
Volume � ��� ����	 pp
 ��� � �
�

Shared Data Spaces for Distributed Computing and

Parallelism in Scienti�c Visualization Systems

Michel Grave

ONERA�DI

��� Avenue de la Division Leclerc

F������ Ch�atillon Cedex� France

In a �rst part	 this paper reviews the architecture principles of some visu�
alization systems from the family of so�called application builders	 focusing
on their ability to be run in distributed environments
 In a second part some
points concerning the e�ciency of distributed execution	 and strategies for
executing on parallel systems are discussed
 Finally the main lines of a ba�
sic layer for handling data sharing and processes synchronisation	 presently
developed at ONERA	 are presented


�� Introduction

Scienti�c Visualization requires more and more complex processing� usually
obtained by assembling several elementary operations� This complexity is of�
ten hidden when turnkey systems are used� but it is always present� Since
requirements evolve quickly� a new generation of systems� called Application
Builders has emerged during the last years� and Visualization applications in
Scienti�c Computing are more and more often built today as interconnections
of several cooperating processes� In addition� applications are more and more
used in distributed environments� where di�erent types of servers �for database
handling� graphics� or cpu�intensive computing� are connected� and processes
are running each on the best suited servers� or on the more available ones� This
also applies for parallel computer architectures� and in that case� some of the
processes can also be designed so that each of them can exploit parallelism�
Finally� with the progresses in high�speed networking there is an increasing
demand for Computer�Supported Cooperative Working �CSCW� applications�

	
�



in which several persons in di�erent locations� could work at the same time
on the same distributed application� All these factors have led several groups
to study software architectures for such environments� In the �rst part of this
paper� elements of the organisation of a few existing visualization systems are
presented� mainly focusing on the communication and synchronisation features�
The second part of this paper presents some requirements induced by the need
to run visualization applications on parallel systems� and some of the problems
to be solved for building CSCW applications� Finally� an approach for design�
ing visualization systems is presented� and the basic kernel of a communication
system currently being developed at ONERA and allowing the implementation
of such new systems is presented�

�� Architecture of existing application builders

A general organisation of modular visualization systems based on the data��ow
paradigm has been described byHaber andMcNabb 
��� It shows clearly how
di�erent components are interconnected in a pipeline transforming step by step
data into images� and where users interact with the system� This scheme is
very close to what has been implemented in many systems� However� the
data handling mechanism or the data transmission between modules� as well
as the way the overall process is controlled does not clearly appear� and it is in
fact in these features that real systems di�er� The way these mechanisms are
designed has a great in�uence on the ability of systems to handle distribution
or parallelism�

AVS In AVS 
	��� a unique process� named Flow Executive� controls the �ow
of data and the execution of the di�erent modules� It has a description of all of
them� and decides when a module must be executed� based on the availability of
data it needs� It also centralises user�s interactions with the modules� In princi�
ple� each module is executed as a process� and communicates through classical
mechanisms in UNIX environments� In reality� shared memory is used� when
possible� between modules running on the same computer� in order to reduce
data replication� and several modules are grouped in single programs in order
to reduce the number of running processes� as well as the data communication
overhead� In general� a module has a prede�ned number of typed input and
output ports� and an input port can receive information from only one out�
put port of an other module� This is however not the case for some speci�c
modules� like for example the geometry viewer which can receive geometrical
objects from many di�erent sources and combine them into a unique scene� in
order to produce a unique image� It is also possible to divide a pipeline at any
stage� and replicate the output of a module� in order to feed several instances
downstream�

Iris Explorer In Iris Explorer 
		�� there is also a centralised process�
named Global Communications server �GC� that centralises user�s interactions�
and initialises the di�erent modules to be executed� but it does not directly su�

	
�



pervise the execution of the modules� On each computer involved the GC
communicates with a Local Communications server �LC�� that will start mod�
ules� establish connections between them� or manage shared memory� When
modules are started there is no other control on their execution� There is no
decision of execution outside the modules themselves� Modules start processing
when they have received enough data on their input ports� The fact that this
decision is taken locally in each module is visible to the users� since they have
the possibility to directly ��re� modules individually� which is not possible with
AVS� In the version � of Iris Explorer� mechanisms for handling parallel data
�ows have been introduced� and fan�in of input data of modules is allowed�
Several instances of a pipeline can then run in parallel� with a merging occur�
ring not necessarily at the level of the display module� It is also possible to
build modules sending out data as soon as subsets of them are ready� This
allows a module to start processing only with a part of its input data� and not
only at completion of it predecessors�

Khoros Khoros 
	��� has many di�erences with AVS and Iris Explorer al�
though it also has a visual programming interface �named Cantata�� Modules
are autonomous entities that can be utilised individually� as �shell� commands�
Networks created with Cantata can be saved in �les as �shell scripts�� and run
afterwards under no other environment than the operating system itself� Com�
munication between modules can be implemented in di�erent ways �regular
�les� shared memory or UNIX �sockets��� and di�erent modules can be run
on di�erent computers in a network� In that case a communication managing
process executes on each computer involved� which manages the transfers be�
tween modules� Cantata can also be requested to detect parallel branches of
networks of modules� and arrange their parallel execution�

�� Requirements for next generation of systems

���� Data Circulation

Todays computational environments include very powerful supercomputers�
and the amounts of data produced by a single simulation can be very large�
For example� in Computational Fluid Dynamics� meshes containing one mil�
lion grid points are common� and in unsteady �ows simulation� thousands of
time steps need to be computed� each producing Megabytes of information�
This means that the amount of data produced are measured in Gigabytes� It
is then clear that if all that information circulates between nodes of parallel
computers or on networks� communication problems can easily become the real
bottleneck� diminishing seriously the bene�t of using high performance com�
puters� In addition� data replication� like for example when it has to circulate
between processes can also lead to serious limitations in the use of visualiza�
tion systems� if it makes them usable only on small size problems� Most of
the systems address today this second point� mainly by using shared memory
mechanisms� when possible� but since modules are interconnected and assigned
to CPUs before execution� no optimisation of data circulation can be performed

	





at run time� depending on data location and modules usage� Low level data
handling mechanisms have to be designed for that purpose�

���� Parallelism

As seen above� in many cases a visualization system can be considered as
a pipeline of processes progressively transforming simulation or experimental
data into images� The same idea also applies in the rendering stage itself�
at least in systems based on the model where objects are projected from the
application�s space onto the image space 
	�� which is the case in most of those
not using the ray�tracing method� A �rst obvious way of taking advantage
of parallel architectures consists in assigning di�erent stages of the pipeline
to di�erent processors� processing the data concurrently as they �ow through
them� This is usually referred to as the Procedural Parallelism scheme� In
this case� parallelism can be achieved only if there is a rather continuous �ow
of data� This can happen when for example a time dependent phenomenon is
processed� or when the input data can be split into parts that can be sent to the
pipeline each after the other� A second method consists in using multiple copies
of the visualization pipeline� each processing a part of the data� This is the
scheme named Data Parallelism� In this second approach� a merging stage has
to be included at a certain level� in order to produce a unique common image
at the end� There are di�erent criteria for splitting data into di�erent subset
and for distributing them between pipelines 
	��� The choice of an approach
depends very much on the context in which the visualization system is used�
and on the type of processing it has to perform� Of course� Procedural and
Data parallelism can be combined� Since processing can be distributed� an
important issue is the design of a communication system between processes�
Figure 	 illustrates di�erent architectures� On the left part �gure� the di�erent
pipelines are independent from each other� and merging appears only at the
end� when the di�erent partial images are combined �� On the right one�
merging happens after each stage of the pipeline �merging need not necessarily
happen physically at one place� and in some cases can be implemented just by
broadcasting data��
All the systems analysed above can easily handle procedural parallelism�

since the di�erent steps of a pipeline can be distributed over di�erent processors�
However� except in the case of Iris Explorer � in which some �ow partitioning
functionalities are available� parallel execution of the di�erent steps only occurs
when there is a continuous �ow of data feeding the pipeline� since each step
waits for having all the data it has to receive from the previous one before
starting to execute� When the data �ow is not continuous� the data produced
at each step should be split in smaller parts� and the modules receiving these
data should be able to start to execute as soon as a part is available�

�An image can be �partial� in many di�erent ways� For example� each of them can cover

a limited portion of the screen� or each of them can represent only a subset of the initial

data� and the merging techniques are then di�erent� but their study is out of the scope of

this paper

	
�



Figure �� Examples of parallelisation strategies

For Data Parallelism� present systems are able to handle it by replicating
parts of the pipeline� but only in the scheme presented on the left part of
Figure 	� This means in particular that the numbers of modules assigned to
each step will be identical� and that load balancing will be impossible between
the di�erent steps� In addition since connections are �xed� a module can only
send data to a prede�ned following one� even if it is already running while an
other one of that stage is idle� This is another di�culty for easily handling load
balancing�

���� Cooperative working

For Cooperative Working there are two main needs� First� it must be possible
to present at di�erent locations an image of the same simulation� and in most
cases� users would like to have the same image� This implies not only that
the output of a visualization system must be replicable� but also that there
exists a synchronisation mechanism� especially in the case of animated images�
in order to ensure that the di�erent users see the same thing at the same time�
An other important feature needed is synchronisation of the user interfaces�
including feedback of actions at one location on the interfaces of all others� In
that case handling of distributed computing at the level of the visualization
pipeline is not su�cient�
Current visualization systems can satisfy the �rst requirement� since ren�

dering modules can either be replicated� or can at least generate images on
di�erent screens� and they have synchronisation mechanisms that can be ex�
plicitly added between modules� However� it is not possible for a new user to
enter a session in which others are already working� without requiring a modi�
�cation of the network of modules� performed by the person responsible of it�
The second requirement is much more di�cult to ful�l� and not implemented
properly in those systems� This issue will also not be addressed in the rest of
this paper�

	
�



Figure �� The Shared Data Space approach

In this approach� a module has the possibility to produce shared data objects

	��



without knowing if another module is ready to use them� Further� if a data
object is not explicitly destroyed� it can persist even if no module is connected
to it� until the data space is destroyed itself� In addition to this idea of Shared
Data Space� it should be possible to partition date objects� which means that
a module should be able to access only a part of an object� without knowing
what other modules access other parts of it�
Since there is no explicit connection between modules� any number of mod�

ules can access an object� As mentioned in the requirements of CSCW applica�
tions� a user can connect a new module to an object as soon as it gets its name�
without asking anyone else to do the work� However� it is clear from Figure �
that the SDS approach can handle synchronisation between operators only at
the data level� and that synchronisation at the user level must be handled by
other mechanisms�
For building a system based on such partitioned shared data objects a low

level mechanism for handling communication and data sharing is needed� and
for that� a basic library named DS� has been designed at ONERA� Such a layer
must hide the explicit sending of messages between tasks� even if this is used
internally for communication� through a tool like PVM for example 
��� Even
if other similar work has been done in other places� �see 

� for an analysis of
some of them�� a new development was started� mainly because the software
has to be available on a network including workstations� a CRAY YMP� and
an Intel PARAGON� without making any change inside the operating systems
�unlike most of the other work we know�� However� porting of the DS� interface
as it is presented below but also in further versions� on another software layer
will be considered if an appropriate such basic layer is found� Upper layers of
the system� including libraries of more applications speci�c objects are being
developed on top of it�

�� The DS� library

���� De�nitions

In DS�� objects are collections of Pieces� themselves being arrays of homoge�
neous basic type elements �such as integers� characters�� Objects are shared
and acted upon by Modules� the unit of access to objects being the piece�
Objects belong to a Shared Data Space �SDS�� common to all the modules in�
volved in a given application� Modules can access objects by sending requests
to a Data Manager �DM�� Of course� the object�oriented approach hides this
communication to the user of DS�� who is not aware of the existence of a DM�
all he manipulates are SDSes� objects and pieces� The physical space used
by the SDS can be distributed over the di�erent machines on which modules
execute� In that case� the data manager itself is distributed� and consists of
several cooperating Local Data Managers�
Figure � shows the general principles of DS�� Four processes �P	�P�� are

shown distributed on � computers� P� and P� use di�erent pieces of a common
object �Object ��� and pointers to those pieces have been provided by the
Local Data Managers� which handled requests from the processes� and coop�

	�	



Figure �� General Principles of DS�

���� Mechanisms

Before gaining access to shared objects� a module has to enter an SDS� ref�
erenced by a name� When it no longer needs to access objects� it leaves the
space� For that purpose� a module uses requests of the following type �C��
�like syntax has been used in the examples��

SharedDataSpace SDS��data�space�name��

SDS��EnterSpace���

�� reference objects belonging to SDS� ��

SDS��LeaveSpace���

In order to access an object� a module has to open it �rst� possibly creating
it� in which case a structure has to be speci�ed in terms of pieces �number�
sizes� basic types�� Once processing an object is completed� a close operation
has to be issued� The corresponding requests are the following�

Object SHOB��SDS�� object�name ��pieces�structure	��

SHOB��OpenObject���

�� access pieces of SHOB� ��

SHOB��CloseObject�destruction��

	��



Between OpenObject and CloseObject calls� the module can access pieces of
the object� Pieces are accessed by only one module at a time �mutual exclusion
of modules�� The system takes care of the validity of this access� Therefore�
a module �rst requests access to the piece� and �nally sends another request
once it has completed the operations it had to perform on it� so that other
modules can access the piece again� When a piece has been acquired� the data
it holds are available to the module by the use of a mere pointer� Therefore� it
can perform any action on it� except re�sizing the area or moving the pointer�
The following requests are used�

Piece PIEC��SHOB��piece�number��

BasicType 
data � PIEC��GetPiece�mode ��testflag	��tag�range	��

�� work on the data� data�xx	 � yy� ��

PIEC��ReleasePiece�destruction �� newflag	�� newtag	��

The system provides the user with multiple ways of selecting a piece from
an object� First of all� it is possible to specify a mode of access� as blocking
or non�blocking� This means that if the piece of the speci�ed number is not
immediately available �because it is held by another module or it does not
satisfy the criteria described below�� a call to GetPiece with a blocking mode
will wait for the piece to become available� whereas a non�blocking mode will
cause an unsuccessful return� Besides� two values are attached to a piece� a �ag
�group of bits� and a tag �numerical value�� The piece will be made available
to the module on a Get�Piece call only if its tag is in the tag�range and its �ag
veri�es the formula

�testflag 

 flag��� TRUE

Note that the use of test�ag and tag�range is optional�
Two types of �ags are de�ned� free �ags� which meaning is chosen by the

user� and special �ags� describing the status of a piece on a system point of
view �for e�g� created��
The piece selection mechanism has been de�ned so that it allows the han�

dling of time�dependent objects� for which tags can be used as computational
time�step information� Besides� it is also possible to realise non�deterministic
access to pieces� by iterative non blocking requests until �nding a piece that
meets a condition ��ag�� Complex requests can be expressed� like for example�
I �module� want to access any piece of object O that is available for processing�
By this means� automatic load balancing is achieved� Finally� the implementa�
tion of application synchronisation �triggering of modules� can be done without
any external mechanism� by the use of special �ags and blocking facilities�

�� Conclusions and further developments

The new visualization tools under development have been designed for allowing
scientists to analyse results produced on distributed memory parallel comput�
ers� A classical way of parallelising a code in such environments consist in

	��



decomposing the computational domain into pieces with data exchanges be�
tween the processes working on subdomains� in order to manage consistency
at borders� and to propagate data if necessary� With post�processing tools like
iso�surface computation or cutting planes� Data parallelism is easy to imple�
ment �since they can also work independently on subdomains� either by linking
them directly to the simulation in the same module� or by assigning them to
a group of processors� With the SDS approach� there is no need to allocate
as many processors to the post�processing as there are for the simulation� and
this is interesting� especially when the simulation is more cpu intensive than
the post�processing� The same applies to other stages of visualization� like
rendering�
First experiments� with iso�surface computation and parallel rendering with

pixel merging 
	�� have been performed� and showed a good behaviour of the
program� with a rather fair load balancing between processors� However� more
important analysis has still to be done� with more CPU intensive computations�
in order to limit the in�uence on the data transfer tools on the results�
Since modules are not explicitly interconnected� each of them can take parts

of the data that are available� independently of their origin� When advanced
access mechanisms like �give me the �rst piece available� will be available� the
Local Data Manager will be able to decide to give locally available pieces in
priority� in order to reduce data transfers� At present� such advanced access
mechanisms are not implemented inside DS�� and have to be programmed on
top of it� This causes some overhead of communication between the application
program and the data manager� and in addition� this implies useless computing�
In a next version� a selection of mechanisms will be directly implemented a the
lower level�
A large part of the work presented here has been made possible by ECC

Funding� through RACE ���	 Project� This is especially true for the DS�
system� which development has been in large parts realised at ONERA by
Sylvain Causse and Frederic Juaneda� All other members of the Graphics
Group also contribute to di�erent parts of the experiments� or to some related
developments� Finally� Robert Van Liere from CWI provided valuable remarks�
and very useful additional information during the writing of this paper�

References

	� Akeley K� �	����� The Silicon Graphics �D����GTX superworkstation�
IEEE Computer Graphics and Applications� �����

�� Grave M� �	����� Distributed Visualization in Flow Simulations� Com�

puters and Graphics� Vol �� �	��
�� Lucas B�� Abram G�D�� Collins N�S�� Epstein D�A�� Gresh D�L��

McAuliffe K�P� �	����� An Architecture for a Scienti�c Visualization
System� Proceedings IEEE Visualization�	� Conference� Boston� Ma�

�� Beguelin� A�� Dongarra� J�� Geist� G�A�� Manchek� R�� Sun	

deram� V�S� �	����� A User�s Guide to PVM Parallel Virtual Machine�

	��



Oak Ridge National Laboratory Internal Report�
�� Butler� D�M�� Pendley M�H� �	����� The Visualization Management

System Approach to Visualization in Scienti�c Computing� Computers in

Physics� pp� ������
�� Causse� S�� Hollard� M�� Grave� M� �	����� Experimenting Dis�

tributed Visualization with a PVM Based System� ONERA Internal Re�
port�


� Causse� S�� Juaneda� F�� Grave M� �	����� Partitioned Objects Shar�
ing for Visualization in Distributed Environments� In Frontiers in Data

Visualization� Rosenblum et al� �eds�� Academic Press�
�� Duclos� A�M�� Grave M� �	����� Reference Models and Formal Speci�

�cation for Scienti�c Visualization� In Scienti�c Visualization
 Advanced

Software Techniques� P� Palamidese �ed�� Hellis Horwood�
�� Haber� R�B�� McNabb� D�A� �	����� Visualization Idioms� A Concep�

tual Model for Scienti�c Visualization Systems� In Visualization in Scien�

ti�c Computing
 Nielson et al� �eds�� IEEE Computer Society Press�
	�� Schroeder� W�J�� Lorensen� W�E�� Montanaro� G�D�� Volpe�

C�R� �	����� VISAGE� An Object�Oriented Scienti�c Visualization Sys�
tem� Proceedings IEEE Visualization�	� Conference� Boston� Ma�

		� Iris Explorer �	��	�� Silicon Graphics Technical report�
	�� Upson� C�� Faulbaher� T�� Kamins� D� Laidlaw D�� Schlegel� D��

Vroom� J�� Gurwitz� R�� van Dam� A� �	����� The Application Visual�
ization System� A Computational Environment fo Scienti�c Visualization�
IEEE Computer Graphics and Applications� Vol �����

	�� Whitman S� �	����� Multiprocessor Methods for Computer Graphics�
Jones and Bartlett� Boston�

	�� The Khoros Group �	����� Khoros Manual� Department of Electrical
and Computer Engineering� University of New Mexico� Albuquerque�

	�� Cox� M�� Hanrahan� P� �	����� Pixel Merging for Object�Parallel Ren�
dering� A Distributed Snooping Algorithm� Proceedings of IEEE �		�

Parallel Rendering Symposium� San Jose 	���� Published by ACM Sig�
graph�

	��


