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The problem of solving sets of coupled geometric constraints in the context
of interactive computer aided sketching is studied� Some criteria for solution
methods are given and the applicability of a relaxation method is discussed�
Despite its relatively slow convergence� the relaxation method turns out to
be su�ciently �exible �it works for a variety of constraint types and it can be
implemented to handle both under� and over�constrained systems in a stable
way� to be of at least qualitative use in an interactive design environment�
Some mathematical aspects of the method are discussed and examples of
applications are given�

�� Introduction� background� related work

Since the introduction of the Sketchpad system by Sutherland as early as ����
���� the notion of constraints has played an important role in computer graphics
and computer aided design� Applications include the design of mechanisms
��	�
 user interfaces ��� and ���
 interactive dynamics ���
 ��
 ��
 ��D graphics
design ��� and ����
 and the combination of ��D geometric design and mechanism
simulation in the LEGO�system ����
In all these applications
 geometric constraints take the form of coupled non�

linear equations and inequalities� Unfortunately
 quoting the authors of �Nu�
merical Recipes in C� �����
 page ����
 �There are no good
 general methods
for solving systems of more than one nonlinear equation and ����� there never
will be any good general methods��
Rather than conclude from this adage that the topic of constraint based

graphics should be given a rest
 all authors above have attempted to tackle the
problem of dealing with coupled nonlinear equations in broader or narrower
sense�
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In fact
 the pre�computer era already has seen a considerable amount of ac�
tivities in this �eld� R�V� Southwell used a technique called �relaxation� in
the late �����s and early ��	��s for a variety of engineering problems �	�� This
technique was essentially inspired by a mechanical device
 consisting of a net�
work of inextensible strings which should be brought in a state of equilibrium
where all strings were completely stretched� A numerical scheme based on this
�analog computing device� has been used by Southwell to solve discretised ap�
proximations of partial di�erential equations� it can be seen to be a forerunner
of �nite element methods�
In his ���� paper Sutherland describes a method to cope with constraints

which very much resembles the Southwell approach� he suggests to relax each
one of the constraints in succession until a tolerance criterion is met �in the
Southwell technique
 all constraints are relaxed simultaneously�� He also ob�
serves that the method is �robust but slow�
 but gives no further quantitative
analysis�
With the increase of interest in computer solutions for numerical problems

in the �����s and �����s
 several new disciplines of numerical analysis new
inpulses ���
 ��
 ��� In this way
 both the problems of solving one non�linear
equation and the problem of solving sets of linear equations have received
ample attention� For the �rst type of problems the Newton�Raphson method
is a general approach which gives quadratic convergence� The second type of
problems allows a variety of canonic approaches� both Gauss�elimination with
pivoting and iterative approaches �such as Gauss�Seidel or Gauss�Jacobi
 using
the same matrices throughout the iteration process or the conjugate�gradient
method
 which adjusts the direction of iteration underway� are often used� The
latter method
 the conjugate�gradient method
 is a variation of the steepest
descent method
 or gradient method
 and this allows application in the more
complex setting of systems of non�linear equations as well� It is implemented
very straightforwardly
 but it has merely linear convergence� For this reason

much of the recent work on geometric constraints in computer graphics and
computer aided design uses the multi�dimensional Newton Raphson method
for its better asymptotic convergence �quadratic rather than linear�� The price
to pay for this improved convergence
 however
 is that at every iteration step

a �large� set of linear equations has to be solved
 typically using one of the
methods mentioned above
 optionally adapted to deal with sparse matrices or
block�matrices� So a single step of a Newton�method is much more expensive
than a single step of a linear method
 but to achieve a given tolerance �
 only
fewer Newton�steps are needed�� Given the availability of these methods from
numerical analysis
 a new wave of interest in constraint resolution in computer
graphics could be seen in the late �����s and ����s�
In ���
 Pavlidis et al� ���� introduced a system for beautifying hand�

sketched drawings by imposing constraints �e�g� line segments should be par�
allel or perpendicular
 their should be no gaps between adjacent line segments


�provided � is su�ciently small� for an arbitrary �� a quadratic method does not necessarily
have to be faster than a linear method�
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etc��� In the system
 constraints were dealt with in a locally linearized fashion
and the coupling between the constraints was taken care of by means of solving
a set of coupled linear equations� Also in ���
 Nelson ��� published a paper
on the Juno system
 based on a declarative language for specifying constraints
for ��D drawings� The constraints in Juno were solved by means of Newton�
Raphson�based global error minimization� In ���
 Borning and Duisburg

��
 �� reported on the application of constraint solving in the context of user
interface design�
At the same time
 e�orts took place in the mechanical engineering community

to combine the above techniques for constraint resolution with known analytic
results from the theory of multi�link systems and their kinematics to build
systems for computer�assisted mechanism synthesis �� and even interactive
real�time simulation of planar linkages ��	��
With the introduction of physics�based animation techniques in the late

����s
 the issue of constraints received renewed attention� Indeed� the de�
tails of mechanical motion are often dictated by constraints
 and a central
issue in mechanical simulation is computing the reaction forces introduced by
these constraints� Witkin et al� ���� consider the path of a dynamical sys�
tem in parameter space which develops subject to global energy minimization�
This means that at every subsequent time step a non�linear optimisation step
�steepest descent search� has to be performed in order to �nd the �cheapest�
way for the system to proceed� Barzel et al� ��� apply a technique to remove
the algebraic constraint equations by means of di�erentiating them in order to
arrive at a set of evolution equations only� These are linearized at every time
step and the linear sets are solved�
In ����
Witkin et al� ��� again published results on constraint satisfaction


this time achieved by recursively traversing a tree of constraint�dependencies
in order to arrive at the independent coordinates and next to compute �in
reverse order� the values for the dependent coordinates� Their system has been
reported to work at interactive speeds�
For all approaches listed above
 it is noteworthy that �with the exception

of Witkin�s ���� method� the coupling between the constraints is dealt with
by some form of global optimization
 giving rise to the �repeated� solution of
coupled sets of �linearized� equations�
This means that either the computational e�ort per iteration step is high


or a technique for sparse linear systems or block systems is to be used which
introduces a considerable administration overhead in the case of topological
changes in the set of constraints of the simulated system �e�g� adding or deleting
constraints�� The latter also holds for methods which are based on symbolic
manipulations�
As a result
 the problem of simulating the constraint�based behaviour of

a system at near real�time speed can considered to be solved as long as the
structure of the system does not vary too much over time�
Interactive applications can be imagined
 however
 where direct manipula�

tion of the constraint structure by the user is important� �We will call this
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sort of applications sketch�applications� the object to be sketched can be a
mechanism
 a layout of geometrical components or �just� a drawing which has
some constraints imposed on it�� In this type of applications
 changes of the
constraint graph may frequently occur�

This means that here �a� the topological structure of the constraints may
constantly vary
 �b� the system of constraints can be
 at any time
 over� or
under constrained and �c� a variety of di�erent types of constraints should be
available� Fortunately
 the user will be mainly interested in visual feedback
while sketching
 so �d� the desired accuracy will be typically not as high as in
applications like e�g� the ones in ��	�
 as long as �e� the accuracy improves to
quantitatively signi�cant values if the user is willing to give the system a little
more time�

This paper studies a possible approach for constraint relaxation in sketch�
applications� It is clear from �a� that techniques based on sparse matrices or
block matrices are less suited
 as are symbolic algebra�type approaches due to
�b�� The aspects �d� and �e� allow for a re�consideration of linearly�convergent
methods
 provided we can cast them in a form which is su�ciently general to
accommodate with �a
b
 and c�� In Section � we contrast the two most familiar
linearly�convergent methods for solving sets of coupled non�linear equations�
the relaxation method �in the style of Southwell� and the steepest descent
method� Section � gives a variety of constraint�types and the associated algo�
rithms for relaxation
 and in Section 	 some examples of simulated systems are
presented�

�� A relaxation algorithm for solving constraints

In this section
 a simple approach for dealing with constraints on real�valued
parameters is described�

In the classi�cation of constraint resolution methods of Platt ����
 the
method to be discussed here is in between �i� a penalty method �where a con�
straint is satis�ed by moving a state vector in the direction of the gradient of
a scalar penalty function� and �ii� the constraint stabilisation method �where
every distinct constraint gives rise to a component of the displacement vector

and each component is weighted separately by a Lagrange multiplier��

With respect to �i�
 the relaxation method discussed in this paper does not
classify as a penalty method
 since it does not use one scalar penalty function
for the entire system� it rather maintains a separate penalty term for each
constraint�

With respect to �ii� we observe that the systems we consider are �rst order
time dependent systems rather than dynamical systems� as a consequence
 the
computations are both conceptually and numerically expected to be simpler�

The main characteristics of the approach are its �exibility �it works for a
variety of constraint�types and it can be implemented to handle both under�
and over�constrained systems in a stable way� and its suitability for distributed
computation� Moreover
 asymptotically
 given that the system converges
 con�
straints are satis�ed exactly� The method is based on the idea of simultaneous

���



relaxation of �geometrical� constraints�
Before giving the actual method
 an important disclaimer should be made�

The essential feature of the method given here is its generality�
Since the method is non�linear
 there is no guarantee that
 for a
given type of constraints
 it actually will give a converging method�
moreover
 if the method converges
 it is not guaranteed that the
convergence scheme is the fastest linearly convergent method avail�
able� �nally
 in case the model is under�constrained
 nothing is said
about which solution is found� In order to be able to make quantita�
tive statements on the performance and the accuracy
 an analytical
convergence analysis should precede implementation of this method�

We consider an N�dimensional vector of real valued parameters
 the state
vector �x
 determining the state of the model under study� Typically
 the co�
e�cients are coordinates of the relevant points in the sketched object
 such
as locations of hinges
 bearings of cog wheels
 etcetera� Assume that a set of
constraints should be maintained which may be written in the form

�f��x� � ��

�f � ffaj� � a � Mg�

�x � fxij� � i � Ng�

To distinguish the state vector from vectors in the geometrical space where
the constraints are de�ned
 the latter vectors are denoted in boldface
 so if
e�g� �x � �x�� y�� x�� y�� x�� y�� ����� then x� � �x�� y��
 x� � �x�� y�� etcetera�
The real valued functions fa in general will depend only on a limited subset
of the xi� The fa may be �multi�� linear or non�linear� For the method to
be presented here
 it is essential that with every function fa an algorithm Aa

exists such that �the predicates in braces are the pre� and postcondition of the
algorithm��

ffa��x� �� �g

Aa�

ffa��x� �da� � �g

In words� given a state vector �x
 the algorithm Aa should �nd a vector
�da
 such that fa��x � �da� � �� Those components dai of �da corresponding to
parameters xi that do not occur in fa��x� are assumed not to contribute to k �dak

i�e� they are assumed to vanish� �In a practical implementation
 they do not
even occur�� In most cases it is advisable for �da to have in some sense a minimal
norm� this turns out to be often advantageous in convergence analyses� The
complete algorithm for simultaneously solving the constraints looks as follows�
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repeat
for a �� � to M � � do if fa��x� �� � then Aa�
f�a � � � a � M � fa��x� �da� � �g
for a �� � to M � � do

�x �� �x� �a �da�
cope with user interaction�

until in�nity�

Notice that in the algorithm
 �da is e�ectively a vector in geometric space
�which should be written as da
 padded with zeros to make it an N �dimensional
vector�� This distinguishes the algorithm from a penalty method such as de�
scribed in �����
The active constraints �i�e� the constraints fa which are checked in the repeat

loop and for which algorithms Aa may be invoked�
 together with pointers to
the associated algorithmsAa
 are kept in a list� A user action which involves the
geometry may cause changes in the �x� an action which involves the constraint�
topology may result in an update of the list of active constraints� If no user
interaction takes place for a su�cient long time �depending on the complex�
ity of the simulated system and the speed of the used hardware�
 the process
continues to iterate to arrive at more and more accurate estimates of the vari�
ables
 provided that convergence occurs�� Here
 �convergence� may mean the
following�

� if the system was over�constrained
 a �best��t� solution has been found�

� if the system possesses exactly one solution
 this solution has been found�

� if the system is under�constrained
 one of the solutions has been found�

Depending on the algorithms Aa this may be the solution with smallest norm
k �dk�
The numbers �a serve to control the convergence process� The smaller the

�a
 the slower the convergence but the more stable the process� Theoretically

the values of �a could be tuned for each of the constraints individually to
arrive at the fastest convergence speed� This is similar to the introduction of
variable weight factors in the computation of a penalty function in steepest
descent methods� The optimal values for the �a�s may be di�cult to obtain

however
 they may vary during the iteration
 and in practice we work with a
value which is su�ciently small �say
 ����� to get a stable process in all but
very pathological cases� We observe that for each algorithm Aa in isolation

convergence is usually obvious� in most cases
 such an algorithm will arrive
at a con�guration that satis�es the constraints without having to re�iterate at
all� For instance
 the algorithms presented in Subsections ��� and ��� give the

�In the implementation to be studied in Section � also �motors� are de�ned� In this case�
the system continues to move even without user interaction�
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correct results in one step for a value of � � �
 provided their parameters do
not occur simultaneously in other constraints� A proof for global convergence
for networks of coupled constraints is far from trivial
 especially if constraints of
di�erent types occur� In ���
 Eric van Loon gives a detailed analysis to compute
the maximal value of �a in order to guarantee global convergence in the case of
a set of coupled length constraints �e�i� the constraint type of Subsection �����
Instead of �nding solutions of the equation fa��x� � �
 the algorithms Aa

may also be arranged to yield a solution of the inequality c� � fa��x� � c�
with c� � c�� In that case
 of course
 the test fa��x� �� � should be replaced by
fa��x� � c� or fa��x� � c��
This means that in the same algorithm both types of constraints
 equations

and inequalities
 are dealt with in precisely the same manner�
It is obvious that concerning the performance of the constraint solver
 much


if not all
 depends on the choice of the algorithms Aa and on the simulated
system� Nevertheless
 some general characteristics of the method are�

� All types of constraints
 occurring in a given application
 are dealt with
in the same
 uni�ed
 manner� The algorithms Aa may be developed in
isolation
 one for every type of constraint function
 which will gener�
ally be much easier than designing a constraint solving strategy for an
entire problem� Once a library of available constraint�solvers has been
implemented
 they may be instantiated under user control during an in�
teractive sketch�session� �If we would restrict ourselves to constraints
functions that are quadratic polynomials
 the algorithms can even be
derived automatically be di�erentiating the squared constraint function��

� The executions of all Aa in the �rst for�loop in the algorithm may take
place independently �it can even take place in parallel on a distributed
computing platform�� This means that a complete de�coupling of all con�
straints has been achieved� The data communication between the several
constraint functions takes place in the second half of the algorithm
 where
the resulting �da vectors are added to the �x� This means that the iterative
nature of the method comes in the place of the simultaneous equations
that have to be solved in the conventional constraint solvers�

� The notion of order�independence in the above algorithm turns out to
be rather crucial� First
 it is obvious that a successive update of the
components of �x rather than accumulating the �da vectors would introduce
an order�dependence which destroys any symmetry that happens to be
present in the simulated system� More important
 however
 is a signi�cant
reduction of the convergence velocity� In Figure �
 the squares in the
graph labeled order dependence show the ���logarithm of the error as a
function of the number of iteration steps if we use the above algorithm
to �nd the intersection of two circles�
 whereas the crosses are found
with an algorithm using successive updates� In both cases
 the �a were

�one circle with midpoint at 	
�
� with radius �

 and the other one at 	
�
� with radius
�

� the starting point was chosen at 	�

��
�
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all set to ���� Although the convergence is linear
 we obtain about ���
digit of accuracy per iteration with our relaxation algorithm
 whereas the
successive update strategy is about  times as slowly�

A deterioration of the convergence speed due to successive updating of
the components of �x is expected to be particularly signi�cant if the several
�da for a given point are large and directed in near opposite directions� If
the �da are added �rst
 the resulting vector will be relatively small which
means that the point moves in small steps� When applying the �da in this
case directly to compute successive updates
 the updated point would
move with large zig�zag type steps
 which can delay the convergence

especially if the point is already close to its optimal location�

� As noted above
 the convergence of the iteration may either imply a best�
�t solution
 a unique solution or one �possibly smallest�norm� solution
from the multi�solution space of an under�constrained problem� This
means that the method assumes no prior knowledge about the dimension
of the solution space�

� The character of the constraint solver as an iterative process allows for
standard convergence accelerators �extrapolators� for increasing its e��
ciency�

From its structure
 the relaxation algorithm very much resembles a steepest
descent method� Indeed
 as we will see in Section �
 the applied algorithms
Aa in several cases compute a step vector �i�e� a part d of the step vector
�d that is going to be added to the state vector �x� in the direction of the
gradient of the constraint function fa� However
 consider again the problem of
�nding the point of intersection of two circles� The graph in Figure �
 labeled
factor ��
 depicts the convergence of the relaxation algorithm �squares� and
the steepest descent algorithm �crosses�� The steepest descent algorithm was
equipped with a line search process ���� to establish the optimal step size at
each iteration� Nevertheless
 it performs signi�cantly inferior when compared
with the relaxation method� In order to study this phenomenon
 we apply
linearisation
 both of the steepest descent method and the relaxation method�
For the steepest descent algorithm
 we set

E��x� �
X
a

f�a ��x��

The step�direction is

�d � �rE � ��
X
a

farfa�

where � de�nes the step size� Assume that the system of equations indeed has
a solution
 E��x� �d� � �
 and that we are su�ciently close to it� Then we can
compute � using �rst order Taylor expansion�

� � E��x� ��
X
a

farfa�
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Figure �� The e�ect of order indepence on the convergence of the relaxation
algorithm

� E��x� � ���
X
a

farfa�
X
a

farfa�

so

� � �

P
a f

�
a

��
P

a farfa�
�
�

Hence

�d � �

P
a f

�
a

k
P

a farfak
�erE

where �erE is the unit vector in the direction of the gradient of E�
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Figure �� The convergence of relaxation compared with steepest descent for
computing the intersection of two circles with radii in a ratio of ����

On the other hand
 under the same assumptions we �nd for the step vector
in the case of relaxation�

fa��x � �da� � ��

When linearising�

�da � �
farfa
�rfa��

�

so
 even if we take all �a equal to the same ��

�d � ��
X
a

farfa
krfak�

�
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Now although the expressions for �d in both cases have a similar structure

there is one signi�cant di�erence� in steepest descent
 the contributions to
the gradient of all participating constraints are weighted the same
 whereas in
relaxation
 the weight of every constraint is taken proportionally to �rfa�

���
This means if one of the constraints is much more sensitive to a change in �part
of� the con�guration vector �x
 its associated gradient will contribute less to the
total step vector� Especially in cases where constraints with strongly di�erent
�sensitivities� are competing
 like in the example above
 where the radii of the
two circles di�er a factor ��
 this di�erence between the steepest descent and
relaxation methods seems to work in favour of relaxation� If we repeat the
experiment with a much less extreme di�erence in radii
 we observe that the
relaxation and steepest descent methods become similar �see Figure �� here the
radii di�ered only a factor ���

Of course
 in hindsight this should not surprise us� it is assumed that the bad
performance of steepest descent is essentially due to the fact that the penalty
function has been constructed without applying weight factors to the individual
terms�

Notice
 in passing
 that we applied linearisation in order to arrive at a fea�
sible analysis� The relaxation method itself deals directly with the non�linear
constraints as they are given� This means that e�g� in the case constraints hap�
pen to be uncoupled
 in which case the associated �a can be set to �
 relaxation
�nds a converged solution in � step
 whereas a scheme based on linearisation
still would do several steps towards convergence�

Ignoring the variations of the �rfa�
�� during iteration
 we can envisage the

relaxation method as a steepest descent method with a penalty function that is
a weighted sum over the terms f�a 
 where the weight factors are chosen such as
to correct for the di�erences in sensitivities of the di�erent constraints� In other
words
 again ignoring variations of the �rfa�

�� during iteration
 relaxation is
a weighted steepest descent method with �automatically� computed weights
�i�e� without having to tune any of the �a�� In the application we study
 where
a constraint network is constantly close to satisfaction because the parameter
changes due to user interaction are slow when compared with the iteration
update frequency
 the condition of nearly constant �rfa�

�� is expected to be
ful�lled� This also means that under these same assumptions
 we can infer con�
vergence properties of the relaxation method from the corresponding properties
of steepest descent�

Apart from the numerical di�erences between steepest descent and relax�
ation
 we mention that

� A steepest descent implementation based on a stand�alone numerical li�
brary routine
 where the value of rE is computed numerically by re�
peatedly evaluating E for �x each time with a small di�erence in one of
the components xa takes O�M �N� calculations whereas relaxation only
takes O�M � N� calculations per iteration� Of course
 a more e�cient
steepest descent implementation is possible
 but then the evaluation of
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Figure �� The convergence of relaxation compared with steepest descent for
computing the intersection of two circles with radii in a ratio of ���

the several constraint functions has to be hard�coded into the steepest
descent algorithm �as is the case with relaxation��

� It is not a priori clear how a steepest descent algorithm should cope with
inequalities whereas this is evident for relaxation�

� By just adding together all squared constraint functions in order to com�
pute one scalar penalty term E in steepest descent
 we throw away a
lot of detailed information which is preserved �somewhat more� in relax�
ation
 since there the direction in which a point p is going to move for
the next step is derived only from the constraints that are related to p

and constraints that are not coupled to p have no in�uence� In steepest
descent
 all information for computing the next step is taken from the
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penalty function which depends on all constraints at once�

We summarise�
In applications of geometric constraints where frequent con�guration changes

occur
 and where a fast approximate result of constraint resolution is desired
�eventually to converge more slowly to an accurate result�
 a linearly conver�
gent method may be useful� of these methods relaxation is preferable above
steepest descent methods
 and care should be taken to implement relaxation
with simultaneous update of the state variables rather than sequential update�
�� The formulation of constraints for simulating mechanisms

When using the constraint resolution algorithm as outlined in the previous
section
 all that remains to be done is to formulate the functions fa and the
associated algorithm Aa for a series of constraint types that are of practical
use� A formulation of the algorithms is chosen that guarantees a symmetrical
behavior
 i�e� in case several points are subject to one constraint
 the d�vectors
of these points will be computed such that all of them will be a�ected in a way
that is �physically meaningful��
In several cases the expressions for d �and hence �da� can be obtained by sim�

ply di�erentiating the squared constraint function fa to its arguments� Care
should be taken
 however
 by constraint functions that are not quadratic func�
tions� E�g� it is left to the reader to show that the result that is obtained by
di�erentiating the squared orientation constraint �see Subsection ��� and ����
gives an unde�ned result in case the input vectors are parallel�
Most of the following examples are relatively straightforward� they are cho�

sen such that both a variety of planar mechanisms can be constructed and
simulated and a large collection of theorems from planar geometry �see e�g�
Subsection 	�	� can be illustrated� Notice also that non�holonomic constraints
are dealt with in the same framework �non�holonomic constraints are constraint
expressions where time derivatives of the constrained variables occur��
For describing the algorithms
 the convention is used that the parameters of

the functions are coordinates of the relevant points �except for the cog wheel
constraint�� The d�vector associated with point xi � �xi� yi� is di � �dxi

� dyi��
this d�vector is a segment of the �d�vector that is going to be used to update
the state vector �x�

���� Coordinate constraint
This constraint expresses that a point x� � �x�� y�� should be tied to a certain
location c � �cx� cy� in space� It takes the form

f�x�� � kx� � ck�

The algorithm reads�

d� �� c� x�

�A similar result would be obtained by di�erentiating the squared constraint
function��
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���� Coincidence constraint
The coincidence constraint expresses that points x� and x� should coincide� It
takes the form

f�x��x�� � kx� � x�k�

The algorithm reads�

d� �� �x� � x�����

d� �� �d��

�A similar result would be obtained by di�erentiating the squared constraint
function��

���� Equivalence constraint
In geometrical constructions
 the equivalence of two di�erence vectors is often
encountered
 equivalent here means that the two vectors are parallel and of
equal length� Indicating the �rst vector by x� � x� and the second one by
x� � x�
 then

f�x� � � �x�� � kx� � x� � x� � x�k�

The following algorithm� is easily seen �in the absence of any other constraints�
to yield

f�x� � d�� � � � �x� � d�� � ��

As follows�

d� �� d� �� �x� � x� � x� � x���	�

d� �� d� �� �x� � x� � x� � x���	�

�This follows as well from di�erentiating the squared constraint function��

���� Equal distance constraint
A use for the equal distance constraint could happen during sketching a mech�
anism� it expresses that two point�tuples have equal distances
 without stating
anything about the actual value of this distance� Let the argument points have
the same meanings as in x���
 then

f�x�� ����x�� � kx� � x�k � kx� � x�k�

The algorithm operates by �rst computing the average distance of the two
tuples
 and next computing the d�s in order to have the new locations of the
points such that these distances hold� In doing so
 the orientation of both
x��x� and x��x� remains the same� similarly for the centres of gravity of the
two tuples� Even though the latter requirement does not follow from demanding
f � �
 it obviously helps to keep the algorithm remain stable� In the following

eij denotes the unit vector in the direction of xj � xi
 and lij � kxi � xjk�

�a��b��c is short for b��c� a��b
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� �� �l�� � l����	�

d� �� d� �� �e���

d� �� d� �� ��e���

�This follows as well from di�erentiating the squared constraint function��

���� Length constraint
The length constraint is typically used to de�ne �rigid� rods� Notice that the
length constraint in the form of an inequality may be used to express the
geometric behaviour of a chord of given length �imposing a maximal distance
between its end points� or of a telescope with a given minimal and maximal
length� For l the length of the rod
 and x� and x� its end points
 f reads�

f�x��x�� � kx� � x�k � l�

The algorithm is similar to the algorithm of x��	� it will therefore be omitted
here� Again
 satisfying the length constraint does not introduce any spurious
rotations or translations� the orientation of the segment x�x� as well as its
centre of gravity remain �xed�

��	� Orientation constraint
�This is the �rst constraint type where the distinction between ��D and ��D
matters� the implementation discussed here is ��D�
An orientation constraint may serve to express that two components are

mounted on the same axis
 rotating with the same speed and having thus a
constant relative angle
 say 	
 as a function of time� In this context
 it would
su�ce to de�ne the orientation constraint in terms of three points� the com�
mon rotation centre and two endpoints� A somewhat more general de�nition

however
 allows the orientation constraint to be applicable also to express paral�
lelism or perpendicularity of two vectors
 as well as any other angular relation�
Again introducing two point tuples with the relevant vectors x�� ����x�
 f is
expressed as

f�x�� � � � �x�� � � �e��� e���� 	�

Here
 the function � 
 unlike the inner product
 is taken to be anti�symmetric in
its arguments� The algorithm should leave the lengths of the segments x�x� and
x�x� alone� therefore the d�s should be computed such as to constitute rotations
of these segments only� Also
 in order to avoid net rotations or translations of
the system as a whole
 these rotations should be equal and of opposite signs
for the two segments
 and the centres of mass of the two segments should not
be a�ected� By implementing these requirements
 care should be taken that
the sign of the angle between e�� and e�� is properly taken into account� An
outline of the algorithm reads as follows�

m�� �� �x� � x�����

���



m�� �� �x� � x�����


 �� �	 � current angle between x�x� and x�x�����

now the segments x�x� and x�x� should rotate over �
 and 

 respectively�

d� ��m�� � rotate�x� �m����
�� x��

and similar for the d�
 d�
 and d��

��
� Motor constraint
Of all types of motions
 circular motion plays a very prominent role� The motor
constraint expresses that x� circulates around x� with a given radius r
 a given
frequency �
 and a given starting phase 	�� By treating this relative motion
as a constraint
 the case where x� is not �xed in space is covered as well� It
is assumed
 however
 that the frame of reference of the motor
 located at x�

remains parallel with a �xed frame of reference� In other words
 the point
x� experiences no di�erence if the casing of the motor would be revolving� A
better interpretation of this constraint therefore would be that the orientation
of x�x� rotates in space� The function f for this constraint reads

f�x��x�� � � �e��� ex�� 	� � �t�

Here t stands for the simulation time
 and ex is the horizontal unit vector�
The algorithm is a simpli�ed version of the previous algorithm� it is therefore
omitted here�

���� Glider constraint
A well�known example of a glider constraint is found in a piston
 where an
object has one translational degree of freedom over a limited domain� Note that
this is again a symmetric constraint� the piston is constrained by the cylinder
it moves in
 but the cylinder �in case it would be allowed to move� is also
constrained by the piston� Moreover
 this constraint is the �rst example where
both an equation and two inequalities occur� This means that introducing a
glider constraint gives rise to � functions� f� expressing that the point x� must
remain on the line through x�x�
 and the functions f� and f� expressing that
the projection of x� onto that line falls within the interval x�x�� The functions
f read�

f��x��x��x�� � �x� � x��x
P
� � x

P
� ��

f��x��x��x�� � �x� � x��x� � x���

f��x��x��x�� � �x� � x��x� � x���

Here
 aP means the vector obtained by rotating a over ���� f� should be equal
to �
 f� � � and f� � �� A realisation of all of these three �in��equalities is
given by the following algorithm�

��



� First compute the projection t of x� onto the line through x�x�� To this
aim
 write t � x� � �x� � x��

 ��
�x� � x��x� � x��

kx� � x�k�
�

if  � � then  �� ��

if  � � then  �� ��

t �� x� � �x� � x��� x��

the di�erence between the point t and x� should be distributed over d�

d�
 and d�� First
 assume d� be equal to t� In order for the corrected x�
to end onto the corrected line segment x�x�
 ��� �d� � d� � t should
hold� Moreover
 by interpreting the di�erence vector t� x� as some sort
of reaction force
 the force distribution law from classical statics should
be used� This yields� d� � �� � �d�� The above two equations yield�

d� �
�t

�������� and d� �
�����t

��������

� Finally
 in order to keep the centre of gravity at rest
 adjust both d�


d� and d� with the same translation vector
 �t��
�������� for their sum to

become �� The �nal result reads�

d� ��
t��

�� � �� �
�

d� �� �
�� ����t

�� � �� �
�

d� �� �
����� �t

�� � �� �
�

���� Hinge constraint
Both in the simulation of mechanisms and in the �simulation� of geometrical
theorems
 an often occurring relation holds that a point x� resides at the line
through x� and x�
 with some �xed ratio between kx� � x�k and kx� � x�k�
Both for the formulation of the constraint functions and for the algorithm
 this
is a special case of x��
 namely the case where  has a prescribed value�

����� Cog wheel constraint
The essential property for cog wheels is that they have �ideally� one point
 say
t
 in common� moreover
 their velocities in t are the same� Apart from this
constraint
 their centres may either both be �xed
 or one cog wheel may roll
over the other one
 or both may roll over another� Up to now
 all constraints
were easily expressed in the coordinates of the constituent points� this is not the

���



case anymore for cog wheels� The cog wheel constraint will have to be expressed
in terms of the equality of the velocities of t when viewed from one cog wheel
and the other �it is therefore an example of a non�holonomic constraint��
The cog wheels are parameterised by the velocities of the points x� �the

centre of the �rst cog wheel�
 x� �a point on the �rst cog wheel
 di�erent from
the centre� and similar x� and x� for the second cog wheel�
Cog wheels can touch at the outside or at the inside� inside touching is ex�

pressed by setting r �the ratio of the radii� negative� Given r
 t � �rx� �
x����r � ��
 provided r �� ��� For well�chosen matrices A� and A� �see Ap�
pendix A for the construction of Ai� the velocity t

� of the point t can be
expressed in terms of the velocities x�i of the points xi as follows�

t
� � x

�
� �A��x

�
� � x

�
�� � x

�
� �A��x

�
� � x

�
���

This immediately gives the constraint function
 this time expressed in the vi
rather than the xi�

f�v�� � � � �v�� � kv� �A��v� � v��k � kv� �A��v� � v��k�

The construction of the algorithm now is based on the observation that
 assum�
ing the Euler discretisation scheme
 di � hvi� Thus
 given current estimates of
the vi
 based on the di�erence between the current locations and the previous
locations
 the algorithm should compute new estimates in order to make the
constraint hold for the next time step as well� The following algorithm can
easily be seen to do so� �the new estimates for the velocities are indicated by
 vi��

 v� �� �I �A��
����I �A��v� �A�v� �A�v���

 v� �� �I �A��
����I �A��v� �A�v� �A�v���

 v� �� A�
����I �A��v� �A�v� � �I �A��v���

 v� �� A�
����I �A��v� �A�v� � �I �A��v���

next compute the d�s from these new velocities� notice that the values of vi
hold in case every single one has to cope with ful�lling the entire constraint
relation� The constraint is ful�lled
 however
 by means of a cooperation of both
x�
 x�� and x�
 x�
 hence every di is only responsible for half the change�

d� �� h� v� � v�����

and similar for d�
 d�
 and d��

�� Implementation� some examples

In order to test the above ideas a prototype implementation of a sketch�system
based on constraint relaxation has been built at Technical University of Eind�
hoven�
It provides the following functions�

��



� compact speci�cation of a mechanism by means of a command language�

� direct manipulation of the constraint structure via updates in the command�
language and via freezing and thawing of points �For visual feedback
 a
frozen point is labeled with a triangle� in the relaxation algorithm
 no
d�vector is computed for frozen points��

� direct manipulation of the geometry via dragging of frozen points while
the simulation runs�

� autonomous motion via motor constraints�

The examples in this section are realised with this system� The �gures are
obtained by direct screen dumps from the simulations� the lettering has been
added later�
Interactive control is o�ered over the coe�cient �
 which controls the con�

vergence of the algorithm	
 and over the number of iterations the algorithm is
allowed to make between any two subsequent frame updates� The larger this
number
 the more accurate the constraints are ful�lled in the drawn frames

but the slower the simulation� On a SUN SPARC station
 a simulation with
�� to �� constraints with a number of iteration steps set to �� gives a typi�
cal frame update rate of �� frames�second
 including the drawing� Except for
the cog wheel constraints
 this gives a hardly noticeable deviation from the
constraints even in the case of rapid motion �i�e�
 fast dragging or high�speed
motor constraints�� The cog wheel constraints sometimes are a little bit more
sensitive to the simulation speed and�or the number of steps� this is believed
to be due to the poor characteristics of the Euler integrator�

���� Guilloche engine turning
Figure 	 shows a screen�dump of the guilloche engine� It consists of � motors

	 of them are at frozen locations �motor�
���
motor	�� Motor� causes point p�
to move in a circle
 and similar for p�
 p�
 and p	� The lengths p��q�
 p��q�

p��q�
 and p��q� are de�ned by length constraints
 so the paths of q� and q�
follow� Next
 motor� is mounted on the joint of two rods
 again with �xed
lengths
 originating in q� and q�
 so it describes a curve in the plane� Finally

the point r is driven by motor �
 and its path traces out a rather complex curve
in the plane �part of which is indicated by the dot�curve�� During operation
it is possible to drag the motors over the screen
 to change rotation velocities

etc�

���� Motordriven crankshaft coupled with four pistons
Figure � shows a snapshot of this mechanism� It consists of a motor which
causes point p to describe a circular motion� In p
 four rods are connected�
p�q�
 p�q�
 p�q�
 and p�q	� The points q�
���
q	 are restricted to move along the
gliders glider�
���
glider	� All extremes of the gliders happen to be frozen in this
case
 thawing some of them makes the system under constrained� Furthermore


�all �a from section � are set to the same value� practical values are between 
��
 and

���

��



motor1

motor2

motor3

motor4

motor5

p1

p2

p3

p4

q1 q2

r

Figure �� Guilloche engine turning

there are 	 line segments a��b�
 a��b�
 a��b�
 and a	�b	� The length of each of
these is coupled �via a length constraint� to the distance of one of the q to the far
end of the corresponding glider �the distance a��b� equals the distance between
q� and the lower most extreme of glider�
 and so on�� Since the a�
���
a	 are
frozen
 the b�
���
b	 move in the form of a �running wave� while the motor is
running� This example nicely demonstrates the principle of reversibility of the
constraint algorithms we use� if the motor constraint is switched o�
 the user
can !push� each of the points b�
���
b� up repeatedly and hence again cause the
point p to rotate
 thus demonstrating the conversion of a linear motion into a
circular motion due to constraints�

���� Planet gear set of cog wheels coupled with a glider
Figure � shows a screen�dump of the system� It consists of two cog wheels�
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Figure �� Motor driven crankshaft

The largest one is cogwheel�� its centre is the frozen point p�� Cogwheel� is
prohibited from rotating since point a �which is a point on the cogwheel�� is
frozen� Concentric with p�
 a motor is de�ned which causes the point p� to
move in a circle within cogwheel�� The point p� is the centre of a second

smaller cog wheel
 cogwheel�
 which is hence forced to roll within cogwheel��
The radius of cogwheel� is ���� times the radius of cogwheel�� The point b
is a �xed point with respect to cogwheel�
 and its trajectory in space is thus
de�ned �it describes a four�leave rosette
 provided no numerical errors are made�
in practice
 a small phase shift may occur due to the bad performance of the
Euler method for integrating the velocities�� This point b in turn is constrained
to move within a glider with frozen extreme g�
 and as a result the point g�
oscillates in a complex fashion�
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b

glider
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Figure �� Planet gear cog wheels

���� Illustration of a geometrical theorem
In Figure � we have depicted a multi�exposure screen dump of this system�
Two tangent circles have been given
 circle� has a radius which is twice as large
as the radius of circle�� In the centre of circle�
 two motors are de�ned� One
motor drives point s along circle� with velocity w� the other motor drives point
u along the same circle with velocity �w� Point r is the tangent point of the
two circles� via a hinge constraint
 the point t is de�ned on the line through r
and s such that the distance r�s equals the distance s�t� As is easily seen
 then
t moves along the larger circle� A simple theorem from planar geometry now
states that the point u is always on the line through t and p
 where p is the
centre of circle�� The simulation shows that this is indeed the case�

���� The recursive subdivision algorithm for cubic Bezier curves�

�	
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Figure 	� Illustration of a geometrical theorem

The last example is taken from a geometrical design application� Suppose we
want to construct a cubic Bezier curve of which we know three of its control
points and the midpoint� Figure  shows a solution to this problem
 de�ned in
terms of hinge constraints� Points p�
p� and p� are frozen� they represent the
given control points� The point q is frozen as well� this is the given midpoint
of the curve� The recursive subdivision is implemented via hinge�constraints

each hinge constraint requiring a line segment to be subdivided into two equal
halves� So p�� is midway between p� and p�
 p�� midway between p� and
p�
 and so on� The relaxation algorithm computes the location of p	
 and
again we can study the dependence of the location of p	 on the input data by
dragging the frozen points� or we can experiment with other sets of input data
�including
 e�g�
 points that are computed in the second subdivision step��
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Figure 
� Recursive subdivision of a cubic Bezier curve segment

�� Summary and conclusions

An algorithm for solving sets of coupled �non�� linear equations
 based on an it�
erative scheme and the presence of reasonable starting values for the unknowns

is given� Such an algorithm can prove to be useful in a constraint�based simu�
lation context
 where variables change in a slowly manner compared with the
simulation time� For a set of constraint types with geometric meanings �length
constraints
 orientation constraints
 vector equivalence constraints
 etcetera� a
simple tool for the interactive design of ��dimensional mechanisms has been
built� Based on the algorithm as mentioned above
 a SUN SPARC�station im�
plementation succeeds in giving a frame update rate of approximately �� frames
per second for sketched objects consisting of �� to �� constraints
 thereby us�
ing approximately �� iteration steps per time frame� This amount of iteration
steps proves to be su�cient to yield a �visually� correct behavior
 except in

��



the case of cog wheels� there
 an additional handicap comes in in the form of
the di�erential equation which should be solved
 introducing the need for some
additional ���	� iteration steps in order to guarantee stable motions�
Of course
 a complete discussion of the merits of relaxation methods should

be based on a wider array of applications than geometric constraints for kine�
matic simulation only� But maybe more interesting
 a comparison with some
more recent techniques such as simulated annealing or symbolic manipula�
tion would be useful to deepen the understanding of constraint satisfaction
methods in general� A non�trivial issue here is that of performance metrics�
depending on the type of application
 the trade�o� between speed
 accurate�
ness
 robustness and simplicity might favour one method or another� As an
example
 consider the applications of this paper
 i�e� interactive sketching of
mechanisms in motion� Assume that
 while dragging some components of the
mechanism
 temporarily a con�guration is obtained which cannot be made to
meet with the constraints because
 say
 length constraints are violated� A sym�
bolic constraint solver then could do nothing but report that no solution can
be found
 whereas a numerical scheme such as steepest descent or relaxation
automatically generates approximate solutions that are
 in a sense
 optimal

thus mimicking the behaviour of deformable material components� Similarly

simulated annealing would be very useful to avoid getting caught in local op�
tima in con�gurations that are still far from optimal� in slowly�dragging type
of applications
 where the con�guration is constantly close to satisfaction
 it
would introduce considerable overhead�

Appendix A� the matrices Ai

The matrix A� serves to express t� as

t
� � x

�
� �A��x

�
� � x

�
���

A�� Let r � x� � x�� Moreover
 v� � x
�
�
 v � x

�
� � x

�
�
 V � t

� � x
�
� and

R � t� x�� Then t
� may also be written as�

t
� � v� �A�v�

The matrix A� should be such that V is a scaled and rotated version of v� This
is expressed by

A� � s�R�

where s� is a scalar


s� �
kVk

kvk
�
kRk

krj

and R� is a rotation matrix


R� �

�
cos	 sin	
� sin	 cos	

�

��



where cos	 � �R�r�

kRkkrk

 and sin	 � kR�rk

kRkkrk
�
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