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This paper describes three different methods for visualization of vector fields:
selective visualization, statistical visualization, and turbulent particles. The
first method enables the user to focus on the interesting parts of a data set
by creation, processing, and display of selected parts. The second technique
visualizes statistical quantities about a region of interest rather than raw
data. For statistical simulations of turbulent flows, the third method uses
particles to show the erratic motions caused by turbulence. A brief techni-
cal description of each method is given, and practical examples from fluid
dynamics demonstrate their utility. The first two methods are suitable to
vector fields in general and illustrate how data reduction for visualization is
achieved. The third is specialised for statistical turbulent flow simulations,
where simplification in the simulation produces a reduced dataset, which
requires a special visualization technique to partially reconstruct turbulent
motion.

1. INTRODUCTION
The production of numerical data by experiments, observations, and numerical
simulations, has vastly increased in the last decades. This has also created new
problems of consuming these data, and scientific visualization is emerging as a
new field of research to help solve these problems. Scientific visualization can
be defined as the use of computer generated images and interactive techniques
for exploration, interpretation, and presentation of scientific data.

Fluid dynamics is an application area with high and urgent demands in vi-
sualization. In fluid dynamics research, the patterns resulting from insertion
of ink, smoke, or particles have long been observed and recorded. Recently,
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computational fluid dynamics (CFD) research has flourished with improved
numerical modelling and solution techniques, and with today’s powerful com-
putational resources these permit three-dimensional time-dependent flow sim-
ulations on a scale that was hard to imagine only ten years ago.

The dominant data-type produced by flow simulations is a vector field, most
commonly a velocity field. The data are usually defined on the nodes of a com-
putational grid used in a numerical simulation. The visualization of these data
presents an interesting challenge to scientific visualization research. Common
techniques such as arrow plots and streamlines work well with 2-D fields, but
they are less suitable for 3-D data. The fundamental reason for this is that
there is no natural visual representation for 3-D vector fields. The task is to
construct new visual representations that are meaningful to human observers.
Scientific visualization researchers have responded by developing a range of new
techniques for visualization of vector field and flow data. Overviews are given
elsewhere [1, 2].

In this paper we will present three different visualization techniques that
have recently been developed at Delft University of Technology. The three
techniques are described in more detail in separate papers [3, 4, 5]. All three
techniques are in different ways concerned with reduction and simplification of
the data or the complexity of the simulation. The amounts of data are too
large and the simulations are too complex to allow display of 'raw data’.

The first technique allows the user to select and visualize only parts of the
data that are considered interesting, as defined by the application area and
the specific research problem. This approach, called ’selective visualization’, is
based on the idea that the researcher is able to specify a criterion of interest,
expressed as a selection expression, which is then used to filter the data and
extract regions where the interest criterion is satisfied. The selected regions
are then used for further processing in the visualization process.

When an region of interest has been defined, the second technique uses statis-
tics and iconic visualization to characterise the vector field in this region. With
this technique, a vector field can be explored using aggregate statistical prop-
erties about that region, such as mean, variance, or distribution function. The
visualization will direct the user to regions where interesting patterns occur, to
move the region of interest, and to focus by reducing the size of the region.

While this technique provides aggregate data about a given region, the third
technique does the reverse: it visualizes an instantiation of statistical distribu-
tion data from a turbulent flow. The statistical flow simulation produces data
fields of mean velocity and turbulence intensity. For visualization, particles are
used to show both the smooth motions of the mean flow and the random-walk
motions of the turbulent flow.

The aim of the first two techniques is to reduce the amount of data to be
visualized, leading to visualizations that are more clear and focused. With
the third technique, a simplification has been made during the numerical flow
simulation, by using statistical methods and avoiding the detailed modelling of
small-scale turbulent motions.
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In the following sections we will give a brief technical description of each of
the three visualization techniques, and demonstrate their utility with practical
examples. At the end of the paper, we will present some conclusions and discuss
current and future work.

2. SELECTIVE VISUALIZATION

There are several techniques to reduce the amount of data in the visualiza-
tion process. Contraction operations reduce the dimensionality of a data field:
instead of a velocity vector one uses a scalar variable for visualization, e.g.
a vector component or the vector magnitude. Slicing operations reduce the
spatial dimensions of the domain on which data are to be displayed. Other
techniques are probing techniques, where the data is displayed on a position or
area selected by the user.

A more general approach to slicing and probing techniques can be conceived.
We report a method for selective visualization of scientific data. First, a tech-
nique to create selections, or selected regions in a dataset, is described [6], and
then we will describe how these selected regions can be used to selectively visu-
alize data [3]. We will conclude with two applications of selective visualization
on fluid flow data sets.

1.2. Selection of regions

The selective visualization approach uses selections to create better visualiza-
tions. Selections contain information on which data is considered relevant or
interesting to the scientist; this information is used in the visualization map-
ping, as is explained in the next section. This section describes how regions
are selected, and how selections are represented.

The data to be visualized is assumed to be represented on the nodes of
a computatonal grid, and the selection technique also operates on these grid
nodes. We represent a selection as a Boolean dataset on the grid, where each
Boolean value indicates whether a grid node belongs to the selection or not. A
selected cell can be defined as a cell of which at least n (some threshold value)
of its corner nodes are selected, and a selected region as a set of connected
selected grid nodes.

Using this representation, it is relatively simple to select regions that sat-
isfy complex criteria based on local data values: selections can be generated
by evaluating a Boolean selection criterion for each grid node. If the Boolean
criterion evaluates to true, the grid node is selected, if it evaluates to false, it
is not selected. The possibilities of such a selection generation depend on the
elements that can be used in the Boolean criterion. We allow constants, node
coordinates, node indices, data values and logical and comparison operators to
appear in a criterion. Also, it is possible to use scalar, vector or gradient (di-
vergence, rotation) functions to generate derived data, or functions to calculate
threshold values, such as minimum or mean.

Examples of selection expressions are:

e select = len(velo) > .5xmax(len(velo)) : selects all nodes where
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the length of vector velo is larger than .5 times the maximum length of
velo,

e select = (i == 3) && (dot(rot(velo),velo)>1) : selects all nodes
of the slice i=3, where the dot product of velo and the rotation of velo
is larger than 1.

These expressions offer a general and flexible way of specifying regions of in-
terest in a dataset.

2.2. Visualization mapping with selections

Once the selections have been determined, they can be used in the visualization
mapping. The most straightforward use of selections is clipping. This can be
performed by displaying data values only within selections. This enhances
the visualization, as uninteresting data (data outside the selection) are not
displayed; the attention is entirely focused on the selected data. A large number
of existing visualization techniques can be easily extended to incorporate the
function of selections. Examples are:

e Iso-surfaces: cell-based iso-surface construction algorithms like the March-
ing Cubes [7] can be extended with a test whether the cell is a selected
cell, so the part of the iso-surface that is outside a selection can be clipped.
An advantage of clipped iso-surfaces is that the area inside the iso-surface
can be inspected.

e Orthogonal slices: can be clipped against a selection in the same way as
iso-surfaces. Here the advantage is that uninteresting parts of the slices
are not visible, and therefore cannot hide other parts of the visualization.

e Arrow plots: displaying a 3-D vector field by drawing arrows at each
grid node does not reveal any information because the visualization is
cluttered by a huge number of lines. However, by displaying arrows at
selections, one can inspect the velocity field at the interesting regions.

A more sophisticated use of selections is parameter extraction. As visual-
ization algorithms need parameters (iso-surfaces need an iso-value, streamline
generators need starting positions), selections can be used to calculate such
parameters. By sampling selections, and feeding these samples in a streamline
generator, it is possible to generate streamlines in or through selections. This
reduces the need for elaborately probing a fluid flow dataset, one can directly
visualize streamlines in interesting regions. In an analogous way, the centre of
a selected region can be fed into an orthogonal slicer, thereby generating slices
through interesting regions.

A different approach is to visualize selections in a non-standard way. We are
currently working on iconic visualization of selections using parameterised sym-
bolic representations of selections. By calculating attributes (aggregate values)
for selections, and mapping these values onto icon parameters, one can create
an abstract visualization, consisting of a number of iconic representations for
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selections. Such visualizations are very suitable for processing time-dependent
datasets, as the amount of data to be visualized is greatly reduced.

2.3. Selective visualizations in fluid flow applications

Selective visualization has been applied for the comparison of three scalar vari-
ables in turbulent flow. In the literature, several criteria are described to clas-
sify regions in turbulent flow. One of these criteria, R, has been compared with
a combination of two criteria, Ry and IIp, for a direct numerical simulation
of turbulent flow. To check whether the regions of high values for Ry and IIp
coincide with regions of high values for R, we select regions with high value for
Ro (using select = R2 > 1.), and visualize ITp within these regions, using
colored crosses (see Figure 1a). This visualization can be compared with iso-
surfaces at a high value of R, as shown in Figure 1b. Visual inspection shows
that the region with high values for both Ry and IIp (the red crosses) are
inside the isosurfaces for R, from which it can be concluded that criterion R
can be used instead of a combination of Ry and IIp. An extra check was done
by selecting regions with high values for both Ry and IIp and low values for
R. This selection was empty (there where no nodes that satisfied this selection
criterion), which confirmed the previous conclusion.

Another example is shown in Figure 2. Here, we want to visualize the spiral-
ing flow pattern that occurs at the step. It is very time-consuming to visualize
this pattern by manually probing the flow. However, by selecting regions with
high normalised helicity density, and generating starting positions for stream-
lines from this selection, such a visualization can be generated more or less
automatically. The normalised helicity density H, has been calculated using
velocity u in the following way:

_u-(Vxu)

~ |u] |V x u]

where V x u is the rotation of the vector field. Streamline starting points were
generated in the region where |H,| > 0.6.

Hy,

3. STATISTICAL VISUALIZATION
In the previous section we discussed how selective visualization is used to reduce
the amount of data to be visualized. In this section we will discuss statisti-
cal visualization techniques that are applied to selections of data. Selections
are the result of techniques described previously or by interactive techniques.
Statistical visualization of the data is independent of the size and shape of the
region of interest. Using statistical methods for data representation in combi-
nation with techniques to specify a region of interest, a user can investigate the
data at different levels. If the information presented at a certain level invites
further investigation, the region of interest is reduced, thereby allowing more
detailed investigation.

The statistical information is presented to the user by icons. Other iconic
techniques for vector data are arrow plots and the tensor probe [8] which visu-
alizes a velocity vector and gradient quantities at a point. Generally, icons are
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used to represent local information of a single point. However, we constructed
an icon showing the characteristics of a selected spatial domain.

3.1. Statistical data exploration

The process of visualising statistical data of vector fields can be described
by a sequence of steps (see Figure 3). First, a region in space is selected:
for simplicity an axis-aligned box is used in the following discussion, but the
techniques described can be easily generalised to arbitrarily shaped selections
as described in section 2. The next step in the pipeline is projection. The spatial
dimensions in the data are projected to a point, i.e. relative positions within
the domain of interest are ignored. After projection we calculate statistical
properties: the individual values are replaced by a statistical description. A
further reduction of data takes place at this step. The amount of reduction can
be varied; the user can choose to generate only the average or more complex
characteristics which show more detailed information on the distribution.

The last step in the process is the mapping of the calculated statistical prop-
erties to geometric primitives. For different statistical characterisations of the
data suitable mappings must be found to obtain an understandable picture of
the data. In order to apply statistics to a vector field we consider the distribu-
tion of vector values in the region of interest: a function which maps velocities
to a probability. This is a three dimensional scalar function. Direct visualiza-
tion of this function by existing techniques, for example volume rendering or
iso-surfaces, is not intuitive and hard to interpret. Therefore we use the distri-
bution function as a base for the calculation of statistical properties. The most
important property is the mean of the function. If we assume a rectangular
grid with vector values given at grid nodes, and tri-linear interpolation inside
the cells, then the average velocity in a cell is the average of the velocities at
the corners of the cell. By summation of cell averages, the average over the
region of interest is calculated. Special care has to be taken for cells partly
inside the region of interest.

Representing a field by an average is useful under certain circumstances,
however information about spatial distribution of data is lost. More informa-
tion is represented by higher order moments of the distribution. The multidi-
mensional equivalent of the second-order moment (standard deviation) is the
variance/covariance matrix (VCM). This matrix is a symmetric second-order
tensor. Using principal components analysis from multivariate analysis [9], the
principal components of the distribution are calculated. Principal components
are the eigenvectors of the VCM. The VCM is visualized by an ellipsoid [10]
(see Figure 4a). The three axes of this ellipsoid reflect the size and direction
of the principal components of the VCM. This ellipsoid can be interpreted as a
surface of equal probability for the normal distribution with equal average and
variance as the given distribution.

A better approximation of the distribution function is achieved using higher
order moments of the distribution function. The results of these calculations
are higher order tensors. Interpretation of this data in relation to the actual
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vector field is difficult. A better approach in our view is the use of simple fitting
or smoothing functions to model the velocity distribution. In case of bimodal
or other distributions which are badly modelled by a normal distribution, this
is a good alternative. The chosen fitting functions can be of arbitrary complex-
ity, with the distribution function itself as a limiting case. Visualization of the
(approximated) distribution function is possible using iso-surfaces of probabil-
ity density. If simple functions are used this is easier to understand than direct
visualization of the distribution function with iso-surfaces.

A different approach to represent the distribution function is by showing a
number of samples, instead of a continuous representation. If a box is used as
a region of interest, a regular grid of sample points is used to take samples.
The values found can be used to generate a 3-D scatter plot of the distribution
function in velocity space. The velocity samples are shown as points in space.
They can be represented as dots or small spheres. This leads to ambiguity as a
result of the projection onto the screen. Therefore we used cones instead; this
partly solves the projection ambiguity.

3.2. The flux probe and finding vortices
In this section we will show two examples of visualization techniques based on
this representation, applied to flow visualization.

If a polygon is specified as a region of interest, then the average velocity over
the polygon shows the average flow through the area of the polygon (see Figure
4a). In incompressible flow the component of this vector perpendicular to the
polygon is the mass flux through the polygon. Flux is important in many flow
problems such as problems dealing with convection.

Instead of showing velocity, other vector quantities defined over the region
of interest can be selected for visualization. Here we will use the curvature
vector of a streamline through each point to locate vortex cores in the data.
First the curvature vector is calculated in a number of sampling positions in
the region of interest, using the method described in [8]. With this value, the
osculating circle to the streamline is determined for each sample. The centre of
these circles are estimates for the position of the vortex core. By drawing these
points in the flow region, vortex cores can be located interactively (see Figure
4b). This only works if the flow in the region of interest is mainly determined
by a vortex.

4. TURBULENT PARTICLES
In the previous section we described the visualization of a data volume by ex-
tracting aggregate values with statistical techniques. For turbulent particles,
we reverse the process by creating instances or realisations of particle motion
modelled with statistics. Particles have long been used in experimental visu-
alizations [11], and they are now also used in computer graphics visualizations
[12, 13] to capture the essence of the fluid motion. The motion of particles in
turbulent flow and their distinct behaviour is discussed here.

Most numerical simulations generate a velocity field, from which motion of
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particles can be derived with standard tracing algorithms. Indeed, a velocity
field generated by a direct numerical simulation provides information on tur-
bulent motion up to the smallest scale modelled. However, direct numerical
simulation of turbulence is very expensive, and large-scale 3-D simulations are
not feasible even with the most powerful computing resources. Therefore, simu-
lations are often based on averaged equations, the so-called Reynolds-averaged
equations. But the velocity field generated by these simulations is not suffi-
cient to represent turbulent motion [14]. These models provide information on
turbulence in two separate data fields: a mean velocity field, and a turbulence
intensity field. Turbulence intensity is represented by quantities such as tur-
bulent kinetic energy or eddy-diffusivity. Our task is now to visualize the two
combined fields as the turbulent motion of fluid particles.

The proposed method uses random-walks for particle motion animation. This
random-walk perturbation is more than just a visual effect, as it is based on
physical and statistical theory of turbulent flow. The method captures two
essential aspects of turbulent motion: dynamics and randomness. Other char-
acteristics, such as the rotational nature of the turbulent motions, are not
shown. The visualization shows the distribution of local motion dynamics as it
is based on a statistical model of turbulence. A full reconstruction of the actual
turbulent motion of individual fluid particles is not possible, as the information
for this is not available in the statistical data.

4.1. Random-walk particle motions

The Reynolds decomposition applied in Reynolds-averaged models decomposes
a turbulent flow u as a function of location x and time ¢ into a mean flow and
a fluctuating motion:

u(x,t) = u(x,t) +u'(x,t)

Here, u(x, t) describes the convective motion, and u’(x, t) the turbulent motion.
Turbulence can be viewed as a random perturbation of a mean velocity field
which can be translated into a spatial displacement of a particle over a time
interval.

In Figure 5 the determination of subsequent positions x; of a particle at time
t; is shown for a non-turbulent flow and a turbulent flow. In the convective
part of the turbulent flow the local mean velocity u is involved. The compound
velocity u; at x; in a flow is the vector sum of a mean velocity w; and a random
perturbation vector uj. The direction of the perturbation vector is chosen
randomly on a circle (or a sphere in 3-D), while the magnitude of the local
turbulence intensity determines the radius of the circle or sphere. To clearly
show the effect of the perturbation, the velocity in Figure 5a and the mean
velocity in Figure 5b are taken to be constant.

We use a statistical approach to describe the fluctuations of a particle in a
turbulent flow, so that the convective motion and random perturbation can be
expressed in terms of physical quantities. The particle motion can be described
by a random-walk model. These models are based on a fluctuation equation,
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which contains a drift coefficient and a random component which leads to
perturbed paths of individual particles through a flow. The random walks of
a large collection of particles show the effect of turbulent dispersion. This
dispersion process is described by a forward-diffusion equation, which is also
known as the Fokker-Planck equation (FPE). The FPE is thus closely related to
the behaviour of an individual particle as described by the fluctuation equation.

In fluid mechanics, the advection-dispersion equation (ADE) describes the
transport of material [14]. The FPE and ADE can be written in a similar
form, so that the probability density function of particles in the FPE coincides
with the material concentration in the ADE, as described in [5]. Because the
FPE and ADE both describe material transport, the similarity between both
equations can be used to express the coefficients for the fluctuation equation
in terms of physical quantities from the ADE [15]. The drift coefficient of the
fluctuation equation is expressed as the mean velocity u(x) plus the spatial
variability of eddy-diffusivity E(x,t) over a time step. The random component
is derived from the eddy-diffusivity field E(x,t) and a distribution dW. The
distribution consists of three Wiener-Levy processes W, W, and W, each
known as Brownian motion, with mean zero and standard deviation ¢. In the
general case the eddy-diffusivity E is a vector quantity specifying non-isotropic
turbulence for the three coordinate directions. In the special case of isotropic
turbulence, E,, E,, and E, are everywhere equal, and the eddy-diffusivity field
can be represented by the scalar field F.

4.2. The Bay of Gdansk

We used the particles to show a flow in the Bay of Gdansk, a coastal area
of Poland connected with the Baltic Sea. Figure 6 shows an overview of the
area from the South with the curved coast line meeting the long-stretched
peninsula of Hel at the left. A 3-D layered hydrodynamical simulation based
on Reynolds-averaged equations has been performed on the curvilinear mesh of
the area with low wind from the southern direction. The simulation produced
a wind-driven stationary flow field, shown by the particles in the figure. An
anisotropic eddy-diffusivity field is produced by solving the turbulence with two
coupled conservation equations for kinetic energy and the rate of dissipation,
known as a k — ¢ model.

We use a particle tracer to determine paths of mean velocity by a conventional
time-stepping integration method [16], and to calculate paths of turbulent par-
ticles by applying the random walks described above. A particle renderer uses
the particle path data to generate animations in real time. The fluctuations
are perceived as erratic particle motions, and the spatial variation of turbulent
motion is clearly visible.

In Figure 7 a view from the North-East of the Bay is shown. The area
has been scaled up by a factor of 250 in the vertical direction. Particles are
released close by the coast at regular time intervals from a single source. The
white particles act as in a laminar flow by only considering the mean velocity
field, and thus create overlapping paths directed into the Bay. The motion of
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the pink particles is also affected by eddy-diffusivity. Their paths are perturbed
and a substantial number of them tend to float towards an area of circulation.
This is a consequence of the displacement of a turbulent particle, relative to
the mean velocity path.

5. CONCLUSIONS

In the previous sections we have presented three different visualization tech-
niques for vector field data, applied to fluid flow visualization: an approach
to selective data visualization, visualization of aggregate statistical quantities
of an area of interest, and the use of particles to visualize a turbulent flow
simulated by a statistical turbulence model. The techniques represent three
different approaches to 3-D vector field and flow visualization, with reduction
and simplification as unifying concepts. The first and second techniques are not
restricted to fluid dynamics data, while the third is dedicated to a particular
class of CFD simulations.

Our current research efforts include several extensions of the work reported
here, as well as new directions. The selective visualization approach is extended
by development of algorithms to compute aggregate quantitative attributes of
selections, allowing pattern matching and iconic visualization. The particle-
based turbulence visualization technique is extended to generate scalar fields
of particle concentrations, which are visualized using volume ray casting.

Future research will focus on two topics: feature-based visualization and com-
parative visualization [17]. Feature-based visualization concerns the recognition
and extraction of important patterns from the data, using geometric process-
ing to extract geometric objects, or techniques derived from image processing
and computer vision. In comparative visualization [18], visual techniques are
developed to support comparison of data from different sources describing the
same situation. It can be applied to experimental validation of numerical sim-
ulations, by comparing experimental and simulated data.

As we believe that a single answer to the problems of 3-D vector field and flow
visualization does not exist, scientists will always require a range of different
visualization tools. Development of new methods will continue, inspired by the
users. Results will also be evaluated by the users, who will eventually decide
which techniques are most valuable for their application.
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(a) (b)

FIGURE 1. Relation between three scalar variables in turbulent pipe flow; a)
IIp is coloured in regions where Ry is high; b) an iso-surface for R is added.
Data courtesy: J.M.J. den Toonder, Faculty of Mechanical Engeneering, Delft
University of Technology.

FIGURE 2. Selective visualization of flow in a backward facing step geometry:
streamlines through regions were the absolute value of the helicity density is
high. Data courtesy: Faculty of Technical Mathematics and Informatics, Delft
University of Technology.

143



Selection Projection Caleulation Mapping

al z1atlstleal
raparies

10 armaws,
allipzalds ais

In zpatal damain ai apatal damain

-
R S |

FIGURE 3. Generation of a statistical representation

FIGURE 4. Examples of the use of statistical probes: (a) A flux probe (bot-
tom) and a box shaped region of interest showing the average velocity arrow
(red), the variance-covariance matrix (yellow) and some samples (green); (b)
the vortex probe. Data courtesy: R. Wilhelmson, NCSA
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FIGURE 5. Particle path integration: a) in a non-turbulent flow and b) in a
turbulent flow.

FIGURE 6. A view of the Bay of Gdansk from the South with particles showing
the stationary mean velocity field. Data courtesy: M. Robakiewicz, Academy
of Sciences, Gdansk.
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FIGURE 7. A view of the Bay from the North-East, with a single particle
source.
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