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Zeros at Infinity for Affine Nonlinear Control Systems 

HENK NIJMEIJER, MEMBER, IEEE, AND JOHANNES M. SCHUMACHER, MEMBER, IEEE 

Abstract-A definition of zeros at infinity for affine nonlinear control 
systems is proposed. The definition is local, which means that we exclude 
certain singularities. We argue the reasonableness of our definition by 
showing its relevance to the problem of nonlinear decoupling. In 
particular, we give a necessary and sufficient condition for the solvability 
of the general regular decoupling problem for affine systems in terms of 
the zeros at infinity. 

I. INTRODUCTION 

THE purpose of the present paper is to study the decoupling 
problem and its connection to zeros at infinity for the class of 

affine nonlinear systems. The connection between the two 
subjects has been well established in the context of linear systems 
(cf. [1], [2]), and it turns out that it is possible to establish quite 
similar results for nonlinear systems-as long as one restricts 
oneself, as we do in this paper, to a "local" point of view, i.e., 
one allows the introduction of assumptions that will hold on open 
parts of the state manifold but possibly not on the entire manifold 
as such. Our main result (Theorem 4.1) gives a necessary and 
sufficient condition for the solvability of the regular static-state 
feedback noninteracting control problem for affine systems (the 
problem is defined in Section IV). It is shown in Theorem 3.1 how 
this necessary and sufficient condition can be interpreted in terms 
of zeros at infinity. The decouping results of the present work 
extend those of [24], where the treatment was restricted to 
situations in which the number of scalar inputs equals the number 
of vector outputs. Of course, the development sketched above 
would not be possible without having available a definition of 
"zeros at infinity" for the class of affine systems. For more 
restricted classes of nonlinear systems, indexes which could serve 
to define zeros at infinity have been introduced by Hirschorn [6] 
and Isidori [8]. We consider it a point of major interest of the 
present paper that here, for the first time, the notion of "zeros at 
infinity" is defined for the full class of affine systems. It is shown 
in [26] that our definition encompasses those given by Hirschorn 
and Isidori. 

It is perhaps worthwhile to expand on what the concept of 
"zeros at infinity'' means (see also [3] for linear systems, [23] for 
nonlinear systems). Basically, the zeros at infinity are numbers 
that indicate the orders of integration in a (multivariable) system. 
Consider first a linear single-input single-output system x = Ax 
+ bu, y = c T x. The "order of integration" in such a system can 
be defined, for instance, as the lowest number k for which the 
input function u appears explicitly in the expression for the kth 
derivativeofy. Sincey = cTAx + cTbu,j) = cTA 2x + cTAbu 
+ crbu, etc., it is clear that this order of integration could also be 
expressed algebraically as the lowest value of k for which the 
number c TA k - 1 b is unequal to zero. 

Because the development around infinity of the transfer 
function g(s) = cT(sl - A)- 1b is g(s) = cTbs- 1 + cTAbs2 + 
· · · , yet another way of expressing the order on integration would 
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be that it is the unique value of k for which skg(s) has a finite and 
nonzero value at infinity. Following the standard terminology of 
function theory, this number is also called the order of the zero at 
infinity of g(s). Note that the first definition that we gave for 
"order of integration" would also apply to nonlinear systems. 
The situation is more complicated if we turn to multivariable 
systems. For decoupled scalar systems (with a diagonal transfer 
matrix), it is clear that the proper definition of the zeros at infinity 
for the system as a whole would be to take the zeros at infinity of 
each channel separately. In general, however, one has to 
reorganize the input- and output-channels in such a way that the 
integration structure is displayed by a set of numbers. In the linear 
case, this can be done by using the concept of a "bicausal 
matrix," i.e., a proper rational matrix which also has a proper 
rational inverse, so that it has, in this sense, neither poles nor 
zeros at infinity. The idea is that multiplication of a transfer 
matrix by a bicausal matrix does not "essentially" change the 
integration structure. One then proves (see [3], [14]) that for 
every strictly proper rational matrix G(s) there exist bicausal 
matrices B 1(s) and B2(s) such that 

[ .i(s) OJ B 1(s)G(s)B2(s) = 0 0 (1.1) 

(1.2) 

Moreover, the numbers di. · ·., d, are determined uniquely by 
G(s). It is then natural to call these numbers the (orders of the) 
zeros at infinity of the system described by G(s). 

