
Representation and Learning in Feedforward Neural

Networks

H�L� Trentelman

Mathematics Institute� University of Groningen�

P�O� Box ���� ���� AV Groningen� The Netherlands�

Email� h�l�trentelman	math�rug�nl

This paper gives an introduction to feedforward neural networks� The aim
of this paper is to present some of the basics of arti�cial neural networks�
with a particular emphasis on the following two central issues� The �rst
central issue of this paper is� in what sense do arti�cial neural networks
represent mathematical functions� and what mathematical functions can be
�approximately� represented by an arti�cial neural network� The second
central issue of this paper is� what do we mean by 	learning
 in arti�cial
neural networks� and how can a network learn to �approximately� represent
a given mathematical function�

�� Introduction
In the last decade� research on arti�cial neural networks has more and more
become a popular research �eld� Going back to the fourties� the study of arti�
�cial neural networks was mainly inspired by the desire to gain insight into the
principles that underly the functioning of the human brain �what is �learning��
how does the human memory work� what are dreams� etc�	� Since long� it is
believed that the human brain is built up from a large number �
����
���	 of
interconnected� basically identical� elementary units� called neurons� Each neu�
ron is believed to function according to the same� relatively simple� biophysical
principles� The idea of arti�cial neural networks is� roughly speaking� to model
these simple biophysical principles into a single mathematical concept� called
an arti�cial neuron� and to study interconnections of these arti�cial neurons as
a model of the brain� The study of these interconnections typically takes place
by mathematical analysis or by computer simulation� and is hoped to lead to
a better understanding of how the brain processes information�
The more recent growth of interest in arti�cial neural networks seems to be

caused by their promise to yield solutions to all kinds of technical problems of
�arti�cial intelligence� that traditional approaches do not yield� This promise
is based on the observation that� while the working of the organic neuron is

��

based on such simple biophysical principles� the brain is capable of perform�
ing immensly complex tasks� This apparent contradiction is explained by the
enormous amount of neurons that� in addition� are interconnected in parallel�
Following this line of thought� there are reasons to believe that if we build a
�machine� consisting of a massive interconnection of arti�cial neurons �i�e�� a
technical realization of an arti�cial neural network	� then this machine is� in
principle� capable of performing complex tasks�
The present paper developed out of a three hour introductory talk on neural

networks that was given by the author in the context of the so�called �Recon�
structie Seminar�� a series of talks on various mathematically and physically
oriented scienti�c subjects that was held within a group of Dutch researchers
active in the �eld of Systems and Control during the academic year ��������
The main constraint of the �Reconstructie Seminar� was that the speaker had
to choose his�her subject outside the scope of his�her research area� The aim
of this paper is the same as the aim of the talk that was given in the Seminar�
to present some of the basics of arti�cial neural networks� with a particular em�
phasis on the following two central issues� The �rst central issue of this paper
is� in what sense do arti�cial neural networks represent mathematical func�
tions� and what mathematical functions can be �approximately	 represented
by an arti�cial neural network� The second central issue of this paper is� what
do we mean by �learning� in arti�cial neural networks� and how can a network
learn to �approximately	 represent a given mathematical function�
The outline of this paper is as follows� Section � is devoted to some of the ba�

sics of arti�cial neural networks� We brie�y explain the working of the organic
neuron� and introduce the notion of arti�cial neuron as a rough mathematical
model for the organic neuron� We give a formal de�nition of arti�cial neural
network and explain in what sense feedforward networks de�ne functions in
the mathematical sense� We discuss the notion of network architecture� and
explain in what sense a network architecture de�nes a parametrized family
of mathematical functions� Next� we explain what we mean by learning in
arti�cial neural networks�
Section � is devoted to a discussion of a prototype neural network� the Per�

ceptron� We explain what functions can be represented by a Perceptron� We
also discuss the issue of learning in Perceptrons and talk about the famous
Perceptron convergence theorem�
In section � we deal with general layered feedforward networks� Again� we

concentrate in this section on the issues of representation and learning� We
discuss some very recent results on the approximate representation of math�
ematical functions by feedforward networks with one hidden layer� Next� we
come back to the issue of learning� in what sense can a layered feedforward
network learn a given mathematical function� In this context we explain� for a
simple special case� the famous Back Propagation Algorithm�

��

�� Artificial neural networks

���� Neurons

A typical neuron in the human brain consists of a central part� called the cell
body or soma� and a long tiny tubular �ber originating from this cell body�
called the axon� Also� the soma serves as the endpoint of a bundle of incoming
branches� called the dendrites� The axon� in turn� splits into a bundle of tiny
branches whose endpoints are called synapses� The neuron collects input signals
from surrounding neurons via its dendrites� When the total activity of these
input signals exceeds a certain value� called the neuron�s threshold value� then
the neuron sends a spike of electrical activity through its axon� This spike of
electrical activity branches out to the neuron�s synapses� At each synapse� the
electrical activity causes an input signal to be send to a neighbouring neuron�
via one of its dendrites�
The amount of in�uence of one neuron on another depends on the e�ective�

ness of the synapse between the two neurons� a certain amount of electrical
activity in a neuron causes a certain amount of input activity to be generated
at each of its synapses� The more e�ective a synaps is� the more input activity
it will generate� It is believed that the e�ectiveness of synapses can be subject
to changes in time� These changes in e�ectiveness of synapses or� equivalently�
these changes in the amount of in�uence that neurons have on other neurons�
is often used to explain the phenomenon of �learning��

���� Arti�cial neurons

As a simple mathematical model to represent the most important features of the
organic neuron� McCullogh and Pitts in
���� ���� proposed the following
de�nition� For a given positive integer n and real numbers w�� � � � � wn and ��
the arti�cial neuron with weights w�� � � � � wn and threshold � is the function f
from f��
gn to f��
g given by

y � f�x�� x�� � � � � xn	 �� H�
nX
i��

wixi � �	�

Here� H denotes the Heaviside step function�

H�x	 �

�

 if x � �
� if x � �

If it takes the value
� the neuron is said to ��re�� otherwise it is said to be �at
rest��
The analogy with the working of the organic neuron is as follows� At a certain

moment the neuron under consideration receives signals from all n neurons to
which it is connected� The signal xj coming from neuron j is either ��� or �
�
�corresponding to whether neuron j is �ring or at rest	� The e�ectiveness of the
synaps between neuron j and the neuron under consideration is measured by
the weight wj � Only if the total weighted sum

Pn

i�� wjxj of these signals �called
the activation	 exceeds the threshold value � of the neuron under consideration�

��

θ

w

w

w

1

2

3
y

4w

w n

H

(threshold value)

weights)(

x

x

x

x

1

2

3

x4

n

Figure �� Arti�cial neuron

this neuron is assumed to be su�ciently activated� it will generate the value
�
� ��re	� If the weighted sum of the input signals is less than or equal to the
threshold value� the neuron will generate the output value ��� �remain at rest	�
More general� the Heaviside function appearing in this de�nition can be

replaced by an arbitrary function� say � � R � R� For a given function ��
a given positive integer n and real numbers w�� � � � � wn and �� the arti�cial
neuron with weights w�� � � � � wn and threshold � is the function f from R

n to
R given by

f�x�� x�� � � � � xn	 �� ��

nX
i��

wixi � �	�

The function � is often called the transfer function� activation function� or
squashing function of the neuron� As mentioned� the transfer function can
in principle be any function� In a large part of the literature on arti�cial
neural networks� the transfer function is choosen to be a so�called sigmoid

function� i�e�� loosely speaking� a function whose graph resembles the shape of
the character �S�� Examples of these are the function given by

��x	 �

e��x �

�

and the function given by

�

��x	 � tanh��x	

�with � � �	�

���� Arti�cial neural networks

Loosely speaking� any interconnection of a �nite number of arti�cial neurons is
called an arti�cial neural network� Formally� an arti�cial neural network with
N neurons is de�ned to be a directed graph with N nodes�
� � � � � � N � where
node i is identi�ed with the arti�cial neuron with transfer function �i� and
threshold value �i� and where the branch from node j to node i is identi�ed
with the weight wij �

θ

θ

θ

θ 3

2

1

4

σ

σ

σ

σ

input neuron

σ

σ
σ

σ

θ

θ θ1 2

3

σ

σ σ

σ

1

3

σ 2σ

4σ

σ1

2

3

4

w w

w

w

w

w

w

w

w

w

θ 4

12

21 32

43

44

21

12

32

34

43

3

1

2

5

4

output neuron

input neuron

σ

σ3

1 2

4

5

output neuron

input neuron

Figure �� Four examples of neural networks

The neurons that correspond to the sources in the directed graph are called
the input neurons of the neural network� while the neurons that correspond to
the sincs in the graph are called the output neurons of the neural network� Any
other neuron in the network is called a hidden neuron�
If the graph corresponding to the network has no closed paths� then the the

network is called a feedforward network� Speaking in terms of input signals and
output signals� in a feedforward network the signals only travel in one direction�

��

Any network that is not a feedforward network is called a recursive network�
We will restrict ourselves in this paper to feedforward networks�
Now� after having de�ned a neuron to be a function of a particular structure�

and a neural network to be a directed graph� we explain in what sense a feed�
forward network performs �a cognitive task�� Suppose we have a feedforward
network with m input neurons� p output neurons� and a number of hidden
neurons� Such a network can always be interpreted as a function from R

m to
R
p � in the following way� The input neurons are considered as devices that
generate the arguments of the function� input neuron i generates the value xi�
Together� the m input neurons generate the vector x � �x�� � � � � xm	� Next�
the hidden neurons perform operations on these values xi� according to the
particular transfer functions that each hidden neuron has� Finally� the output
neuron j generates the value yj � Together� the p output neurons generate the
p�vector y � �y�� � � � � yp	� In this sense� the neural network performs the task
of calculating the value of the output vector y from the input vector x� a feed�
forward network with m input neurons and p output neurons de�nes a function
F � Rm � R

p �or F � S � R
p � with S a subset of Rm 	 �see also Figure �	�

output neuronsinput neurons

hidden neurons

1

2

1

2

m p

x

x

x

y

y

y

1

2

m

2

p

1

Figure �� Feedforward network representing a function

As an example� consider the following network with two input neurons� two
hidden neurons and one output neuron �see Figure �	� Assume that the transfer
functions of the hidden neurons and the output neuron are all equal to one and
the same function �� According to the convention introduced above� the �rst
input neuron generates the value x�� and the second input neuron generates the
value x�� Assuming that the weights of the input channels of the �rst hidden
neuron are equal to v�� and v��� respectively� the activation of the �rst hidden

���

neuron is equal to v��x��v��x�� This hidden neuron then generates the output
value s� given by

s� � ��v��x� � v��x� � ��	�

where �� is the threshold value of the neuron� Likewise� the second hidden
neuron generates the output value

s� � ��v��x� � v��x� � ��	�

Let the weights associated with the output neuron be equal to w� and w�� and
let its threshold value be �� Clearly� the activation of the output neuron is
equal to w�s� � w�s�� The output neuron generates the output value y given
by

y � ��w�s� � w�s� � �	�

We conclude that this neural network de�nes a function F from R
� to R de�ned

by F �x�� x�	 � y�

x

s

s

y

θ

η
v

v

x

σ2
w

w1

2

11

12

v22

σ

σ

21v

η
2

1

2

1

1

Figure �� Example of feedforward network

���� Network architecture

We note that as soon as the transfer functions of the neurons� and the directed
graph are speci�ed� the structure of a neural network is completely determined�
The only remaining freedom are the values of the weights and the thresholds
of the hidden neurons and the output neurons� Of course� the properties of
the neural network are highly dependent of the particular value of these pa�
rameter values� In order to stress that the weights and threshold values are
considered as free parameters� the �xed directed graph together with the �xed

��

transfer functions are often called the network architecture� Given a network
architecture� each choice of weights and threshold values yields exactly one
neural network� This means that a network architecture can be considered as a
parametrized family of functions in the following way� as soon as the directed
graph� together with the transfer functions are speci�ed� the number of input
neurons �m	� and the number of output neurons �p	 are �xed� The remaining
freedom is exactly given by the weights and thresholds wij � �i� Thus� the net�
work architecture de�nes a family of functions Fwij ��i � R

m � R
p � parametrized

by the wij �s and �i�s� In the example above� the parameter is equal to the joint
vector �v��� v��� v��� v��� w�� w�� ��� ��� �	 � R

� � Often� the terminology �neural
network� is used if in fact we are dealing with a network architecture� Also
in this paper� we will often speak about neural networks as being families of
functions parametrized by the weights and thresholds�

���� Neural networks	 representation	 and learning

In the human brain the process of learning takes place� In arti�cial neural
networks the process of learning is modelled as change of weights and threshold

values� We will come back to this later in this paper� Central issues in the the�
ory of feedforward networks are the following� Suppose a network architecture
with m inputs and p outputs is given� In addition� suppose a �xed function
G � Rm � R

p is given�

� Representation� Does there exist a particular choice of weights and
threshold values such that the corresponding network function F is �ap�
proximately	 equal to G�

� Learning� Is it possible for the network architecture to learn the func�
tion G� i�e�� can we come up with some mechanism or algorithm that
keeps adapting the values of the weights and thresholds until the result�
ing network function F is �approximately	 equal to G�

�� The Perceptron
A simple example of a feedforward network is the following feedforward net�
work consisting of m input neurons�
 output neuron and no hidden neurons�
The input neurons are labeled
� �� � � � �m� The weight associated with the con�
nection between input neuron j and the output neuron is equal to wj � The
threshold value of the output neuron is equal to �� We assume that the output
neuron has transfer function� H� the Heaviside step function�
This feedforward network is called the Perceptron and was proposed in
���

by F� Rosenblatt ��� Let w �� �w�� w�� � � � � wp	 be the vector consisting of
the weights� If the input vector to the network is x � �x�� x�� � � � � xm	� then
clearly the output generated by the network is equal to

y � H�w � x� �	�

where � denotes the standard inner product on Rm � As explained above� this
can be interpreted by saying that the Perceptron �or rather� the Perceptron

���

x

x

x

H
y

w

1

j

m

j

θ

w

w

1

m

Figure �� The Perceptron

architecture	 de�nes a family of functions� from R
m to f��
g� parametrized by

�w� �	 � Rm�� � and given by

F�w����x	 � H�w � x� �	�

Any particular choice of parameters �w� �	 yields exactly one Perceptron�
In this section we will study for the Perceptron the two central issues that

were raised in the previous subsection� the issues of representation and learning�
The �rst issue that we will consider is the issue of representation�

���� The Perceptron representation theorem

The �rst question that we will study is the following� suppose that S is a given
subset of Rm � and G � S � f��
g a given function� do there exist parameter
values w � Rm and � � R such that the corresponding network function F�w���

restricted to S is equal to G� i�e� such that for all x � S we have

���

G�x	 � H�w � x� �	�

As an example� consider the situation that m � �� Let S be the subset of R�

consisting of the four vectors �
� �	� ���
	� ��� �	� �
�
	� De�ne G by G�
� �	 �
�
G���
	 �
� G��� �	 � �� and G�
�
	 �
 �G is the Boolean function �OR�	�
The question is now� do there exist w�� w� � R and � 	 � such that the vector
��� �	 is seperated from the points �
� �	� ���
	 and �
�
	 by the hyperplane
w�x��w�x��� � �� Clearly one of the many choices is to take w� �
� w� �

and � � � �

� � Hence we have found that the Boolean function G is representable
by a Perceptron� G�x�� x�	 � H�x� � x� �

�
� 	 for all �x�� x�	 � S�

H

-1/2
x

y

1

1

Figure �� Perceptron representing G

It is clear that� in general� G�x	 � H�w �x��	 for all x � S if and only if the
points in S which satisfy G�x	 �
 are separated from the points in S which
satisfy G�x	 � � by the line w � x� � � ��
This observation motivates the following de�nition� a subset S of Rm is

called linearly separable with respect to G if there exists w � R
m and � � R

such that for all x � S we have�

G�x	 �
 �� w � x� � � ��

G�x	 � � �� w � x� � � ��

The following result then precisely characterizes the functions G that are rep�
resentable by a Perceptron�

Theorem ���� Let S be a subset of Rm and let G be a function from S to

f��
g� There exists a perceptron with m input neurons that represents the

function G if and only if S is linearly separable with respect to G�

���

From this it is immediately clear that there exist very simple Boolean func�
tions that can not be represented by a Perceptron� take for example S �
f�
� �	� ���
	� ��� �	� �
�
	g and de�ne a functionG on S byG�
� �	 �
� G���
	 �

� G��� �	 � �� and G�
�
	 � �� �This Boolean function is called the �exclusive
OR� function�	 Clearly� the set S is not linearly separable with respect to the
function G and consequently G cannot be represented by a Perceptron� The
observation that there exist very simple Boolean functions that cannot be rep�
resented by a Perceptron was made in
��� by M� Minsky and S� Papert
�
���

���� The Perceptron and learning

We will now consider the second central issue� that of learning� Suppose that�
again� a subset S of Rm together with a function G from S to f��
g are
given� The question we want to study here is� can we �nd some mechanism
or algorithm that adapts the values of the weights w and threshold � until the
resulting network function F�w��� is �approximately	 equal to G�
The basic idea for such an algorithm could be as follows�

� Start with taking an arbitrary sequence fX�� X�� � � �g with Xi � S� As�
sume that we know the correct values of G in these points� i�e� we know
G�X�	� G�X�	� � � ��

� �Present� these correct pairs �Xi� G�Xi		� i �
� � � � � to the Perceptron
architecture�

� On the basis of these �learning examples� update the values of the weight
vector w and the threshold ��

� After having presented the perceptron a large number of correct examples�
let the updated values of the weight vector and threshold be w� and
��� respectively� Now hope that the network function F�w����� of the
corresponding Perceptron is �approximately	 equal to the given function
G

Formalizing the above idea leads to the so�called Perceptron learning algorithm

�given in
��� by F� Rosenblatt� ��	� which is de�ned inductively as follows�
let
 be some �xed positive real number�

� At t � �� choose arbitrary initial values w� and ���

� At time t � n�
 present the input vector Xn��� Now update the current
values wn and �n according to the following rule�

� IfH�wnXn����n	 � G�Xn��	 then take wn�� � wn and �n�� � �n�

� If H�wnXn�� � �n	 � � but G�Xn��	 �
� then take wn�� � wn �

Xn�� and �n�� � �n �
�

� If H�wnXn�� � �n	 �
 but G�Xn��	 � �� then take wn�� � wn �

Xn�� and �n�� � �n �
�

���

The rationale behind this updating rule is of course that if at step n �
 the
network corresponding to the parameter values wn and �n happens to give the
correct functional value G�Xn��	� then there is no reason to change the current
value of the weights� If on the other hand� for example� H�wnXn�� � �n	 � �
butG�Xn��	 �
� then the updating rule wn�� � wn�
Xn�� and �n�� � �n�

yields

wn��Xn�� � �n�� � �wnXn�� � �n	 �
kXn��k
� �
�

Now� the �rst term on the right in the above equation� wnXn�� � �n� is less
than or equal to �� and exactly this fact caused the network to give the wrong
value �� The updating rule at least yields

wn��Xn�� � �n�� 	 wnXn�� � �n

This means that if in the next step of the algorithm the same vector Xn��

would be presented� then the network associated with parameter values wn��

and �n�� would be �closer to� giving the correct value� In a sense this means
that the parameter values are �pushed in the right direction� while presenting
the examples� One could think of this as a process of learning on the basis of
examples� The number
 � � is called the learning rate of the algorithm� It
turns out that under certain assumptions on S and G the parameter sequences
fwng and f�ng converge�

Theorem ���� Let S be a �nite subset of Rm and G a function from S to f��
g�
Assume that S is linearly separable with respect to G� Let
 � �� Then for each

sequence fXng in S and for all initial values w�	 ��	 there exists an integer N�

such that for all n 	 N� we have wn � wN�
and �n � �N�

� De�ne w� �� wN�

and �� � �N�
� Then for all n 	 N� we have H�w�Xn � ��	 � G�Xn	�

The above theorem is called the Perceptron convergence theorem� The �rst
statement of the theorem says that the parameter sequences fwng and f�ng
become stationary after �nitely many steps� say w� and ��� respectively� The
second statement says that the network function corresponding to these par�
ticular values will take the correct functional values in the remaining terms
of the sequence of examples� We note that this result does not say that the
stationary values w� and �� yield the correct network function on the entire set
S� only in the remaining terms of the sequence of examples the correct values
are attained� Of course� an extreme case is to take a sequence consisting of the
constant term Xn � x � S� It is indeed reasonable that the network function
will learn the correct value G�x	 by presenting the example �x�G�x		 over and
over again� but it can not be expected that the network will learn anything
about the other points in S� On the other hand� the theorem does say that
by choosing a suitable sequence fXng it is possible to �nd values of w� and
�� that yield the correct network function on the entire set S� Indeed� assume
that S � fx�� x�� � � � � xrg and take the sequence

fXng � �x�� x�� � � � � xr � x�� x�� � � � � xr� x�� x�� � � � � xr� � � �	�

���

This shows that the Perceptron architecture is capable of learning the correct
values of the given function by presenting it the complete set of correct function
values�

�� Layered feedforward networks
The Perceptron is a feedforward network whithout hidden neurons� The out�
put neuron has transfer function H� We saw in the previous section that in
connection with the representation of functions by perceptrons� we have the re�
striction of linear separability� In this section we will admit hidden neurons in
the network� We will restrict ourselves here to feedforward networks in which
the hidden neurons are grouped into what we will call layers� Suppose we have
a feedforward network with m input neurons and p output neurons� The net�
work is called layered if all paths from sources to sincs have the same length�
say �� In that case we say that the network has h �� ��
 hidden layers�

output layer

1

2

3

m

1

p
hidden layer 2

hidden layer 1

2

input layer
hidden layer 3

Figure �� Layered feedforward network with � hidden layers

We will also admit more general transfer functions in the network� The
hidden neurons will all be assumed to have the same transfer function� say
�� where � is an arbitrary function from R to R� Sometimes we will assume
that the output neurons also have this transfer function �� Depending on the

���

context� sometimes the output neurons will have the transfer function H or the
transfer function f�x	 � x�
It turns out that admitting hidden neurons extends the capability of repre�

senting functions by feedforward networks� Recall from the previous section
that the �exclusive OR� function could not be represented by a Perceptron� It
turns out that if� in addition to the two input neurons and the output neuron�
we admit one layer consisting of two hidden neurons� then there exist a choice
of weights and thresholds such that the corresponding network function is equal
to the �exclusive OR� function� Indeed� if for the transfer function of the hidden
neurons and the output neuron we take H� then the network function F �x�� x�	
is given by

F �x�� x�	 � H�w�s� � w�s� � �	�

with s� and s� given by

s� � H�v��x� � v��x� � ��	�

s� � H�v��x� � v��x� � ��	�

It is easily seen that if we take � � �� � �� � �� v�� � v�� � w� � w� �
� and
v�� � v�� � �
� then the corresponding network function equals the �exclusive
OR� function�
This example illustrates how we can get around the requirement of linear

seperability by adding a layer of hidden neurons� Of course� there still re�
mains the issue of learning� is it possible� in the context of more complex�
multi�layered� network architectures� to develop learning algorithms that lead
to network functions that are �approximately	 equal to an a priori given func�
tion� We will come back to this when we discus the so�called �Back Propagation
Algorithm��

���� Representation and approximation of functions by feedforward networks

In this subsection we will discuss the issue of representation or approximation of
a given function by a multi�layered feedforward network� The question we want
to study is the following� suppose we have a given function G � Rm � R

p � does
there exist a feedforward network achitecture such that for a suitable choice of
weights and thresholds the corresponding network function is �approximately	
equal to G� Of course� the network architectures we would be looking for
have m input neurons and p output neurons� However� in connection with the
problem stated� we could ask� if a certain function G can be represented or
approximated by a given feedforward network� then how many hidden layers�
and how many neurons per hidden layer would be needed for this�
It will turn out that any given continuous function G � Rm � R

p can be
approximated arbitrarily close �in a sense to be explained	 by a feedforward
network with one hidden layer� The number of hidden neurons� and the values
of the weights and thresholds will depend on the desired degree of accuracy of
approximation�

��

We will take a closer look at this for the case that m � p �
� For a given
function � � R � R� let N �n� �	 be the set of all functions from R to R that can
be represented exactly by a feedforward net with one input neuron� one hidden
layer of n neurons� all having tranfer function �� and one output neuron having
transfer function f�x	 � x� Denote the weights associated with the connections
between the input neuron and the hidden neurons by v�� � � � � vn� and denote
the thresholds of the hidden neurons by ��� � � � � �n� Denote the weights of the
connections between the hidden neurons and the output neuron by w�� � � � � wn�
and the threshold value of the output neuron by �� It is then clear that N �n� �	
consist exactly of those functions F � R � R that can be written as

F �x	 � � �

nX
i��

wi��vix� �i	�

for certain vi� �i� wi and �� Let N ��	 be the union over n of all N �n� �	� i�e�� the
set of all functions F � R � R that can be represented exactly by a feedforward
net with one hidden layer� with all hidden neurons having transfer function ��

x

w

w

σ

θ

σ

η

η

η

f

σ

v
w

2

n

v1

v

n

2

1

n

2

1

Figure 	� Network representing a typical element from N �n� �	

We want to study the question in what sense a given function G � R � R

can be approximated by functions F � N ��	� We will consider approximations
uniformly on compact intervals�
Following ���� we will call a transfer function � a universal transfer function�

if every continuous function G � R � R can be approximated arbitrarily close�
uniformly on any compact interval� by functions from N ��	� More concrete�
� will be called a universal transfer function if for every continuous function
G � R � R� for all a� b � R� and for each
 � �� there exist an integer n� and

���

real numbers v�� � � � � vn� ��� � � � � �n� w�� � � � � wn� �� such that the corresponding
network function F satis�es

sup
x�	a�b

jF �x	 �G�x	j 	
�

The problem now is to characterize the set of universal transfer functions�
Before we take a closer look at this problem we would like to compare it with

the classical problem of approximating a given function on compact intervals
by trigonometric polynomials� It is well�known that every continuous periodic
function from R to R can be approximated arbitrarily close by trigonometric
polynomials� uniformly on R� From this it is easily seen that for every given
continuous function function G� for all a� b � R� and every
 � �� their exist real
numbers ��� ��� � � � � �n� ��� � � � � �n� such that the trigonometric polynomial P
given by

P �x	 � �� �

nX
k��

�k sin�

b� a
kx� �k	

satis�es

sup
x�	a�b

jP �x	 �G�x	j 	
�

In neural network terminology� this can be restated by saying that the function
x
� sinx is a universal transfer function�

x
f

sin

sin

sin

(b-a)

2π/ (b-a)

3π/ (b-a)

π/

β

β

β

α

α

α

α 0
2

1

n

n

1

2

Figure
� Representation of a trigonometric polynomial

���

From the latter point of view� we think that it is quite a fascinating problem
to characterize all universal transfer functions� Before giving such characteriza�
tion� we �rst note that it is quite easy to come up with functions that certainly
are not universal� indeed� let ��x	 be a polynomial in x� say of degree k� It
is then obvious that any network function� i�e�� any element of N ��	� is also
a polynomial� of degree less than or equal to k� Since� needless to say� not all
continuous functions can be approximated arbitrarily close by functions from
a class of polynomials with a �xed upper bound to their degree� polynomial
transfer functions fail to be universal�
This shows that for a function to be a universal transfer function it is nec�

essary that it is not a polynomial� A beautiful recent result by Leshno� Lin�
Pinkus and Schocken �
��� shows that this condition is also su
cient� a
function � is a universal transfer function if it is not equal to a polynomial
almost everywhere�

Theorem ���� Let � � R � R be bounded on each closed interval �a� b�	
and continuous almost everywhere� Then � is a universal transfer function if

and only if there does not exist a polynomial p such that ��x	 � p�x	 almost

everywhere�

We note that if a given function is bounded on a closed interval �a� b�� then it
is continuous almost everywhere on that interval if and only if it is Riemann
integrable over that interval �see Rudin �
��� Theorem

���	� Hence� in the
above theorem� the condition �continuous almost everywhere� can be replaced
by �Riemann integrable over all closed intervals �a� b���
Examples of universal transfer functions are of course manifold� Of interest

in the context of neural networks is the fact that the commonly used sigmoid
functions

��x	 �

e��x �

�

and

��x	 � tanh��x	

are universal transfer functions� Also the Heaviside function is universal� We
would like to stress here that� if we compare this result with the approximation
result using trigonometric polynomials� then there is one fundamental di�er�
ence� the coe�cients �k and �k in the trigonometric polynomial approximation
can be calculated explicitly in terms of Fourier coe�cients �one could take for
P the Ces�aro mean	� whereas the approximation theorem for neural networks
is only an existence result� The theorem only states that suitable weights and
thresholds exist� but does not give general formulas to calculate these real
numbers�
In the context of neural networks� the issue is rather to �nd schemes� al�

gorithms� or mechanisms to learn the appropriate values of the weights and

��

thresholds by presenting the network examples of values that the function to
be approximated takes in certain points�
The problem of approximating a given function by neural networks has been

the subject of a large amount of research activity in the �eld of neural nets
in the past six years� Related questions can already be found in the work of
Kolmogorov �
�� Important contributions can also be found in the work of
Hecht�Nielsen� �
�� In
��� Hornik �
�� showed that every non�constant�
bounded� and continuous function � is a universal transfer function� Of course�
the latter now follows from the more recent theorem stated above� Among
other relevant references� we mention Cybenko ��� and Funahashi �
���
We note that the result by Leshno� Lin� Pinkus and Schocken also holds for

continuous functions G from R
m to Rp � In the de�nition of universal transfer

function and in the statement of the theorem� the interval �a� b� should then be
replaced by an arbitrary compact set K � R

m �
It is expected that if� for a certain compact set K � R

m � we require the
accuracy of appproximation to increase �i�e� if we let
 become smaller and
smaller	� then the number of neurons in the hidden layer should increase� On
the question how exactly the number of neurons depends on the accuracy of
approximation� we mention recent results by Barron� ���
�� and by Jones
�
��� They proved the following remarkable result for neural networks with
sigmoid tansfer function� For a given compact subset K � R

m � a su�ciently
smooth target function G � K � R can be approximated in L��sense by a neural
network with
 hidden layer containing n neurons at a rate O� �p

n
	�

If� instead of general functions from R
m to R

p � we restrict ourselves to
Boolean functions� i�e�� functions from f��
gm to f��
gp� then the situation
is somewhat clearer� It was shown in
�� by Denker� Schwarz� Wittner�
Solla� Howard� Jackel and Hopfield �

� �see also ���� page ��	� that
every function G � f��
gm � f��
gp can be exactly represented by a feedfor�
ward network with one hidden layer consisting of p�m neurons� provided the
hidden neurons and output neurons all have transfer function H� Of course�
the number p�m can in certain situations be very conservative� we showed that
the �exclusive OR� can be represented using only � hidden neurons�

���� Learning in general feedforward networks

In the previous subsection we saw that if � is a universal transfer function�
then every continuous function G � Rm � R

p can� on any compact set� be ap�
proximated arbitrarily close by a feedforward net with one hidden layer� where
the hidden neurons have transfer function �� As noted� this result is basically
an existence result and the question remains� how should we determine� for
a given compact set K and a certain accuracy
 � �� the number of hidden
neurons and suitable values for the weights and thresholds� In neural nets one
would like to obtain suitable values by some kind of learning algorithm� In
this subsection we will discuss a basic learning algorithm for feedforward nets�
called the Back Propagation Algorithm�
For simplicity� we assume that p � m �
� Suppose that � is a universal

���

transfer function� and suppose we have a continuous function G from R to R�
Let a� b � R� and let
 � �� The problem is how to determine an integer n�
vectors v � �v�� � � � � vn	� � � ���� � � � � �n	� w � �w�� � � � � wn	� and a real number
� such that

sup
x�	a�b

jG�x	 � Fv���w���x	j 	
� �
	

where the network function corresponding to the particular values for the
weights and thresholds is given by

Fv���w���x	 � � �

nX
i��

wi��vix� �i	

The idea is to take a �xed network architecture �i�e� to �x the number of
hidden neurons n	 and then try to obtain suitable values for the weights and
thresholds by presenting the network architecture a number of learning ex�
amples� More concrete� one chooses x�� � � � � xq � R and �shows� the network
the examples �x�� G�x�		� � � � � �xq � G�xq		 in the following sense� starting with
arbitrary values for the weights and thresholds v� �� w� � one calculates the val�
ues Fv���w���x�	� � � � � Fv���w���xq	 the network generates in the points x�� � � � � xq �

One compares these values with the values G�x�	� � � � � G�xq	 the network should
have generated� Then� on the basis of the error that occurs� the values for the
weights and thresholds are updated� Next� the experiment is repeated with
these updated values� One hopes that after a su�ciently large number of rep�
etitions of this experiment the values of the weights and thresholds are such
that �
	 holds�
To be more speci�c� for given values of the weights and thresholds� the net�

work makes a quadratic error

E�v� �� w� �	 ��

�

qX
i��

�Fv���w���x�	�G�x�		
��

We stress that the error only depends on the values of the weights and thresh�
olds� In fact� the error is a function from R

�n�� to R� � In order to obtain
suitable values for the weights and thresholds� it is not unreasonable to min�

imize the error function E��	� Now� the idea is to have the updating of the
weights and thresholds based on minimizing the error function iteratively� If
for the iterative method we use ideas from the method of steepest descent� we
arrive at the celebrated Back Propagation Algorithm�
Recall that if f � RN � R is a di�erentiable function� then for a given

x � R
N the direction in RN along which the function decreases most rapidly

is given by �rf�x	� where rf denotes the gradient of f � The method of
steepest descent is an iterative method that is aimed at �nding x� � R

N in
which the function f attains a minimum� Starting with an initial guess x� of
x�� a sequence x�� x�� x�� � � � is de�ned iteratively by

���

xk�� � xk � skrf�xk	�

where sk � � is choosen to minimize the function �k�s	 �� f�xk � skrf�xk		�
This leads to a sequence fxkg that would then� ideally� converge to a minimizing
x��
In neural nets� a rudimentary version of this iterative algorithm is used to

tackle the problem of iteratively minimizing the error function E��	� Instead
of performing� at each step k� minimization of the function �k�s	 to obtain sk�
one simply �xes a small positive real number
 � � and de�nes a sequence fxkg
by

xk�� � xk �
rf�xk	�

It is then hoped that this sequence leads to a minimizing point x��
We will now explain how these ideas lead to a learning algorithm� In order

to simplify notation� denote

p �� �v� �� w� �	

The value of p at iteration step k is denoted by p�k	� The vector p�k	 has
components vi�k	� �i�k	� wi�k	 and ��k	� Now� �x the values x�� � � � � xq � R

�this set of �xed numbers is called the batch	� Denote Gi �� G�xi	� i �
� � � � � q�
For the sake of exposition� in the remainder of this subsection we will take a

particular transfer function� the sigmoid transfer function

��x	 �

e��x �

�

In the sequel� we will use the fact that� if � �
� � satis�es the di�erential
equation

�� � ��
� �	� ��	

Suppose that� at iteration step k� the current values of the weights and
thresholds are given by p�k	� At this moment� the samples x�� � � � � xq � are
presented to the network� In response to the input value xi� the following
signals occur at the output branches of the hidden neurons and the output
neuron�

� the hidden neuron j generates the output value sij�k	 � ��xivj�k	 �
�j�k		�

� the output neuron generates the output value yi�k	 � Fp�k��xi	�

Let us assume that� in some way� during this experiment� we make a record of
these output values sij�k	 and yi�k	 �j �
� � � � � n� i �
� � � � � q	�
Now� the updating of p�k	 is done according to p�k�
	 � p�k	�
rE�p�k		�

so we should in some way try to calculate the value of rE�p�k		� Clearly�

rE � �
�E

�v
�
�E

��
�
�E

�w
�
�E

��
	�

���

so in order to update the weights and thresholds w�k	 and ��k	 of the output
neuron we should calculate �E

�w
�p�k		 and �E

��
�p�k		� It turns out that these vec�

tors of partial derivatives can be calculated explicitly� in terms of the recorded
output values� Indeed� it is straightforward to verify that

�E

�w�

�p�k		 �

qX
i��

�yi�k	�Gi	si��k	�

and

�E

��
�p�k		 �

qX
i��

�yi�k	�Gi	�

If we introduce the error of the output neuron at step k corresponding to the
sample xi by

 i�k	 �� �yi�k	�Gi	�

then the updating rules for w�k	 and ��k	 can be written as

w��k �
	 � w��k	�

qX
i��

 i�k	si��k	�

��k �
	 � ��k	�

qX
i��

 i�k	�

To �nd the updating rules for the weigths v�k	 and thresholds ��k	 of the

hidden neurons� we should calculate �E
�v
�p�k		 and �E

��
�p�k		� We calculate�

�E

�v�
�p�k		 �

qX
i��

�yi�k	�Gi	w��k	si��k	�
� si��k		xi�

and

�E

���
�p�k		 �

qX
i��

�yi�k	�Gi	w��k	si��k	�
� si��k		�

Here� we used the fact that � satis�es the di�erential equation ��	� Introduce
the notation

! i��k	 �� �yi�k	�Gi	w��k	si��k	�
� si��k		�

Then the updating rules for v�k	 and ��k	 can be written as

v��k �
	 � v��k	�

qX
i��

! i��k	xi�

���k �
	 � ���k	�

qX
i��

 i��k	�

���

Note the similarity in structure between the updating rules for the output
neuron and the hidden neurons�
The most striking feature of these updating rules is that one can interpret

the updating to take place in two separate stages� in the following sense� One
should �rst note that the ! i��k	�s can be calculated from i�k	 by the following
formula�

! i��k	 � i�k	w��k	si��k	�
� si��k		� ��	

Thus one could consider the updating of the weights and threshold of the out�
put neuron �which only uses i�k		 as the �rst stage of the updating procedure�
In the second stage of the updating procedure� one �rst calculates the ! i��k	�s
from i�k	� and then updates the weights and thresholds of the hidden neurons
using these numbers� One could consider ! i��k	 as a kind of error� the error
of the ��th hidden neuron at step k corresponding to the sample xi� Formula
��	 can then be interpreted as a formula that calculates the errors of the hid�
den neurons using the error of the output neuron� In this sense� the error is
propagated backwards through the network� starting at the output neuron� This
structure of the updating algorithm explains the terminology Back Propagation
Algorithm�
The above describes the kth iteration step� At each iteration step� the same

batch x�� � � � � xq is used� In principle� the algorithm stops at stage N � if N is
such that

E�v�N	� ��N	� w�N	� ��N		 	 ��

where � is some a priori given tolerance�
In the above� for the sake of exposition we have restricted ourselves to the

case that p � m �
� and that we have only one hidden layer� In the general
case the ideas remain the same� If the network has h hidden layers� then each
iteration step is subdivided into h �
 stages� Counting layers from the right
to the left� each stage corresponds to a calculation of the errors in a layer in
terms of the errors in the previous layer ��back propagation of errors�	� and an
updating of the weigths and thresholds in the layer�
The Back Propagation Algorithm was discovered in
��� by Paul J� Wer�

bos �
��� After being ignored for over two decades� it was rediscovered inde�
pendently in
�� by David E� Rumelhart ��� and David B� Parker ����
The algorithm plays an important role in arti�cial neural networks� Together
with its variations based on more advanced iterative minimization algorithms
�like e�g� the conjugate gradient method	� it provides a reasonable training
method for multi�layer feedforward networks� Because of its simple structure�
the algorithm can be easily implemented on electronic computers� For a more
general treatment of the Back Propagation Algorithm we refer to ���� �
��� or
����

���

References

� A�K� Kolmogorov �
���� On the representation of continuous functions
of several variables by superposition of continuous functions of one variable
and addition� Dokl� Akad� Nauk SSSR� ���� page ����

�� A�R� Barron �

��� Universal approximation bounds for superpositions
of a sigmoidal function� preprint� Dept� of Statistics� University of Illinois�
Urbana� USA�

�� B�J�A� Kr�ose and P�P� van der Smagt �

��� An Introduction to

Neural Networks� The University of Amsterdam�
�� B� M�uller and J� Reinhardt �

�� Neural Networks	 an Introduction�
Springer Verlag�

�� D�B� Parker �
	��� Learning�logic� casting the cortex of the human
brain in silicon� MIT Techn� Report TR����

�� D�E� Rumelhart� G�E� Hinton and R�J� Williams �
	��� Learning
representations by back�propagating errors� Nature ���� pages ���"����

�� E�D� Sontag �

��� Neural networks for control� In H�L� Trentelman
and J�C� Willems� editors� Essays on Control� Perspectives in the Theory

and its Applications� pages ���"��� Birkh#auser� Boston�
� F� Rosenblatt �
�
�� Principles of Neurodynamics� Spartan Books�
New York�

�� G� Cybenko �
	
�� Approximation by superpositions of a sigmoidal
function� Math� Control	 Signals	 and Systems �� pages ���"�
��

�� J� Hertz� A� Krogh and R�G� Palmer �

��� Introduction to the

Theory of Neural Computation� Addison�Wesley� Redwood City�

� J�S� Denker� D� Schwartz� B� Wittner� S� Solla� R� Howard� L�

Jackel and J� Hopfield �
	��� In Complex Systems �� page ���

�� K� Hornik �

��� Aproximation capabilities of multilayer feedforwrd

networks� Neural Networks �� pages ��
"����

�� K�I� Funahashi �
	
�� On the approximate realization of continuous

mappings by neural networks� Neural Networks �� pages
�"
���

�� L�K� Jones �

��� Constructive approximation for neural networks by

sigmoidal functions� In Proceedings of the IEEE �� pages
��"
���

�� M� Leshno� V� Ya� Lin� A� Pinkus and S� Schocken �

��� Multi�

layer feedforward networks with a non�polynomial activation function can
approximate any function� To appear in� Neural Networks�

�� M� Minsky and S� Papert �
�
�� Perceptrons� An Introduction to

Computational Geometry� The MIT Press�

�� P�J� Werbos �
���� Beyond regression� new tools for prediction and

analysis in the behavioral sciences� Master�s thesis� Harvard University�

� R� Hecht�Nielsen �
	
�� Theory of backpropagation neural networks�

In Proceedings of the Int� Joint Conf� on Neural Networks	 San Diego� SOS

Printings� pages ���"����

�� W� Rudin �
���� Principles of Mathematical Analysis� McGraw�Hill�

New York�
��� W�S� McCullogh andW� Pitts �
���� A logical calculus of the ideas

���

immanent in nervous activity� Bulletin of Mathematical Biophysics �� pages

�"
���

��

