-
tween the processes working on subdomains, in order to manage consistency
at borders, and to propagate data if necessary. With post-processing tools like
iso-surface computation or cutting planes, Data parallelism is easy to imple-
ment (since they can also work independently on subdomains) either by linking
them directly to the simulation in the same module, or by assigning them to
a group of processors. With the SDS approach, there is no need to allocate
as many processors to the post-processing as there are for the simulation, and
this is interesting, especially when the simulation is more cpu intensive than
the post-processing. The same applies to other stages of visualization, like
rendering,.

First experiments, with iso-surface computation and parallel rendering with
pixel merging [15] have been performed, and showed a good behaviour of the
program, with a rather fair load balancing between processors. However, more
important analysis has still to be done, with more CPU intensive computations,
in order to limit the influence on the data transfer tools on the results.

Since modules are not explicitly interconnected, each of them can take parts
of the data that are available, independently of their origin. When advanced
access mechanisms like ”give me the first piece available” will be available, the
Local Data Manager will be able to decide to give locally available pieces in
priority, in order to reduce data transfers. At present, such advanced access
mechanisms are not implemented inside DS2, and have to be programmed on
top of it. This causes some overhead of communication between the application
program and the data manager, and in addition, this implies useless computing.
In a next version, a selection of mechanisms will be directly implemented a the
lower level.

A large part of the work presented here has been made possible by ECC
Funding, through RACE 2031 Project. This is especially true for the DS2
system, which development has been in large parts realised at ONERA by
Sylvain Causse and Frederic Juaneda. All other members of the Graphics
Group also contribute to different parts of the experiments, or to some related
developments. Finally, Robert Van Liere from CWI provided valuable remarks,
and very useful additional information during the writing of this paper.

REFERENCES

1. AKELEY K. (1989). The Silicon Graphics 4D/240GTX superworkstation,
IEEE Computer Graphics and Applications, 9(4).

2. GRAVE M. (1993). Distributed Visualization in Flow Simulations, Com-
puters and Graphics, Vol 17 (1).

3. Lucas B., ABraMm G.D., CoLrLiNs N.S., EpsTEIN D.A., GrREsH D.L.,
McAuLiFre K.P. (1992). An Architecture for a Scientific Visualization
System, Proceedings IEEE Visualization’92 Conference, Boston, Ma.

4. BEGUELIN, A., DONGARRA, J., GEIST, G.A., MANCHEK, R., SUN-
DERAM, V.S. (1992). A User’s Guide to PVM Parallel Virtual Machine,

184



10.

11.
12.

13.

14.

15.

Oak Ridge National Laboratory Internal Report.

BUTLER, D.M., PENDLEY M.H. (1989). The Visualization Management
System Approach to Visualization in Scientific Computing, Computers in
Physics, pp. 40-44.

CAUSSE, S., HoLLARD, M., GRAVE, M. (1992). Ezperimenting Dis-
tributed Visualization with o« PVM Based System, ONERA Internal Re-
port.

CAUSSE, S., JUANEDA, F., GRAVE M. (1994). Partitioned Objects Shar-
ing for Visualization in Distributed Environments, In Frontiers in Data
Visualization, ROSENBLUM ET AL. (eds.) Academic Press.

Ducros, A.M., GRAVE M. (1993). Reference Models and Formal Speci-
fication for Scientific Visualization, In Scientific Visualization: Advanced
Software Techniques: P. PALAMIDESE (ed.) Hellis Horwood.

HABER, R.B., McNaBB, D.A. (1990). Visualization Idioms: A Concep-
tual Model for Scientific Visualization Systems, In Visualization in Scien-
tific Computing: NIELSON ET AL. (eds.) IEEE Computer Society Press.
SCHROEDER, W.J., LORENSEN, W.E., MONTANARO, G.D., VOLPE,
C.R. (1992). VISAGE: An Object-Oriented Scientific Visualization Sys-
tem, Proceedings IEEE Visualization’92 Conference, Boston, Ma.

Iris EXPLORER (1991). Silicon Graphics Technical report.

UprsoNn, C., FAULBAHER, T., KAMINS, D, LAIDLAW D., SCHLEGEL, D.,
VrooM, J., GURWITZ, R., vAN DaM, A. (1989). The Application Visual-
ization System: A Computational Environment fo Scientific Visualization,
IEEE Computer Graphics and Applications, Vol 9(4).

WHITMAN S. (1992). Multiprocessor Methods for Computer Graphics,
Jones and Bartlett, Boston.

THE KHOROS GROUP (1992). Khoros Manual, Department of Electrical
and Computer Engineering, University of New Mexico, Albuquerque.
Cox, M., HANRAHAN, P. (1993). Pixel Merging for Object-Parallel Ren-
dering: A Distributed Snooping Algorithm, Proceedings of IEEE 1993
Parallel Rendering Symposium, San Jose 1993, Published by ACM Sig-
graph.

185



