A Spline-Wavelet Image Decomposition for a Difference
Engine

P. C. Marais!, E. H. Blake
Department of Computer Science,
University of Cape Town,
Rondebosch 7700, RSA

A. A. M. Kuijk
CWI, Department of Interactive Systems,
Kruislaan 413, 1098 SJ Amsterdam,
The Netherlands.

Using the concept of a Cardinal-Spline Multi-Resolution Analysis, we estab-
lish a means of generating a smoothed approximation of an input image.
This approximation can be decoded and displayed in real-time at the video
frame rate by the Difference Engine: CWI's systolic array display proces-
sor. This forward difference engine can rapidly compute the value of such a
compact image representation across a span in constant time. Some results
are given which confirm the suitability of the spline-wavelet transform as a
means of producing a compact image code.

1. INTRODUCTION

The rapid growth of multi-media applications and the resultant need to process
real-time video and audio streams have given renewed impetus to the search for
high compression systems. These systems should (at least) satisfy the following
criteria:

e they should achieve maximal, possibly lossy, compression whilst main-
taining as high a degree of apparent fidelity as possible for a human
viewer,

e both the encoding and decoding process should be sufficiently rapid to
permit real-time processing; in particular, decompression should be pos-
sible on the fly without excessive cost.

ISupported by the South African Foundation for Research Development.

335

The nature of the specific application’s requirements determine which of the
above criteria may be weakened so as to achieve a workable solution.

For the compression of still images, we may accept a comparatively lengthy
compression or decompression delay if the results are of sufficiently high quality.
The JPEG still compression standard remains the method of choice for most
hardware implementations. JPEG achieves compression by applying a Discrete
Cosine Transform to the image (which is segmented into 8x8 blocks to improve
performance).

Fractal based methods, which claim to achieve much higher compression
ratios than JPEG, have emerged in commercially available products. Unfor-
tunately, the artefacts introduced at high compression ratios cannot be objec-
tively quantified: the blocking of JPEG may be considered preferable to the
uniform blotches produced by fractal compression at high ratios. The issue of
speed also intrudes: JPEG compresses significantly faster than fractal methods;
however, the converse holds for decompression times. Fractal methods also pos-
sess an inherent scale-independence which allows them to re-size images with
a minimal amount of computation and no obvious pixelation.

Another group of methods that are gaining prominence are those based on
the Wawvelet Transform (WT). This transform comes in a variety of flavours,
each with their associated advantages and problems (See Table 1). However,
they all possess the ability to encode texture regions efficiently — precisely
what one requires when encoding “natural” scenes [11]. NACKEN [12] for a
good introduction and some encouraging results. From a computational point
of view, the WT is superior to the DCT [14]. In addition, even when the
transform is blocked, it is able to withstand a much higher level of compression
before blocking effects become apparent [13].

An issue which is seldom addressed, is the level of efficiency one can achieve
when actually displaying the decompressed image. It is taken for granted that
each pixel value will have to be computed by the controlling program. However,
this is not necessarily the case — as illustrated by CWTI’s Difference Engine. In
this case the display processor itself can set multiple pixels using only a small
set of parameters, provided these pixel values are constrained to lie on the graph
of a polynomial of some arbitrary degree. Hence, if we can describe our image
as a set of polynomial primitives, we can display our image efficiently, without
the need to explicitly compute the intensity value of each pixel [1]. This paper
investigates the feasibility of using such an approach for the reconstruction of
compressed images.

Before we can proceed, however, we must introduce the necessary mathe-
matical tools. We have decided to do this in a tutorial fashion, over the next
three sections, so that readers who are unfamiliar with the subject matter can
gain insight into the theory underpinning our approach.

The next two sections contain a brief introduction to wavelet theory and
multi-resolution analysis, with an emphasis on 2-D images. Section 4 discusses
some of the benefits associated with the Wavelet Transform, i.e., ease of com-
putation and compression potential. The final part of the tutorial, Section 5,

336

introduces the cardinal spline formalism needed to understand Chui’s spline
wavelets. These wavelets form an essential part of our analysis.

Section 6 discusses the implementation of these ideas on the Difference En-
gine and the suitability of this device for the display of multi-resolution images.
The results of our investigations are presented and discussed in Section 7. Con-
cluding remarks and an overview of further work is given in Section 8.

1.1. Mathematical notation and preliminaries

The signals we deal with whether 1-D or 2-D are assumed to be well-behaved,
that is, they are elements of the space L?(IR). This vector space may be defined
(barring a few technicalities) as the space of all functions which satisfy the
criterion

J11@P do < o

with a double integration substituted if our signal is 2-D. Outline characters
are used as follows: C is the set of complex numbers, R the set of reals and
Z the set of integers. Continuous functions (over the reals) are denoted as
elements of C(R). The notation C™(R) refers to the space of m-times continu-
ously differentiable functions. The norm of u is denoted || u || with a subscript
indicating the space w.r.t which the norm is taken. The inner product of u,v
is represented as follows: (u,v).
A circumflex is used to denote the Fourier Transform of a function f:

f) = [s0eae

We use the symbols + and @ to denote a direct sum. The former is a generic
direct sum, while the latter denotes an orthogonal direct sum.

An asterisk, “*” denotes convolution; the nature of the convolution (whether
discrete or continuous) will be clarified when the operator is used.

Sequences are generally indicated as follows: {ag},c;. The space (*(R)
contains all the sequences which satisfy the criterion

I {er} 7= D lexl® < oo
k

Of course, our sequence index will usually have a finite range. To simplify
formulae, we will often ignore the range subscript, it usually being the case
that our index ranges from —oo to +oo. Similarly, if there are no range limits
on an integral, one may assume it is taken over the entire domain.

2. THE INTEGRAL WAVELET TRANSFORM (IWT)

The IWT is defined in terms of a special kernel function v, known as a wavelet,
which is an element of the space L?. Functions, f, in this space must satisfy
[1f(z)|*dz < co. The wavelet is subject to the following additional constraints
(in 1-D):

337

1. [¢(z)dz =0

2. both 7% and ’JJ (its Fourier Transform) must be window functions. A
function w(z) € L? is called a window function if zw(z) € L2. This
window function has a well defined centre, t* and radius, A,. This
implies that the function w is such that it is localized in both the time
and frequency domains (within the limits imposed by the Uncertainty
Principle, (see [3, 6]).

More intuitively: the wavelet must decay rapidly and also exhibit some degree
of oscillation — hence the name. With our wavelet constrained in this manner,

we are able to define the IWT, (W, f)(b,a), of an L? function f:

(ot = ol [s (“22)ar 1)

where a, b € R and f € L? and the overbar denotes complex conjugation.
Because 1 is essentially localisable in both time and frequency (scale), the
IWT is also localised and gives us information in both domains, within the
bounds of the Uncertainty Principle. If we permit our variables a,b to be
continuous, the inverse transform involves computing a (n + 1) dimensional
integral (if the function has n variables). To ensure computational efficiency, we
discretize both the scale, a and the time-localization, b, in the following manner:
a=277 b=k277, k,j € Z.1f we then define ¢; (z) = 27/24(27x — k), j, k €

Z:, we obtain

(Wof) (537) = Usbe) = i, @)

where we have used inner product notation for compactness?. In order that
we may recover our original function from this sampling, we require that
{¥jk}jpez form a Riesz basis [3, 6]. This is a less restrictive requirement
than orthogonality of the ¢ 1, and permits us to construct wavelets which are
not orthogonal. If ¥ constitutes a Riesz basis, then there is a unique Riesz

basis {¢j’k} which is dual to {¢; 1} i.e.
(k> ¥PP) = 851 - bkp, G,k 1,p € L. (3)
Every f € L? then has the unique series expansion:
F@) =Y (fjp) 07" (). (4)
3k
If, in addition, there is a function ¢ € L? which generates the dual basis in the

same fashion that 1) generates the Riesz basis 1; , then we may also expand

f(z) as follows:
@) =D AF07) (). (5)

Jk

2The L? inner product of two functions f, g is given by ff(w)g(z) dz.

338

Equations (4) and (5) are inverse transform formulae. These formulae relate
the transform coefficients to the original function. In what follows, we assume
that such a function does indeed generate the dual basis. Property (3) is called
the bi-orthogonality property and is satisfied by all wavelets. If a wavelet is
orthogonal it satisfies

<¢j,k7¢l,P> = 051 6kp7 j7 kalap € 7. (6)

That is, orthogonal wavelets are self-dual, having ¥ = 1; Thus, when one
deals with orthogonal wavelets, the added complexity of having a dual present
is avoided. A wavelet which is orthogonal only between scales (frequencies) is
called a semi-orthogonal wavelet — Chui’s spline-wavelets are semi-orthogonal

(cf. Table 1).

3. MULTI-RESOLUTION ANALYSIS

The concept of a Multi-Resolution Analysis (MRA) is already familiar to those
who have dealt with pyramidal image decompositions; it serves to formalize
such a decomposition. Firstly, one must define the term “resolution”. The in-
tuitive interpretation, viz., that it serves to quantify the amount of permissable
variation in a region, is formalized. Hence, a high resolution image has a large
amount of detail in a region, whereas a low resolution image is much smoother
over this same region. One may further quantify this concept with a statement
such as: “a kth resolution image contains k X k samples per unit square”. The
idea here is that we can capture more detail if we are able to sample at a higher
rate.

To develop the theory of such an analysis, we first consider the case of one
dimensional signals.

Our signal, f(z), must be an elements of the space L?(R), that is, it must
contain finite energy. We seek a decomposition of this signal which will re-
veal its structure on different ‘resolution’ levels. Such an analysis can provide
invaluable information about the relative importance of variations in the signal.

Each of these multi-resolution approximations resides in a space which con-
tains all possible approximations at that resolution of every L?(R) function.
These spaces are denoted Vj; the parameter j indicates the resolution level:
the “resolution” of the jth level is given by r = 2J. Thus, level 0 has r = 1.
By convention, this is the input level.

Just as the wavelet spaces® W; are spanned by the scaled translates of a
single kernel function, ¢, we seek a single function, ¢, the so-called scaling
function, which will span the spaces V; in the same way. If this is the case,
then we may define a Multi-Resolution Analysis of L(IR). Since we desire that
this analysis be complete, the MRA must encode the detail that is sacrificed
when we go from a higher to a lower resolution. This detail is stored in the
complementary wavelet spaces, W;. We have the following relationship for any
resolution level j

3W]- = closp2span{¢;jx : k € Z}; the operation of CLOSure essentially adds all the limit
points to a space, thus ‘closing’ it up.

339

Vier = VW, ™

This states that the higher resolution approximation may be resynthesized from
the next lower approximation by adding the detail that we sacrificed to achieve
that lower approximation. One can deduce the following properties:

1....cViicWVyCcVicC:-y
2. closyz (UJ Vj) = L2(R);

3. DJVJ ={0};
4. V}'+1 :‘/}+Wja je Za
5. f(x) €V; < f(2z) € Vi1, j€ L.

For a more detailed discussion and alternative formulation of these properties,
see [8].

3.1. The Wavelet Transform and Multi-Resolution Analysis in 2-D

Since we wish to apply these techniques to images, we have to extend the
previous results to 2-D. A common method of constructing the 2-D scheme,
and simultaneously generating a MRA of L?(IR?), is to define the space V; as
the tensor product of the space V; with itself [6]. Then V; induces a MRA
of L?(R?): V; C Vj41 with the properties we discussed before and a scaling
function @, n(z,y) = #(27z — m)p(2'y — n), m,n € Z.
Defining W, to be the orthogonal* complement of V; in V; ;1 then gives us:

Vier = Vi1 ®@Vin

(‘/}@Wj)@)(v}@Wj) (8)
VieV)e[(W;eV;) e (V;eW;) o (W; @ Wj)]

V; @ Wj.

So the complementary subspace Wj; consists of three pieces, with Riesz Bases,

Vjm(@)bjnly), for (W;®@V;); 9)
bjm(@)Pinly), for (Vi@ Wj); (10)
Vjm(@)Yinly), for (W;@W;) (11)

These three detail spaces contain the detail lost between two consecutive res-
olution approximations. In fact, each space contains the sharp variation (high
frequency) information of the previous approximation in a particular direction
Equation (9) gives the basis for the detail space which detects (represents)
sharp variations in our function which are orientated in the z-direction, i.e.
vertical edges. Similarly, the basis given by Equation (10) will represent edges

4We use @ here since Chui’s cardinal spline MRA induces such an orthogonal decompo-
sition; one would use + for a more general setting.

340

in the horizontal direction. Equation (11) is the basis for the detail space which
detects diagonal edges. We can now define three wavelets,

UW(z,y) = é(x)e(y) (12)
U(z,y) = P(x)(y) (13)
Ul(z,y) = P(@)d(y). (14)
Then {\Ifg-l;]m,n; 1=1,2,3m,n € Z} is a Riesz basis for W;; when we allow

the scale parameter j to vary over all integers this basis is then a basis for
L?(RR?). As in the 1-D case, we can also find a dual, \ilg-l;]myn which satisfies the
bi-orthogonality relationship
(W B0) = Bunnbiabishpg. (15)
One may decompose any “well-behaved” (L?(IR?)) signal (image) in this man-
ner. However, before we can proceed with our decomposition, we must ensure
that we have a “valid” image at our zeroth (the input or highest) resolution
level. By valid we mean that the image must be expressible on the basis,
®0.1m (2, y), which generates the approximation space of zeroth level functions,
that is, Vy. For our image to be an element of the zeroth resolution space, it
must satisfy the following requirement (i.e., be expressible on the zeroth level
basis):

Io(may):Zc?jéﬂ;ij(may):Zc?j(}(x_iay_j)> (16)
ij ij

where the coefficients {c?j} are our zeroth level approzimation coefficients. The
means of generating these initial coefficients will be dealt with presently (Sec-
tion). Assuming, for the moment, that such a relationship does hold, how do
we generate subsequent lower resolution approximations? These approxima-
tions must be expressible on the appropriately scaled bases, where the scaling
reflects the resolution concerned:

Ik(x> y) = Z Ci'ch)k;ij(x> y) = Z C§j¢(2kx_i> 2ky_j)7 k= _]-7 _27 T (17)
i, i,j
Thus far, we have ignored the sequence of detail images which makes this rep-
resentation complete. Just like the approximation images, these detail images
are elements of particular spaces and must thus be expressible in terms of a
particular basis:

3
g (@,y) =Y dpp; WF(2Fr — i 2%y —) (18)

ij p=1
The coefficients {dpfj} are called detail coefficients. The functions ¥!P!(z,y)
are 2-D wavelets. Wavelets are particularly well suited to encoding detail;
hence the appearance of the wavelet in the basis of the detail space is not
really surprising. We may formalize the relationship between the detail and

approximation images as follows (recall the corresponding 1-D relationship):

341

FiGure 1. The first four approximation images in our quadratic Multi-
Resolution structure. The resolution decreases clockwise from top left.

I (z,y) = I*(2,y) + g% (2, y). (19)

This states that an image at the (k+ 1)th resolution level is obtained by adding
the lower resolution kth level image to the kth resolution detail image, which
contains the information lost when we go from level k + 1 to level k. Using this
formula, we may express our (valid) input image as follows:

P@y)=g "z, y)+-+g M@y + T M(2,y). (20)

That is, we may decompose our image into a sequence of successively lower
resolution images; this decomposition is, in turn, exactly equivalent to a se-
quence of detail images plus a low resolution approximation image. To extract
a particular approximation image, we merely add back the relevant number of
detail images to our lowest resolution approximation.

Figure 2 shows the third level detail images for our test image. Assuming
we have determined our zeroth level approximation coefficients from our in-
put image, the remaining approximation and detail coeflicients required by our

342

decomposition may be found by costly inner product calculations. However,
MALLAT [11] derived the following efficient algorithms for producing these coef-
ficients: The decomposition algorithm (which produces the next lower resolution
level’s coefficients):

Jj—1 _ j
i —E E m—2kQn—21C3y) (21)
m n
j—1 _ j
diy, —E E Qm—2kbn—21¢),
m n
j—1 _ j
day, —E E br—2kGn—21¢),,
m n
j—1 _ j
dsy, —E E bm—2kbrn_21¢), ..
m n

The reconstruction algorithm (which provides the next higher resolution level’s
coefficients):

U = X > pk72lpm72pclj;1 + (22)
22 pk72IQm72pd1{p71 +
PPN Qk—QIpm—de2{1:1 +
PPN qk—2lqm—2pd3{p_1-

The {ar}, {br} are called decomposition sequences, while the {pr}, {qr} are
called reconstruction sequences.

These summations can be interpreted as 2-D linear convolutions which are
down-sampled (i.e., we keep only even index output values) in the case of the
decomposition algorithm and up-sampled (i.e., the coefficient sequences have
zeros inserted between their entries) in the case of the reconstruction algorithm.

Since these 2-D convolutions are separable (i.e., expressible as the product
of two independent 1-D sequences), they can be implemented much more ef-
ficiently if one does not employ direct brute-force summation. We see that if
we are given the input approximation coefficients, {c?j} we can decompose and
reconstruct as we wish; the only time we must explicitly concern ourselves with
the scaling function, ®(z,y), is when we wish to output our pth level approx-
imation of the input image. At this point we are forced to compute discrete
samples of our pth resolution image, utilising Equation (17). If one desires to
access the detail images then a similar calculation must be performed using the
detail coefficients (but this is not necessary if one just wishes to quantize or
threshold the detail coefficients).

4. THE WAVELET TRANSFORM AND COMPRESSIBILITY

The wavelet transform (cf. Equation (1)), provides a “sparse” mapping from
the spatial domain to some transform domain. This means that many of the
transform coefficients are close to zero and can be ignored. One may thus
achieve a considerable reduction in data by performing such a mapping and

343

FIGURE 2. Third level detail images. These images illustrate the directional
sensitivity of the Wavelet Transform. It decomposes the detail lost between con-
secutive levels into images which contain the detail information in the horizontal
(top left), vertical (top right) and diagonal (bottom) directions. The bases un-
derlying these images are (respectively) the wavelets ! (z,), U1 (z,y) and
UBl(z,y) — cf. Equations (12, 14).

344

Properties Wavelet Classes
Orthonormal | Semi-orthog (Chui) | Bi-orthog
Dual? self-dual yes yes
Compact support? || wavelet only wavelet wavelet and dual
Symmetry? no yes yes
Sequences? finite truncated finite

TABLE 1. Some comparisons between the three major classes of wavelet. Only
orthogonal wavelets do not possess a Dual Wavelet (see Section). If the wavelet
or dual has compact support, we can achieve perfect reconstruction; otherwise
we must truncate when we implement. Symmetry is important to reduce dis-
tortion when we reconstruct.

eliminating these small coefficeints, although naturally at some cost: it is no
longer possible to achieve perfect reconstruction and there is the added over-
head of performing the transform computations.

As regards the latter issue: the WT can be recast as a series of convolutions,
which in turn can be very rapidly calculated using FFT based hardware. The
degradation of the image with increased compression is not easily quantified, al-
though it is often measured by means of signal-to-noise ratios (SNR). However,
the WT is able to retain structure at very high compression ratios [7], unlike
many of its rivals; this ability coupled with the existence of fast algorithms,
make the WT an excellent choice for image coding.

The wavelet transform of an image yields the set of detail coefficients over
all resolutions, j. However, since we only consider a finite range of resolutions,
the transform must be restricted to reflect this. The approximation coefficients
encode the information contained at the lower resolutions we do not wish to
consider and are thus part of the restricted transform. Also, since we do not deal
with resolutions higher than 1 (level 0), we do not require the detail (wavelet)
coefficients for 7 > 0. Thus, the WT actually provides the set of coefficients

{{dl’éj}v{ci—jL}) l= _17_27---_L; p= 1>273} (23)

The transform is given by the decomposition algorithm of the previous section
(Equations (21), (22)). The inverse transform (the reconstruction algorithm)
then recombines these coefficients to arrive at the input approximation coeffi-
cients (which then provide us with the input image).

The detail coefficients provide a very compact encoding of texture in the
image; during quantization, many of these coefficients will be mapped to zero.
The approximation coefficients will be highly correlated, reflecting the smooth
nature of the low resolution approximation. Since the dynamic range of the
coefficient values will be small, we do not need many bits to represent them,
that is, they may be quantized fairly coarsely. In addition, the supports® of

5The support of a sequence is the set of indices which have non-zero sequence values
associated with them.

345

both these 2-D sequences shrink with lower resolution, and so we require fewer
coefficients to represent lower resolution approximation and detail images.

5. THE CARDINAL SPLINE FORMALISM

We have chosen to implement our Multi-Resolution (MR) decomposition in
terms of splines, employing the formalism of CHUI [3]. Our reasons for choos-
ing this approach over the preferred orthogonal framework, in which one does
not require a dual wavelet, was partly motivated by the architecture of the sys-
tem on which we have implemented this decomposition. However, the spline
approach has several other advantages which compensate for its lack of orthog-
onality — indeed, these properties are present precisely because orthogonal-
ity of the wavelet bases has been sacrificed. In particular, since splines are
amenable to rapid and efficient computations, any scheme based upon such
curves offers implementational advantages over the aforementioned orthogonal
transforms. For example, simple closed-form expressions are available for many
of the formulae we utilise; this is not the case with, for example, the compactly
supported orthogonal wavelets of DAUBECHIES [6], where an iterative proce-
dure must be used to calculate the scaling function. In addition, it has been
shown [3] that one must inevitably sacrifice the desirable property of (general-
ized) linear phase® if one desires both compact support and orthogonality. If
the wavelet and scaling function have this property then one is assured that the
reconstructed signal will be minimally distorted (this is important when one
engages in intensive quantization and thresholding, which introduce distortions
of their own).

In the spline formalism both the wavelet and scaling function are expressed
in terms of a B-spline series. In fact, the (1-D) scaling function is precisely
the mth order cardinal B-spline, denoted N,,(z). This function is computed
recursively as follows:

Np(z) = (N1 * N1)(2), Ni(z) = X0,1)(2), (24)

where X[g,1) is 1 on the interval [0, 1) and zero outside this interval and * is the
(continuous) convolution operator. See Figure 3.

When m = 3, we have a quadratic cardinal spline with continuous first-order
derivatives at the knot-points. A full characterization of the (1-D) approxima-
tion spaces V; is given by

Vi={feC™?*nL*R): f|(%_ b € Tm-1, kEL}. (25)
207 2
This states that functions which are both well behaved (in L?) and satisfy the
indicated continuity condition are elements of the jth resolution approximation
space, provided that their restriction to the indicated interval shows that they
are contained in 7, 1 — the space of all polynomials of degree < m — 1.

60ne can view the wavelet and scaling functions as band-pass and low-pass filters, respec-
tively. If one filters with a linear phase filter, distortions in the input signal are not unduly
magnified.

346

When j is negative the intervals over which the function is required to have
a uniform polynomial character become progressively larger. This explains the
smoothed nature of low resolution approximations to the original function.

The spline wavelets introduced by Chui, ¥, (z), have compact support on the
interval [0, 2m — 1]. The support of the cardinal B-spline is [0, m]. In addition,
if the wavelet has even order m, it is symmetric; otherwise it is antisymmetric
(about %) See Figure 3. The symmetry/antisymmetry of the wavelet is
responsible for its distortion reduction property.

The reconstruction sequences {px} and {gx} (cf. Equation (22)) are very
short sequences; the former has m + 1 terms and the latter 3m — 1. These
sequences are given by

pit = 2m“<7;>, j=0,...,m; (26)

m (-1 &K m . :

qr = Zm_lz ;) Nem(G+1=10), G=0,...,3m 2. (27)
=0

Although these sequences appear complicated, efficient algorithms are given in
[5, 3] for their calculation (see Table 6 in Appendix). We may use the following
“two-scale” equation to compute the values of the wavelet, ¥, (z):

3m—2

VYm(z) = Z quNm(2I —J) (28)

In [5], details are given concerning the derivation of the sequences {ay} and {b;.}
(Table 7 in Appendix gives the (corrected) sequence values we used). Although
these sequences are not finite they have rapid exponential decay and can be
truncated after about twenty terms with little obvious effect (see Figure 6).
However, this truncation should not be done arbitrarily, but with respect to
the sequences centre’s of symmetry (if one wishes to preserve the distortionless
property of the decomposition). The symmetry of these sequences is clear from
the following relationships

Um_j = aj' (29)
Sm—2—j = (_1)mb?1a JELZL. (30)

One may use this symmetry to reduce storage and computational overheads.
The 2-D scaling function and wavelets are obtained from these 1-D versions
by means of tensor products. The details of this extension are given in Section .

5.1. Calculation of {c?j}: the level 0 approximation coefficients

The resolution ladder stretches off to infinity in both directions; however, we
are only able to measure our image at a finite resolution, denoted I°. This
is our initial approximation of the continuous image data. The superscript
zero indicates that we have chosen the resolution level j = 0 as our reference
level. In this case, the cardinal spline which constitutes our scaling function has

347

vaw>

FiGURE 3. Cubic and Quadratic scaling functions and wavelets. ‘A’ is the
quadratic scaling function (the 3rd order cardinal B-spline) and ‘C’ the cor-
responding wavelet. ‘B’ is the cubic scaling function and ‘D’ the cubic-spline
wavelet. Observe that the cubic wavelet is symmetric, while the quadratic
wavelet is antisymmetric.

knot points at the integers (we assume that the pixels lie on a two dimensional
integer lattice); therefore, the image function expressed on this spline basis
will consist of polynomial segments (patches) of degree m — 1 translated and
summed over the intervals between the knots (pixels), and will thus yield a new
polynomial of degree < m—1 over each knot interval. Naturally, since our image
is undefined between the discrete pixels, we will only sample our reference image
at these integer knot points. Thus, from Equation (17), we have our zeroth
level (continuous) approximation, with N, (z) defined by Equation (24)

I°(2,y) =YY cppNon(z = p)Non(y — k). (31)
p k

In general, we wish to decompose our approximation from this reference level
to some arbitrary lower resolution level, say j. Since j must be less than zero
(lower resolution) we write

I(z,y) =YY e,/ Nu(2 7z — p)Npm(2 7y — k). (32)
P k

in keeping with our earlier definition, where j =1,2,3,...

As the formulae stand, they contain summations which range across Z. How-
ever, since our image has finite spatial extent, the ranges of summation for
both the detail and smoothing coefficients must be curtailed. Our input image,
I°(i, j) is expressed on the zeroth level basis with the smoothing coefficients as
weights. Inspection of the formula, coupled with the assumption of our image’s

0 and hence

finite extent, produce the necessary ranges of summation for c;;,

348

reveal the number of these coefficients we are required to calculate. The limits
on the decomposition and reconstruction algorithm are estimated by consider-
ing the maximum range of index values (given the finite range of the sequences
{ar}, {b&}, {pr}, {gr}) which produce non-zero multiplications in the formu-
lae. Of course, these ranges differ from level to level, since the convolutions are
down- or up-sampled as required.

Unfortunately, assuming that our image has zero intensity outside some spe-
cific interval will introduce irritating boundary effects, particularly as one views
lower resolution approximations. The method used to deal with such artefacts,
is to extend the image by symmetry, thus ensuring a smooth transition across
boundaries. However, extending our image generates additional non-zero ap-
proximation (and consequently, detail) coefficients, since these represent our
image and hence mirror any increase in its extent. Fortunately, the number
of additional coefficients that one need consider is small (< 10), since distant
pixel values have progressively less influence the further away they are from
the pixels on the periphery, and we have no wish to display pixels beyond our
initial image boundary. An alternative strategy would be to allow the image
to decay to zero beyond its support.

From the above it is clear that we need to calculate {c?j} before we are able to
begin our decomposition. That is, we must obtain a representation of our image
as a sequence of expansion coefficients on the basis given in Equation (32) —
we wish to project our true image onto its zeroth level approximation. In order
that we may accomplish this projection, it is necessary that our signal function
be bounded and continuous. Neither of these restrictions is problematic for
images; they are certainly bounded in the intensity values they may take on
and, since we only sample discrete points, we can always assume that our image
is continuously interpolated between these points.

We wish to determine the solution set {c?},i € Z2, of Equation (31), where
our variables x, y are constrained to be integers and the values I°(z,y) are our
input intensity values. A true interpolation scheme, in which the interpolant
passes though each input (z,y,/°(z,y)) triple, would require the inversion of a
large matrix, at considerable computational expense. Quasi-interpolation [4, 3]
offers a cheaper alternative, since it only uses local data to determine the values
of the c?j. However, the interpolant no longer passes through each input point
unless some very strong conditions are imposed (see below) or the computations
are made sufficiently non-local. The scheme is based on a 2-D convolutional
operator. This 2-D operator is applied to the input intensity values to produce
the c?j. See Equation (34). This operator has a sequence support that grows
with the order, k, of the quasi-interpolation scheme. For quadratic and cubic
cardinal splines, we have an operator of size (2k + 1) x (2k + 1).

The parameter k also determines the accuracy of the fit: as k grows larger,
quasi-interpolation tends to true interpolation [3, pg. 105]. In addition, quasi-
interpolation has the property that it will interpolate a polynomial (in s vari-
ables) of total degree < m — 1 (that is, an element of 72 ;) perfectly, if
k> mTf3, [4, pg. 646]. For example, when m = 3,s = 2 (quadratic cardinal

349

splines in 2 variables) [4], we may choose any k > 0 to achieve perfect repro-
duction of a second degree 2-D polynomial. However, this property is of little
use to us, since our image can contain arbitrarily irregular data.

The method may be encapsulated (in our case) as follows [4]:

m

(QuD)(@,9) = S (D)0 V(e + 5 = DNl + 5 = 3), (33)

where k is the order of the quasi-interpolation operator”, Q. The A coefficients
are obtained as follows (by applying the convolutional operator to the input
data set):

{OD@)} =@ =m4 -+ (=) fms--xm)xI°, i€2Z? (34)
k times

where * represents 2-D discrete convolution and m = {m;}, i € Z? with

o Nu(0+ B)Nm (04 5) =1 for i,j =0,
Y N+ F)Na(G+ 5) for 4,5 # 0.

and 6 = {60}, where 8;0 = 0if i # 0 and épp = 1.

It can be seen that, as the order k grows, it becomes increasingly irksome
to compute explicit representations for this; we have computed such explicit
coefficients fore the cases k = 1,2, with sequence supports of 3 x 3 and 5 x 5
(Appendix). Note that the cardinal B-splines have been centred, since the
algorithm in [4] requires this (before this shift, they are symmetric with respect
to %&.) To reconcile Equation (33) with Equation (31) (and hence extract the
initial smoothing) coefficients, we make the identification

{c%5} ={D)i,5)} (35)

However, we must remember to introduce the appropriate shift (3 or 2) when

2
we compute our approximation function Equation (32)8.

6. IMPLEMENTATION

6.1. The Difference Engine

The Difference Engine is the final component in the rendering pipeline of a new
display architecture produced at CWI. Its function is described more fully in
[1], but essentially it generates the pixel stream which produces the image on
the display. This processor may be described as a forward difference engine for
arbitrary order polynomials — that is, given the appropriate initial differences,
it will interpolate an arbitrary order polynomial (representing the intensity
profile) across a span of pixels. The logic is implemented by a systolic array,

7"We deal with boundary problems by extending the input image symmetrically about its
edges before computing the quasi-interpolant.

8By making this identification, we are shifting our entire image by % in both dimen-
sions; thus we must remember to add this value to the x and y arguments of our jth level

approximation.

350

allowing the (intensity) data to propagate along the scan-line in a time which
depends on the order of the polynomial and not the length of the pixel span.
Since the processor has an 11ns cycle time, and the systolic array elements need
only perform adds as the data propagates, this leads to very rapid calculation
times; indeed, the Difference Engine is able to produce pixel streams at the
display refresh rate. Originally intended for the rapid production of Phong
shading values along pixel spans, it was realised that the chip’s design was such
that it was ideally suited for the synthesis of images consisting of polynomial
spline patches that is, those which have an appropriately smoothed intensity
profile. Naturally, a means would have to be discovered of generating such
an images. Inspired by the spline-wavelets of CHUI [3], such a connection was
posited and subsequently verified (see later sections).

6.2. The Difference Engine and Multi- Resolution Approximations

In order to interpolate a span of pixels, one must first decide on the order
of the polynomial to be employed, for this determines the number of initial
calculations which must be performed on each span. For example, quadratic
interpolation requires only the computation of first and second differences.
Once these differences have been computed, the chip is able to interpolate
a span of arbitrary length within the limits imposed by rounding errors [1].
Higher order polynomial interpolation achieves a better approximation to the
original image, but this accuracy comes at the expense of additional difference
calculations, longer instructions and a rapid decrease in the length of the spans
which may be accurately interpolated.

We implement the algorithm as follows. For a particular resolution level
j, the basis elements of our spline space are translations of the tensor prod-
uct N, (2792) N, (277y) which has support on [0,2/m]? and has knot-points at
277.2 on this support. If we restrict I =7 (z,y) to the intervals [27k, 27 (k+1)]?,k €
Z we obtain a polynomial patch (of degree < m — 1), uniquely describable in
terms of a single set of coefficients® and hence suitable for our difference ma-
nipulations. Since the Difference Engine operates in one dimension, we fix the
parameter y in our expression for /=7 (z,y) and proceed to calculate the requi-
site number of differences by evaluating this expression at successive horizontal
pixel locations. Once we have the differences, we compose the appropriate
processor instruction and output this to the Difference Engine, which then
proceeds to interpolate the span of length 27 pixels'®.

7. RESULTS

These ideas were investigated on a simulator which emulates the action of
the Difference Engine. The controlling program performs the wavelet decom-
position/reconstruction (as well as several other functions) and generates the

9See the earlier characterization of V; (the restriction of our images to the region between

the knots points 27 Z2 has fixed polynomial character - remember: our 2-D V; is just obtained
by taking the tensor product of our 1-D V}).

10The span is actually of length 27 +1. However, the last pixel is set by the next instruction.

351

Difference Engine instruction stream, which is then piped to the simulator.

The theoretical analysis of the previous sections was used to produce a viable
image encoding scheme. The primary purpose was to evaluate the suitability
of the Difference Engine as a reconstruction engine.

7.1. Difference Engine performance

We may quantify the reduction in processing required when displaying a multi-
resolution approximation image, in terms of function evaluations gained per
span. That is, the number of intensity function evaluations along a span which
we are no longer required to perform because of our interpolation scheme. We
only need to evaluate Equation (32) when we compute our differences; the
Difference Engine does the rest.

The maximum number of operation occurs when we wish to display our
zeroth level approximation: in this case we are forced to transmit an instruction
to set each pixel — this is our baseline count. If we proceed to level one, we
have spans of length three (the last pixel being taken as the first pixel of the
next span); we are thus able to compute the necessary difference information.
However, it would be more economical to just set each pixel, since this means
we no longer have to compute difference information. For the both the above
cases, then, we need to transmit NV X M instructions for a display of size N x M.

If we employ the quadratic spline approach, we realise gains from the sec-
ond resolution level downwards. The calculation of the (quadratic) differences
involves the evaluation of our intensity function at three consecutive points on
our span, via Equation (32). Since the spans overlap, and we are interpolat-
ing a span of 5 pixels, we gain one function evaluation per span. For level
three we gain a reduction in computation and transmission costs equivalent to
five function evaluations. On the jth resolution level we gain 29 — 3 function
evaluations per span (when utilising quadratic interpolation). In the case of a
cubic, we may quantify the number of function evaluations gained per span as

27 — 4. For an image of size 2% x 29 pixels, utilising an mth order cardinal spline
2z+y7j
m

scheme, we require approximately T?L;] 2Y = Difference Engine instruc-
tions to produce a jth resolution approximation of the input image, since our
spans overlap and each scan-line must be interpolated separately. We assume
here that j < z i.e. our spans are no wider than the image. This formula
holds for any order of polynomial interpolation'!. However, one must bear in
mind that at least n + 1 pixels must be available to allow calculation of the
initial differences in an nth order scheme. Clearly, as the resolution becomes
coarser these operations become more economical, eventually permitting one
to interpolate the entire scan-line with one instruction. The compression rela-
tive to the baseline case is given by % : 1; thus for m = 3,j = 2 (second level
approximation based on quadratics) we achieve a % : 1 compression gain over
the baseline case. We have implemented both quadratic and cubic schemes; the

difference in quality is scarcely discernable (numerically the quadratic scheme

M Recall that an mth order scheme is based on polynomials of degree m — 1.

352

Quadratic Case | Mean | Standard Deviation | |Max Error|
k=1 0.00 1.69 21
k=2 0.01 0.90 10

Cubic Case
k=1 0.01 2.74 34
k=2 0.00 1.79 21

TABLE 2. The error induced by quasi-interpolation of our test image. The
quadratic scheme ensures both a lower projection error and a lower maximum
error. The benefit of using a higher order quasi-interpolation is clear: even
k = 2 provides a considerable gain over k = 1.

wins out because it, requires fewer difference computations and, as we shall
see, has lower interpolation error and is able to reproduce good images even
when the filters are severely truncated).

7.2. Reconstruction errors

The following sections deal with the three sources of error we have identified in
our scheme: interpolation error, the error induced by sequence truncation and
the error caused by neglecting small detail coefficients.

7.2.1. Interpolation error

The prime source of error in our approximation is a consequence of our em-
ploying a quasi-interpolation scheme (Equation (33)), and not interpolating
the data precisely, (Figure 4). Also, since we are projecting our function into
the space of cardinal splines (which are forced to obey certain smoothness con-
straints at their knot-points) we must expect a measure of smoothing. However,
this is minimal at the input resolution level and can be eliminated entirely if
one employs true interpolation. To quantify these results, we have the following
estimate for an upper bound on the projection error (adapted from [3]):

e |(@f — o F)(O)] < (max 7(0) + min F(0)) 505" (36)

where the function f represents our (finitely supported) image values, m is
either 3 or 4, depending on whether the scheme used is based on quadratics or
cubics and (3 = %,54 = % The function (Jn, f)(I) is a true interpolant based
on the appropriate spline. It is clear from this that the quadratic scheme
produces a better approximation than the cubic scheme; this rather counter-
intuitive result is borne out by Table 2.

Table 2 also illustrates the kind of errors which arise from such an approxi-
mation; in particular, the mean error is very acceptable even for such low order
k’s, although the maximum error can be large. Fortunately, the regions where
such error would occur (i.e. sharp spikes) can be less accurately interpolated
without noticeable degradation of the image. Smoothing is an integral part
of picture capture, since any device has a finite spatial-frequency bandwidth

353

FIGURE 4. Quasi-interpolation Error Effects. Cross-section at scan-line 133 of
the lenna image; the interpolation error is biased by 128. ‘A’ gives the quadratic
quasi-interpolation (k = 2) of the scan-line, ‘B’ the cubic interpolation (k = 2).
The graph ‘C’ is the input data for scan-line 133. Graph’s ‘D’ and ‘E’ give
the interpolation error for the quadratic and cubic cases, respectively. Observe
that the interpolation error for the cubic scheme is greater than that of the
quadratic scheme for the same k.

0 50 100 150 200 250

FIGURE 5. Failure of the cubic filters at low truncations. ‘A’ gives the data on
scan-line 20, ‘B’ the 2nd resolution level cubic decomposition approximating
the image and ‘C’ the reconstruction to level 2 after decomposing with the over
truncated cubic decomposition sequences. When the cubic filters are not over
truncated, they result in a reconstruction which is very similar to the quadratic
case. Note: the reconstruction sequences are mever truncated.

354

Quadratic Case | Mean | Standard Deviation | |Max Error|
k=1 0.50 1.71 21
k=2 0.50 0.93 11

TABLE 3. Effect of reconstruction after projecting with different order quasi-
interpolation schemes. With k& = 2 the reconstruction is, on average, within
one grey-scale value of the input image.

0 | #a | #b | Mean | Std Dvtn | [Max Error| | O3 "a) | O(X°0) |

Quad || 40 | 36 | 0.14 0.91 10 10~¢ 10~¢
Cubic || 39 | 33 | 1.48 2.07 23 103 102
Quad || 34 | 30 | -0.2 0.91 10 10~¢ 10~¢
Cubic || 33 | 27 | 1.31 2.09 25 103 102
Quad || 30 | 26 0.5 0.93 11 10~¢ 10~¢
Cubic || 29 | 23 | -2.57 2.71 22 103 102
Quad [14 | 10 | 15.51 6.36 44 102 10~¢
Cubic || 13 | 7 | -40.78 32.42 244 102 107!

TABLE 4. Reconstruction error after truncating the decomposition sequences
(order 2 quasi-interpolation). The left-most two columns indicate the number
of a,b coefficients we maintain after truncation. The statistical data gives
an indication of the effects of our truncation on the error image. The final
two columns indicate the order of magnitude of the error to within which the
sequences approach their filter conditions, Equations (37).

and thus performs a low-pass filtering on the original image; a little additional
smoothing is more than acceptable when one considers the local nature of the
quasi-interpolation operator.

7.2.2. Errors induced by sequence truncation

The length of the decomposition sequences has a profound effect on the pro-
cessing required to calculate the detail and smoothing coefficients and on the
accuracy of these coefficients. Longer sequences require more work but result
in a more accurate image representation.

How then, does intensive truncation of the decomposition sequences {a}
and {by} affect the quality of the image? We truncated the sequences simul-
taneously. Table 4 provides some data to quantify our experiments. It is clear
that for low truncation limits the reconstruction is badly distorted; as the
number of terms increases the error quickly falls to acceptable limits. There
is, however, a very noticeable asymmetry in the performance of the quadratic
and cubic schemes, which is manifest at low truncations. The cubic represen-
tation suffers noticeable high-frequency distortion when we truncate to below
a critical threshold (23 terms in {by}). This noise is realised as a tartan-like
pattern which distorts the image (see the cross-section scan Figure 5) and is a

355

1 T T T

coefficients -—
b} coefficients —+- |

FIGURE 6. The decomposition sequences {a} and {b} for the quadratic case.
Both these sequences have infinite extent but decay exponentially. {a} is sym-
metric about 1.5 while {b} is anti-symmetric about 3.5.

consequence of the filter’s full-integer symmetry (that is, it is symmetric about
a particular coeflicient index in the sequence (index 5 for the cubic case). Both
the filters {a} and {b} are required to satisfy the following conditions:

Y Aar =1, D {bx}=0. (37)
P P

If these conditions are not met, then the filters are dysfunctional and the output
signal is polluted by unwanted frequency components.

Referring to Table 4, we see that the cubic {b} sequence is very sensitive
to truncation when we take few terms. This same sensitivity is mot present
in the quadratic case, since the sequence {b} is perfectly symmetric with re-
spect to a half-integer point and hence tends to zero regardless of our trunca-
tion level (that is, its form is ...d,e,f,-f;-e,-d... about its centre of symmetry,
whereas the cubic case is ...d,e,f,g,f,e,d... about its centre of symmetry (g) and
is thus not guaranteed to sum near zero unless the coefficients surrounding
the centre of symmetry are appropriately defined, which no longer happens
below 23 terms for {b}). Note that, in all cases, we truncate so as to preserve
the sequences’ symmetry (which is responsible for the linear phase property
that eliminates/reduces distortion). A comparative test of the impact of this
formalism’s linear phase aspect was not done, since we did not implement a
non-linear-phase scheme. However, one can see from Figure 7 that even with
very severe truncation of detail, the main structures persist and strong edges
are essentially undistorted.

7.2.8. Errors induced by detail coefficient elimination
To determine the suitability of the spline-wavelet transform for compression

356

Threshold | %zeroed | Mean | max |Error| | Std Devn
0.1 86% 0.55 35 6.44
0.16 91% 0.67 55 10.36
0.2 93% 0.72 65 13.00
0.3 96% 0.85 100 19.81

TABLE 5. The effect of zeroing detail (wavelet) coefficients — quadratic case.
The threshold determines the percentage of detail coefficients which are ne-
glected in the reconstruction. The other three columns give statistical infor-
mation about the nature of the reconstruction error.

FIGURE 7. Reconstruction after zeroing detail coefficients. Truncation thresh-
olds 0.1, 0.3

purposes, we zeroed all the detail coefficients below a specified threshold and
produced the data in Table 5; the corresponding reconstructed images are in
Figure 7. From this data we can see that the Multi-Resolution structure can be
used to encode an image efficiently; one merely decomposes until the support
of the smoothing coefficients is acceptably small and then applies a suitably
chosen limit which eradicates a large number of detail coefficients. The position
of the coefficients can be encoded using some kind of run-length encoding while
the magnitude of the coefficients has to be quantized (the data may be further
reduced by an entropy coding). From the images one can see that as we zero
more detail coefficients we begin to lose texture and eventually larger scale high-
frequency data, such as edges. Examination of our first level approximation
image reveals very little difference from the input image; hence we can zero
all first level detail coefficients (cf. Figure 1). One can also see the effects
of our assumption of finite image extent (the support of our input sequence
is essentially the same as the unexpanded image support) in the slight low-
frequency ripples which emanate from the image edges. Taking a larger input
coefficient support will reduce these effects (which are not noticeable when we

357

do not engage in intensive thresholding).

The above provides some indication of the Wavelet Transform’s suitability
for image compression. Of course, to obtain high quality reconstructions with
maximal compression, we would have to threshold in a more intelligent way
and/or utilise a scheme such as Vector Quantization. This is an area we are
investigating further.

8. CONCLUSION

In this paper we have shown how one might exploit the architecture of CWI’s
Difference Engine to achieve more efficient output of an image, provided one is
willing to accept some measure of “blurrings”. Since such a scheme produces
fewer processor instructions, we can produce images at a higher rate.

Another advantage of such a scheme is the ease with which one can achieve
progressive transmission — we merely transmit the next tier of detail coeffi-
cients, which are then combined to produce our new approximation image. One
could, conceivably, use this ability to rapidly scan through a video database in
order to get a feel for the material it contained.

We performed some elementary tests which confirmed the choice of the semi-
orthogonal wavelet transform as one which will enable us to achieve our dual
goals of rapid compression and efficient display. To achieve higher compres-
sion, we must utilise a Vector Quantization scheme; preferably one which can
exploit the multi-resolution structure of the WT, as was done in [10]. An effec-
tive quantization scheme can ensure high compression ratios while maintaining
image quality, particularly when followed by an entropy coding scheme such as
Huffman coding.

8.1. 2-D Area Interpolation

Our 2-D multi-resolution approximations are required to have a fixed polyno-
mial character over squares with support [27k,27(k + 1)]?. This coherence is
not exploited in our decoding, since the Difference Engine is inherently one
dimensional. This state of affairs could be rectified if two-dimensional interpo-
lation were used. That is, instead of interpolating along spans only, we could
also interpolate across scan-lines. Naturally, the final instruction stream would
have to be a one dimensional pixel stream — we could thus maintain the Dif-
ference Engine and precede it by a “Y-processor” which would accept (square)
area primitives, each supporting a spline patch, and then perform a difference
interpolation scheme in the y—direction, outputting a scan-line’s worth of Dif-
ference Engine instructions after each new scan-line. We would be required
to produce eight differences per 2-D instruction. In addition, we would need
corresponding instruction fields for the y starting position, initial intensity and
the span length (the same for both dimensions). Thus, to interpolate a block
of size n x n, we would have to produce 12 pieces of information, compared
with the 5n (5 fields per span over n scanlines) required for a straight Dif-
ference Engine interpolation. With larger block sizes, the gain would become
more significant. The fact that we are now interpolating in 2-D would cause a

358

reduction in the size of the squares we could accurately interpolate — in the
region of 64x64 with 24 precision bits for quadratic interpolation. This is not
really a limitation since spans of 64x64 pixels correspond to an eighth level
approximation — something we would be unlikely to require.

8.2. Adaptive multi-resolution encoding

Another possibility, which might reduce blurring, is to use an adaptive synthe-
sis procedure: rather than using a fixed level of approximation, we generate
instructions to produce detail where necessary. We can perform such a recon-
struction because our image is the sum of a sequence of detail images and a
low-resolution approximation image — see Equation (20).

Such a scheme would produce Difference Engine instructions to reproduce i)
the low level approximation image and ii) the important regions of the detail
images. These important detail regions will correspond to large detail coeffi-
cients; hence, our level of thresholding would determine the number of detail
instructions that are generated and, consequently, the total number of proces-
sor instructions. There are a number of issues that would have to be addressed
before such a scheme could be successfully implemented.

This scheme will be most appropriate if our detail coefficients are clustered
around major texture features, with sparse regions where these coefficients are
zero or may be approximated by zero. From the support of the processed detail
coefficients we can determine the important non-zero detail areas in our detail
images and hence the spans across a scanline with which these regions intersect.

Calculation of the detail image, g¥(I, m), values requires the evaluation of the
functions ¥[P!(i, j) which is significantly more expensive than evaluating ®(i, j)
(we have three wavelets). However, if the detail regions are sparse enough this
overhead should be less telling. One could also attempt to accelerate these
computations by means of LPTA (Linear Pascal Triangular Algorithms, [3,
pages 189-194]).

From our point of view the central issue is the number of processor instruc-
tions that we can save when compared to the high-resolution baseline case,
in which we must individually set each pixel. Unfortunately, this problem is
highly dependent on the image — images with little texture will require few
‘detail-filling’ instructions, while those with a high level of important texture
information will require many such instructions. The level of thresholding on
our detail coefficients will directly control the number of these instructions.
The automation of such thresholding is a non-trivial problem, since there is lit-
tle agreement on the properties that an objective image fidelity metric should
satisfy. Without an extensive analysis, there is little one can say aside from the
fact that our gain over the baseline will be bounded below by % : 1. Thus, for
sufficiently large j, the level of detail we wish to reproduce will be the primary
factor determining the number of instructions we require. Care would have
to be taken, however, to ensure that we do not permit excessive detail-filling
instructions to be generated: under no circumstances should we produce more
instruction than the baseline count.

359

8.3. More efficient compression

Using Vector Quantization with a wavelet-based compression scheme can pro-
vide compression ratios of around 40:1 with very good reproduction [10]. The
possibility exists to improve the compression potential of the wavelet coding
markedly by utilising a so-called “second generation” scheme, which exploits
features inherent in the human visual system. One approach is to extract
and code the visually relevant edge information (which produces an extremely
compact encoding) and then to code the residual error using wavelets. This
approach, a modification of the one proposed by CARLSSON [2], forms the the
basis of a compression scheme employed by FROMENT and MALLAT [7].

Such a coding should achieve better compression because the edge image we
extract contains most of the high-frequency information — it is this information
that gives us large WT coefficients. We are currently investigating a coding
scheme which combines all the above elements.

9. ACKNOWLEDGMENT
We would like to thank the referees for their suggestions and comments.

REFERENCES

1. E. H. BLAKE AND A.A. M. Kunk (1993). A difference engine for im-
ages with applications to wavelet decomposition. Proceedings of the Second
International Conference on Image Communications (IMAGE’COM), pp.
309-314.

2. S. CARLSSON (1988). Sketch based coding of grey level images. Signal
Processing 15, pp. 57-83.

3. C.K. CHuI (1992). An Introduction to Wavelets: Wavelet Analysis and its
Applications, volume one. Academic Press, Boston.

4. C.K. Cuut and H. D1AMOND (1987). A natural formulation of quasi-
interpolation by multi-variate splines. Proceedings of the American Mathe-
matical Society 99 (4).

5. C.K. CHUI and J.Z. WANG (1990). Computational and algorithmic as-
pects of cardinal-spline wavelets. Technical Report 285, TAMU, Centre for
Approzimation Theory (CAT). Note: There are some transcription errors
in the (quadratic) decomposition sequences given here.

6. I. DAUBECHIES (1992). Ten lectures on wavelets. CBMS-NSF series in
applied mathematics 61. STAM.

7. J. FROMENT and S. MALLAT (1992). Second generation compact image
coding with wavelets. In C.K. CHUI, editor, Wavelets: A Tutorial in Theory
and Applications, volume two, pp. 655-678. Academic Press, Boston.

8. H.J.A.M. HEMANS (1992). Discrete wavelets and multiresolution anal-
ysis. In KOORNWINDER [9], pp. 49-79. This article originally appeared in
CWI Quarterly, Vol. 5, No. 1.

9. T. H. KOORNWINDER, editor (1993). Wavelets: An Elementary Treatment
of Theory and Applications, volume 1 of Approximations and Decomposi-
tions. World Scientific.

360

m=3 k=2 k=
Q -0.0117187 | -1/64
1 -0.1699218 | -3/32
1.665 23/16
x 0.00293 -
X 0.0092773 -
0 0.0002441 -

FiGURE 8. The entries for the convolution operator

10. P. MATHIEU, M. ANTONINI, M. BARLAUD and I. DAUBECHIES (1992).
Image coding using wavelet transforms. IFEFE trans. on image processing 1
(2), pp. 205-220.

11. S. MALLAT (1989). A theory of multiresolution signal decomposition: The
wavelet representation. IFEE Trans. on Patt. Ana. and Mach Intell. 11,
pp- 674—693.

12. P. NACKEN (1992). Image compression using wavelets. In KOORNWINDER
[9], pp- 81-91. This article originally appeared in CWI Quarterly, Vol. 5,
No. 1.

13. B. MacQ P. DESARTE and D. SLOCK (1992). Signal-adapted multiresolu-
tion transform for image coding. IEEE Trans. on Info. Theory 38 (2), pp.
719-746.

14. O. RiouL and P. DUHAMEL (1992). Fast algorithms for discrete and contin-
uous wavelet transforms. IEEE Trans. on Info. Theory 38 (2), pp. 569-585.

15. J. Woops and S.D. O’NEIL (1986). Subband coding of images. IEEE
trans. ASSP-34, (5).

APPENDICES

A. IMPLEMENTATIONAL DATA
This appendix provides the data one needs to implement the quadratic (m = 3)
cardinal spline MR scheme. If a higher order quasi-interpolation operator or
more terms in the {a}, {b} sequences are desired, then one must consult [5, 3].
The coefficients A;; (for the case k = 1,2) are produced when applying the
convolutional operators specified below to the image data. In Figure 9, the
matrix represents the support (i.e. grid-points) over which the coefficients of
the intensity samples I;; are non-zero. The centre of the matrix represents the
coefficient of I;;.
Cardinal splines satisfy the following recursive identity:

T Nmfl(x)—km_w

m—1 m—1

Np(z) =

Np—1(z — 1) (38)
where Ni(z) = Xjo,1)(z). These formulae can easily be expanded to explicit

(non-recursive) definitions. Through the use of LPTA’s (Linear Pascal Trian-
gular Algorithms) [3], one can derive formulae to calculate the values of both

361

FIGURE 9. The arrangement of coefficients of the quasi-interpolation operator

Q8 =& O
8O ~NL '
O~k o~
8 O ~LD 8

Q8 =8 O

0 1 2 3 4 5 6 7
b [21 3 151 ¢
{on} | oo | =56 [o0 | —35 [3% | —50 | 30 | —m
TABLE 6. The reconstruction sequences for case m = 3
{ar} {bc } {ar} {bc }

0 0.033978977 | 0.049781017 | 12 | -0.008232310 | 0.034166241
1 0.655340376 | 0.423982818 || 13 | -0.000934671 | 0.003879280
2 0.655340376 | -0.140377187 || 14 | 0.003544624 | -0.014711266
3 0.033978977 | -0.900597911 || 15 | 0.000402447 | -0.001670285
4 -0.243780520 | 0.900597911 || 16 | -0.001526227 | 0.006334313
5 -0.025936016 | 0.140377187 || 17 | -0.000173284 | 0.000719182
6 0.103311291 | -0.423982818 || 18 | 0.000657155 | -0.002727399
7 0.011654634 | -0.049781017 || 19 | 0.000074611 | -0.000309662
8 -0.044411988 | 0.184116960 | 20 | -0.000282955 | 0.001174351
9 -0.005039196 | 0.020974988 | 21 | -0.000032126 | 0.000133332
10 || 0.019119634 | -0.079343472 || 22 | 0.000121833 | -0.000505646
11 || 0.002170658 | -0.009011510

our splines and scaling functions efficiently. We did not pursue this approach.
The decomposition sequences are derived from the roots of an Euler-Frobenius

TABLE 7. The decomposition sequences for the case m = 3

polynomial [5]. This complex polynomial (of order 2m — 1) is defined as

m—1

Espm—1(z) = (2m — 1)! Z Nopn(m +)z0+m=1

j=—m+1

and clearly has an intimate relationship with the cardinal splines. We do not
have enough space to develop this approach further here. Interested readers are
referred to [5, 3]; it should be noted that [5] contains some transcription errors
in the quadratic decomposition sequences. By utilising the formulae presented
there, one can check the sequences and produce additional terms (Table 7)
contains the sequences we used).

362