The above definition is not easily extended to nonlinear systems 
since it is given in terms of the transfer matrix. Fortunately, there 
are also characterizations available directly in state-space terms. 
Such a characterization was already given in [14], but a recent and 
slightly different version due to Malabre [13] turns out to be more 
useful for our purposes. Let a system ~(A, B, C) be given, with 
state-space X, and consider the "V*-algorithm" [37] 

V'°=X (1.3) 

Vk+ 1={xE VklAxE Vk+ ImB}. (1.4) 

In a finite number of steps, this sequence of subspaces tends to a 
limit, which is denoted by V*. It can then be shown that the 
number 

pk def dim (Im B n yk- 1)- dim (Im B n V*) (1.5) 

is equal to the number of zeros at infinity of order ;?:: k, as defined 
above. So, the zeros at infinity can be recovered from the numbers 
pk as defined by (1.5). Malabre's [13] proof of this is rather 
indirect; for a short proof, see [26]. It is this characterization of 
the integration structure that will be generalized to nonlinear 
systems in the next section. 

II. DIFFERENTIAL GEOMETRIC STRUCTURE THEORY 

We consider an affine nonlinear control system 

m 

x(t) =A(x(t)) + ~ B,{x(t))u;(t) (2.1) 
i=l 
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where x are local coordinates of a smooth n-dimensional manifold 
M,A, Bi.···, Bmare smooth vector fields on Mand u;:OO+--+ 00 
is a piecewise smooth input function, i E m. Together with the 
dynamics (2. 1), we consider the output functions 

z,{t) = C,{x(t)), i Ek (2.2) 

where C;:M --+ N; is a smooth map from M to a smooth p,
dimensional manifold N;, p; ~ 1, i E k. We assume that each C;, 
i E k, is a surjective submersion. Throughout the paper we will 
make the following standard assumptions for the systems (2 .1), 
(2.2): 

Al) dim Ao: =dim span {B1, • • ·, Bm}=m (2.3) 

A2) the rank of the map C : = (Ci. · · ·, Ck) 

: M->N1 x · · · xNk equals p 1 + · · · +Pk (2.4) 

A3) system (2.1) satisfies the strong accessibility-rank 
condition (see [33], [18]). (2.5) 

We allow here static-state feedback, i.e., an admissible 
control law has the form 

u = a(x) + {3(x)v (2.6) 

where a:M ...... oom, {3:M ...... oomxm are smooth functions. To keep 
as much open-loop control as possible, we assume that {3(x) = 
(f3u(x));,j is nonsingular for all x E M; v = (v1, ... , Vm) 1 E oom 
represents a new input. By applying the feedback law (2.6) to 
(2.1) we obtain as new dynamics 

where 

m 

x(t)=A(x(t))+ l:; B,{x(t))u;(t) 
i=l 

m 

A(x) =A(x) + 2:; B,{x)a,{x), 
i=l 

m 

B,{x) = 2:; B1{x)(Jj1{x). 
j=I 

(2.7) 

(2.8a) 

(2.8b) 

Next we come to one of the basic concepts in the "differential 
geometric approach" to nonlinear system theory. For detailed 
accounts we refer to [4], [8]-[12], [16]-[28] and to [37] for the 
linear counterpart. 

Definition 2.1: A fixed-dimensional involutive distribution D 
on Mis locally controlled invariant if, locally around each point 
x0 E M there exists a control law (2.6) such that the modified 
dynamics (2.7) satisfies 

[A, D] c D, 

[B;, DJ c D, i Em. 

(2.9a) 

(2.9b) 

There also exists a definition of global controlled invariance [8], 
[9], but the advantage of the local concept above the global one is 
that the following test is available to determine whether or not a 
distribution is locally controlled invariant. 

Theorem 2.2: Let D be an involutive distribution on M of fixed 
dimension and assume that D n Ao has fixed dimension. Then, D 
is locally controlled invariant if and only if 

[A, DJ C D+Ao, 

[B;, DJ C D+Ao, i Em. 

(2. IOa) 

(2.IOb) 

An important class of controlled invariant distributions is given by 
the following. 
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Definition 2.3: A fixed-dimensional involutive distribution D 
on Mis a regular controllability distribution if, locally around 
each point x0 E M there exists a control law (2.6) such that 

[A, DJ c D, 

[B;, D] c D, i Em 

and 

D = involutive closure of 

(2.9a) 

(2.9b) 

k k I {adAAo n D, ads/•o n Dk E ~+. i Em}. (2.11) 

Or equivalently (see [ 18]) D = involutive closure of { ad~.iij, 
ad~/ij lk E Cl+, i E m andj E IC m}, for a certain subset IC 
m. 

As in the linear geometric theory (see [37]) locally controlled 
invai:iant distributions and regular local controllability distribu
tions play an important role in the (local) solution of synthesis 
problems like the disturbance decoupling problem and the 
noninteracting control problem (see [4], [8]-[12], [16]-[28]). In 
this context one is especially interested in supremal elements 
satisfying Definition 2.2 or (2.5), which are contained in a given 
fixed-dimensional involutive distribution K on M. However, in 
general, these supremal elements may not exist. In order to 
overcome this problem we consider the following algorithm: 

[ Vo =TM 
yµ+l= Kn A-l(Ao+ Vµ) (2.12) 

where 

A- 1(V)={X E V(M)j(A, X] CV} 

and .A is the affine distribution associated with (2.1) 

A(x) =A (x) + A0(x). 

(2.13) 

(2.14) 

It is straightforward to show that the algorithm (2.12) converges 
in at most dim K steps to a limit, which will be denoted as VR, so 
V} = ydimK. 

Now, in general, the (involutive) distributions VI', µ ~ 0, 
appearing in (2.12) will not have constant dimension. However, 
for analytic systems the V"'s, µ ;:: 0, are of constant dimension 
on an open and dense submanifold M' of M. Now, if we exclude 
all possible singularities in the dimensions of the P 's, µ ~ 0 and 
VI' n Ao, µ. ~ 0, then we khow (see, e.g., [4], [9], [16]) that Vl' 
is the maximal element in the family of all controlled invariant 
distributions contained in. K. Therefore, we will make the 
following basic assumption (valid on open parts of M). 

Assumption 2.4: For each µ ~ 0, the distributions V" and V" 
n Ao will have fixed dimension, where V" is defined in (3.12). 

The (oonlinear) algorithm (2.12) contains structural informa
tion about a control system, as shown in (37] for the linear case. In 
what follows we will mimic the linear theory on infinite zeros as 
far as possible. For linear references see, e.g., [35] and [26]. 
Consider a smooth nonlinear control system (2.1) together with 
one output function C as in (2.2). By assumption, the function C
being a surjective submersion-induces a fixed-dimensional invo
lutive distribution Ker C*' on M. Therefore, we may apply 
algorithm (2.12) to Ker C*, and assume that Assumption 2.4 
holds in the case. Then supremal locally controlled invariant 
distribution contained in Ker C * is denoted as V* and satisfies V* 
= Vk+I = Vk for all k ~ n - p wherep = rank C. Now we 
define a set of integers by the following. 

Definition 2.5: 

P" : = d(Ao (1 V" - 1)- d(Ao n V*), µ.>0. (2.15) 

Associated with the sequence {p"}::f we define another list by 
the following. 
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Definition 2. 6: 

n,..: = number of p"'s which are greater than or equal to µ. 

(2.16) 

There is a one-to-one correspondence between the sequences 
{p,..}::~ and {n,..}~~ 1 given by (2.16) andp,.. = number of n"'s 
which are greater than or equal toµ. 

(2.17) 

As in the linear case (see [13], [26]) we will say that the 
nonlinear system (2 .1), with output 

z= C(x) (2.18) 

has p 1 zeros at infinity of orders {n,..}. As we have seen in 
Section I, these integers play an important role in the linear 
theory (as, for example, in Silverman's structure algorithm), but 
also in the solution of the noninteracting control problem; see [l], 
[2]. In the next sectiOns it will be shown that in the general 
nonlinear noninteracting control problem, the integers {p,..} (or 
{iz,..}) play the same role as in the linear theory of [1], [2]. It is for 
this reason that we have chosen to call the n,..'s the orders of the p 1 

infinit~ zeros. Further explanation is given in (26]. 
Remark: For general nonlinear systems of the form (locally) 

( :X=f(x, u) (2.19) 
lY=h(x, u) 

one can define zeros at infinity in the following way. We form an 
"extended system" (cf. [27]) by introducing a new input function 
v as follows: 

zi= u. (2.20) 

The extended system (2.19), (2.20) with G) as state and v as input 
is affine, and we can apply the above definition (see also [28)). 
From the orders of zero at infinity so obtained, we subtract one in 
order to compensate for the integration we have added. ,Note that, 
in this way, one may find zeros at infinity of order zero; this is in 
agreement with the linear situation. Of course, one has to show 
that this definition is consi.stent in the sense that if (2.19) happens 
to be affine, then the definition given above agrees with the direct 
definition given earlier. This has been done in [25]. In the rest of 
this paper, we will limit ourselves to affine systems. 

Let us. finally say a few words on controllability distributions. 
Again it can be shown (see [12], [18]) that there exists a supremal 
regular local controllability distribution R1, contained in a given 
fixed-dimensional involutive distribution K on M. Notice, how
ever, that R1 is not necessarily of constant dimension. As in the 
linear theory there is no direct algorithm for computing R1. The 
easiest way of computing R1 is with the aid of n. This can be 
summ.arized iri the following procedure. 

Step 1: Compute vt (assume f'P ~as cons~nt dimension). 
Step 2: Compute appropriate A, Bi. · · ·, Bm which leave VR 

invariant. 
Step 3: Compute Aon vt. 
Step 4: R1 = involutive closure of { ad~.D.0 n vt, ad~Ao n 

V'Plk E CZ+. i E ni}. I 

Notice that, almost by construction, the following identity holds 
(cf. [18]): 

.:io n R1=Ao n v1 (2.21) 

which will be used in the sequel. 

ill. STRUCTURE AT INFINITY FOR MULTIPLE OUTPUTS 

We now consider the system (2.1), (2.2) under the standard 
assumptions (2.3)-(2.5). While (2.4) holds, we have that for each 
I c k the involutive distribution njeI Ker C1* is of constant 
d1mension, and therefore we may apply the algorithm (2.12) for 
each of them. Assuming that Assumption 2.4 holds for each 

sequence of distributions, we obtain the corresponding supremal 
local controlled invariant elements. We will list them as follows: 

V* = supremal locally controlled invariant distribu
tion in Ker C*. 

(3. la) 

Vj= supremal locally controlled invariant distribution in 

n Ker Cj*• I ck. (3.lb) 
jE/ 

We also write 

!Ck (3.lc) 

and 

R j= supremal regular local controllability distribution in 

n Ker Cj*• I Ek. (3.ld) 
}Ek'-! 

The corresponding lists of orders of the zeros at infinity will be 
denoted as follows: 

pf=d(A0 n Vf- 1)-d(A0 n VtJ, i E k, µ>0, (3.2a) 

p,..=d(A0 n yµ- 1)-d(A0 n V*), µ>0, (3.2b) 

q'j=d(A0 n Df- 1)-d(A0 n DtJ, i Ek, µ>0, (3.2c) 

p,..(J)=d(.:i0 n Vj- 1)-d(A0n Vj), IC k, µ>0, (3.2d) 

q,..(l)=d(A0 n Dj- 1)-d(.:i0 n Dj), I ck, µ>0. (3.2e) 

It is convenient in this notation that we set 

v:= TM and D:= V*. 

The following relations are immediate: 

I ck, µ>0. 

If IC J C k, we have 

DjC D'j, 

Vj :J V'j, 

yµ C Df c V!J, 

µ>0, 

µ>0, 

µ>0, i=Fj, i, j E k. 

Furthermore, we note that by definition (3.2) 

Pf =p,..({i}), q'j =q,..({i}), i E k, µ>0 

and 

q/.<(J) = pµ(k" /), IC k, µ>0. 

(3.3) 

(3 .4a) 

(3.4b) 

(3.4c) 

(3 .5a) 

(3.5b) 

For what follows we need one other definition. A function <jJ:P(k) 
- ?&:+ is called a weight function if 

1) 4>(0) = 0, 

2) for all /, J E P(k)( = the family of subsets of k) 
we have </>(/ U J) = </>(/) + </>(J) - </>(! n J). 

(3.6a) 

(3.6b) 

After these preliminaries we come to the main theme of this 
section. Consider the indentity 

Ao= 2; Aon Df (3.7) 
iEk 

Relation (3. 7), to which we will refer as the noninteraction 
condition (this terminology will be fully justified in Section IV), 
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is equivalent to certain relations among the indexes p,, pP., and 
pP.(-). Notice that for linear systems it is known th~t (3. 7) is 
equivalent to, cf. [1] 

pP.= ~ pf, for all µ>0. (3.8) 
iEk 
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and thus, for all µ, ;;::: 0, 

Ao=Ao n D[+Ao n Dj. (3.10) 

Induction and Lemma 3 .2 lead to the desired result (3. 9). Now for 
arbitrary /, J C k we have 

Here we will give an extension of this result. Dj n Dj C Dj n DjUk'-I (3.12) 
Theorem 3.1: Assume that for all I C k, Vf satisfies 

Assumption 2 .4. Then the following are equivalent: and because I U J U k '-I = k, we have that 

a) Ao=~ Ao n Dr, (3.7) 
iEk 

b) pP.= ~ pf, for all µ>0, (3.8) 
iEk 

c) pP. : p(k)->l'l+ is a weight function, for all µ >0. 

For the proof of this theorem we need some preliminary results. 
Lemma 3.2: Suppose Assumption 2.4 holds for all Df, I C k. 

Then, if for certain µ, ;;::: 0 

and 

then also 

Proof: 

Dj+ 1 n Dj+ 1= n Ker Ci* n n Ker Ci* 
jEk'-1 jEk'-J 

n Ker Ci* 
jEk'-Jnl 

n Ker Ci* n A- 1[A0 +D'fM] 
jEk'-InJ 

(3.9) 

(3.10) 

(3.11) 

D 

Lemma 3.3: Suppose Assumption 2.4 holds for all Df, IC k. 
Then, 

Ao=~ Aon D[ (3.7) 
iEk 

implies that for all/, J C k, µ ;;::: 0 

(3.9) 

Proof: Choose /, J c k and let us first assume that I U J = 
k. By applying (3 .4a) we have 

Ao :) Aon Df +Aon DJ:) Aon~ Dl" 
iE/ 

+Ao n ~ Dt:) ~ Ao n Dr. 
iEJ iEk 

So, by (3.7) 

Ao=Ao n Df +Aon DJ 

Dj n DjUk'-l=V'fn(JUk'-/) =D'fnr 

On the other hand 

D'fn1 C Dj n Dj 

so by (3.12), (3.13), and (3.14) we obtain 

(3.13) 

(3.14) 

D (3.9) 

Lemma 3.4: Suppose Assumption 2.4 holds for all Dt, IC k. 
Then, for all µ, ;;::: 0, 

Ao=~ Aon Df (3 .15) 
iEk 

if and only if 

VI, JC k Ao n Dj+Ao n Dj=Ao n D'fur (3.16) 

Proof: 

(•) Aa=Ao n Dt=Ao n D~=Ao n D)+Ao n £l{2, .. ·,k} 

=~Aon Df 
iEk 

(~) Let/, JC k. Then f~r allµ,<?: 0, 

=Ao n Dj+ Ao n Dj+ Ao n D~ (by Lemma 3.3) 

=Aon Dj+Ao n Dj+Ao n VI' 

=Aon Dj+Ao n Dj. D 

We are now able to prove the main theorem of this section. 
Proof (of Theorem 3.1): 

(a ~ c) We have by Lemmas 3.3 and 3.4, for all I, JC k andµ, 
;;::: 0, that 

(Aon Dj) n (Aon Dj)=.t.o n Dj(1J 

and so by (3.3) it follows for all J, J C k, µ, ;;::: 0 that 

Aon Vj+Ao .n Vj=Ao n V'fni• 

(Aon Vj) n (Ao n Vj)=Ao u VjUJ· 

Therefore, for all µ, > 0 

(3.16) 

(3.9) 

(3.17) 

(3.18) 

pP.(0)=d(.t.o n v:- 1)-d(.t.0 n v:)=m-m=O (3.19) 

pP.(J U J)=d(Ao n VjiJj)-d(.C.o- v;u1)· (3.20) 
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Using (3.17) we have 

d(.tio n ViU"i>=d[(Ao n vj- 1) n (.tio n Vj- 1)] 

=d(Ao n Vj- 1)+d(.tio n Vj- 1) 

-d(Ao n v1- 1 +Ao n Vj- 1) 

and by (3.18) 

(3.21) 

d(Ao n v1- 1+Ao n Vj- 1)=d(Ao n V}n)· (3.22) 

Furthermore, (3.21) and (3.22) hold true if we replace µ.by *, 
i.e., by taking µ sufficiently large. Combination of these 
expressions, together with (3.20), (3.21), and (3.22) leads to 

p""(/ U J)=d(Ao n v1- 1)+d(Ao n Vj- 1)-d(Ao () Vj,1]) 

-d(Ao n Vj)-d(Ao n VJ)+ d(.6.o n ~ \ 1) 

= P""(/) + pµ(J)- pµ(l n J). (3 .23) 

Using pi' = ~iEk Pj. we obtain the following identities 

m-d(.tio n V*)= ~ [m-d(.6.0 n VJ)] 

so 

Moreover, 

jEk 

~ d(Ao n Vf'J-d(Ao n V*)=(k- l)m. 
jEk 

(3.29) 

d(.tio n V""+ 1)-d(A0 n V*)= ~ [d(Ao n V;+ 1)-d(Ao n Vj)] 
jEk 

(3.30) 

which, by (3.29), leads to 

~ d(Ao n vr1)-d(Ao n yµ+ 1)=(k-l)m. (3.31) 
jEk 

So from (3.28) and (3.31), we conclude 
So (3.19) and (3.23) readily yield thatp" is a weight-function for 
allµ> 0. d(Ao n Dr+ 1 +A0 n V'j+ 1)2:m, 

(c ~ b) For all µ > 0 we have 

P"""P"(k)=p"({l})+p"({2, · · ·, k})-pµ(0,) 

=pf+P"({2, · · ·, k})=pf+ · · · = ~ pf. 
iEk 

(3.8) 

(b ~ a) We will show by induction that if (3.8) holds, then for 
allµ2:0 

Ao=~ .6.o n Df (3.24) 
iEk 

as well as 

(3.25) 

and 

D~ nv~, 
I j 

i Ek. (3.26) 
#i 

Clearly Uie statement is true for µ = 0. Assume (3.24)-(3.26) 
bold for a certainµ > 0, then by repeated appliq1tion of Lemma 
3."2 (3.25) and (3.26) hold true forµ + 1. Furthermore, we have 
[see (3.4c)J :(or all i E k 

Ao=.6.o n Df+Ao n Vf. 

Next we compute d(ii0 () D'j+ 1 + Lio fl Vr+ 1}. 

d(Ao n Dr+ 1 +.6.o n Vf+ 1) 

(3.27) 

=d(Ao () D'j+ 1)+d(lio n Vr+ 1)-d(Ao n Dr+ 1 n Vr+ 1) 

=d( _()Aon V;+ 1 ) +d(Ao n V~+I) -d(.ticJ n yii+ 1) 

J'l<l 

2:~ d(lio n V;+ 1)-(k-2)m+d(Ao n V'j+ 1) 

j.;;i 

i.e., 

Aon Df +1+Ao n V'j+ 1=Ao. 

Having established (3.32) for all i E k, we see 

Ao= n [.ticJ n D'j+ 1+.6.o () V'j+ 1] 

iEk 

so 

= ~ .tio n nri+.tio n p+l 
iEk 

Ao=~ Aon Df+ 1• 

iEk 

(3.32) 

(3.24) 

Therefore, (3.24) is established for all µ 2:: 0 and (3.7) readily 
follows by taking µ. sufficiently large; 0 

While ~e numbers P" and Pf(i E k) are in one-to-one 
correspondence to the orders of the infinite zeros (see Definition 
2.6), condition (3.8) can also be established by using them. Let 

n"'= number of p"'s which are greater than or equal to µ., 

(3.33) 

nr=. number of p~'s which are greater than or equal to 
µ., 1 Ek, 

(3.34) 

Then we have the following .. 
Corollary 3.5: Assume that for all I C k, V1' satisfies 

Assumption 2.4. Then 

is equivalent to 

.6.o= ~Aon D't 
iEk 

I 

(3.7) 

(3.33) 

whereUdenotes the set thepretic union (with repeated common 
elements). 

= ~ d(lio n V;+ 1)-(k-2)m-d(Ao n P+l). 
jEk 

(3.28) Remarks: i) In case the number of scalar inputs ( = m) equals 
the number of vector outputs ( = k), the noninteracting condition 
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(3. 7) reduces to a direct sum 

'10= ES ..ion D[ (3.34) 
iEk 

and 

..ion V*=O (3.35) 

(see [24] for details). ii) As already noted in (2.21) we can replace 
(3.7) by 

Ao=~ Aon Rj (3.36) 
iEk 

which will be the starting point of the next section. 

N. THE GENERAL NONINTERACTING CONTROL PROBLEM 

We now come to the generalization of the linear regular block
decoupling problem (here regular means that one uses full control 
in the decoupling state feedback): see [15, 38, l]. Let us briefly 
outline the input-output decoupling problem under consideration. 
For a more complete discussion of this topic, we refer to [24], 
where the same problem has been solved in case the number of 
scalar V inputs equals the number of vector outputs. Consider the 
system (2.1), (2.2) under the assumptions (2.3)-(2.5). Suppose 
that, after applying a feedback law (2.6) the new input v; does not 
affect the output Zj, j, i E k, j =I= i, and moreover the input v,. 
"controls" the output z;, i E k. Here (vi. · ·., vk)I = (ui. • • ·, 
um)', but some u,., i Em, may appear in various vector inputs vi,j 
E k. That is, there is a partitioning 

(4.1) 

with the property that j E 11 <* ui belongs to v1, l E k. 
Clearly, if IJ; E v., n V,s for some a =I= f3 E k, then neither Zj,j 

=I= a, nor Zj, j =I: {3, is affected by u;; so all outputs zi> j E k, are 
independent of the input u;. Therefore, excluding overlappings in 
the various input vectors v,., i E k leads to a partitioning u = (v 0 , 

v 1, • • • , vk) 1 such that v0 does not affect Zj, j E k and vi does not 
affect Zj, j =F i, and "controls" Z;. This allows us to rewrite the 
partitioning (4.1) as 

m=I0eJ1 e · · · eJk (4.2) 

with the property j E 11 # ui E v1, I = 0, l, · · ·, k. 
Consider the regular (local) controllability distributions 

Ri= span (involutive closure of {ad~B;, ad~1 B;I 
k E 12+, i E .f,j, I Em}), j Ek. (4.3) 

The noninteraction conditions can be nicely expressed by means 
of the distributions R 1, • • ·, Rt. namely the input v,. does not 
affect Zi> j * i, if and only if · 

Ri c n Ker C;*, 
i.Pj 

jEk (4.4) 

while V; "controls" Z;, i E k is equivalent to (see [20], [22], [24] 
for the definition of output controllability) 

jEk (4.5) 

or equivalently 

j Ek. (4.6) 

The static-state feedback noninteracting control problem can now 
be formulated as follows. 

Given the system (2.1), (2.2) find, if possible, a feedback 
law (2.6) such that (4.4) and (4.5) hold for the distributions 
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defined by (4.3). This problem will be solved here in a local 
fashion. Given an arbitrary initial point x0 E M we are interested 
in finding a local feedback law (2.6), i.e., a and {3 are possibly 
only well-defined in a neighborhood of x0 (compare to Definition 
2.1 and Theorem 2.2 on local controlled invariance). 

Without any further requirements we cannot get global solu
tions of the above problem. The solution of the nonlinear 
noninteracting control problem is similar to the linear (geometric) 
version of this problem (see [15], [38]) so the differential 
geometric approach again provides a good framework for such a 
synthesis problem. Recall the definition (3.ld) of Rf, IC k. The 
theorem we are after is as follows. 

Theorem 4.1: Consider the system (2.1), (2.2) and assume that 
for all IC k, vtand V¥ n Ao all have fixed dimension. Then the 
static-state feedback noninteracting control problem is locally 
solvable around each point x0 E M if and only if 

Ao=~ Ao nDt. (3.7) 
iEk 

Furthermore, if these conditions hold, then {R;'} r= I is the only 
solution satisfying (4.4) and (4.5). 

We will prove this theorem by using the following result of 
[24]. 

Theorem 4.2: Consider the system (2.1), (2.2) and assume that 
for all / C kV¥ and V¥ n A0, µ > 0 all have fixed dimension. 
Then the static-state feedback noninteracting control problem is 
locally solvable around each point x0 E M if 

Ao= ES b.o n D'f;. 
iEk 

(4.7) 

Remark: The sufficient condition (4.7), which is equivalent to 
Ao = Ee 1ekAo n R?'; implies that the R'f", i = 1, · · ·, i are 
"simultaneously integrable," that is, for each subset I C k the 
distribution "2.;e 1Rf is involutive. This is the basic observation of 
[24] needed for the construction of a decoupling feedback law. 

The idea to use Theorem 4.2 for proving the sufficient part of 
Theorem 4.1 is that we first "factor out" the maximal unobserva
ble distribution in Ker dC, i.e., V* [see (3. la)], and then we show 
that the reduced system on the quotient manifold M(mod V*), 
exactly satisfies the sufficient condition (4.7). Note that the 
quotient system will have m '- ! 0 inputs [see (4.2)]. In formalizing 
this we need the following results. 

Lemma 4.3: If (3.7) holds, then 

.Ao! Ao n V* = ~ (Ao n Df)/(Ao n V*). (4.8) 
iEk 

Proof: By definition, we have V* C Df for i = 1, · · ., k. 
Therefore, 

Ao/Aon V*= ( 2:; Ao n Df)IA0 n V* 
iEk 

= ~ (Ao n Df)l(..io n V*). 
iEk 

Lemma 4.4: If 

Aon V*=O 

then (3. 7) is equivalent to 

Ao= ESAo n D"t 
iEk 

D 

(4.9) 

(4.7) 

that is the distributions {Ao n Dr}f=t are independent. 
. ?_roof: As a result of the pre_vious se~tion we know that (3. 7) 
1s eqwvalent to pP.:p(k) --+ ~+ bemg a weight function for allµ > 
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0. Therefore, 

p 1(k'- { l}) + p 1(k" {2}) + ... + p 2(k'- {k}) 

=pl(k)+p 1(k'-{1, 2})+p 1(k'-{3})+ ... +p 1(k'-{k}) 

=p 1(k)+p 1(k)+p 1(k'-{l, 2, 3})+p 1(k'-{4}) 

+ ... +p 1(k'- {k})= ... 

=(k- l)pl(k) + p 1(0) = (k- l)(m-0) = (k- l)m. 

So m - d(.6.0 n Dt) + m - d(!l.0 n Df'J + · · · + m - d(t:..o 
n Df) = (k - l)m from which we deduce 

d(t:.o n Dt)+d(t:.o n Df)+ · · · +d(.6.o n Dt)=m. (4.10) 

Clearly, (4.10) is equivalent to (4. 7). D 
Now we proceed with the proof of the main theorem. 

Proof (of Theorem 4.1): For sufficiency, we assume that 
(3.7) or the equivalent (3.38) holds. The proof now proceeds in 
two steps. Let x0 E M. Then we first construct a local feedback 
law 

U = a!(X) + {3(X)ii (4.11) 

such that the modified dynamics leaves V* invariant, i.e., 

[A, V*] C V* 

[B;, V*] c V*, i Em (4.12) 

[here A and B; are as in (2.8a), (2.8b)]. This is possible by 
Theorem 2.2. Moreover, we may choose the vector fields Bi. 
· · ·, Bm [and thus the matrix (3( ·)]such that B1, • • ·, B1, l = d(.6.0 

n V*) form a basis for !l.0 n V*. Choosing Frobenius 
coordinates on a neighborhood O(x0) of x0 such that V* = span 
{a!axi}, a1ax1 possibly being a vector, (4.12) amounts to 

- (A1(x1> x2)) (BJ(xi. x2)) A(xi.x2)= ,·4'2(x2) ,B;(x1,x2)= 0 , iE/, 

i E ml (4.13) 

where the first component A 1 ,_respectively, Bi_corresponds to the 
O/ax1-part of the vector field A, respectively, B1• On O(x0) we can 
define the projection 7r:O(x) -> O(x) mod V* by 7r(Xi. x2) = x2, 

see also [8], [9] for a thorough explanation of this ''factoring 
out" -procedure in connection with controlled invariance. For 
our control system this projection amounts to a quotient system on 
O(x0) mod V* given by 

m 

X2 = A2(x2) + 2: BT<x2)ii;. (4.14) 
i=I+ 1 

Because V* C D[, i E k, the distributions 7r *(Di) are well 
defined on. O(x0} mod V* and each of them i~ involutive ~ee, e.g., 
[~4]). Settmg Dt = 7r *(Df), i E k, and t:..0 = span {B1+ i. • ·., 

Bm} we see by Lemma 4.3 that (3.7) implies 

lo= 2: Lio n Df. (4.15) 
iEk 

Moreover, the supremal controlled invariant distribution of ( 4 .14) 
contained in Ker C*, respectively, nh'1 Ker Cj*' i Ek, equals 
7r*(V*) = 0, respectively, 7r*(Di) = D[, i Ek. Therefore, we 
may apply Lemma 4.4 to conclude that (4.7) holds. So by 
Theorem 4.2 there exists a feedback 

(4.16) 

(where a2 = (U1+ 1' •• ., Um) 1) for the system (4.14) which solves 
the static-state feedback noninteracting control problem for this 
system. Getting 

i=l, ... ,, (4.17) 

(4.11), (4.16), and (4.17) together locally define a state feedback 
which solves the noninteracting control problem for the original 
system. To show that (3.7) is necessary, let {Ri}iEk be a set of 
regular local controllability distributions that gives a solution of 
the decoupling problem, see (4.3)-(4.5) (cf. [24]). Since 

.6.o C 2: .6.o n Ri C 2: .6.o n Rt 
iEk iEk 

we see immediately that (3.7) must hold. D 
Remark: The proof given here is completely different from the 

corresponding "linear proof' of [15]. In fact, after the tedious 
calculations of Section III, our proof becomes in the linear case 
much simpler than in [15]. 

V. CONCLUSIONS 

We have proposed a definition of "zeros at infinity" for affine 
nonlinear control systems, and we demonstrated the usefulness of 
our definition in the solution of the general decoupling problem. It 
seems that we have here a promising area of further research. For 
instance, we expect that the problem of (left and right) invertibil
ity [6], [7], [19], [32] can be studied profitably using the concepts 
of this paper (see also [23]). Further study can be made of the 
algebraic aspects of the decoupling problem [21], and of canonical 
forms in the context [24]. The nonregular input-output decoupling 
problem remains open to further investigation. An important issue 
is the existence of global solutions to the decoupling problem; in 
this connection, we mention the recent work of Byrnes on global 
controlled invariance. Finally, several aspects of the V*-al
gorithm (2.12) need to be investigated further: among these are 
the computational side of the algorithm and the study of the 
consequences of nonconstant dimensions of the distributions Vk. 
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