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Using the concept of a Cardinal�Spline Multi�Resolution Analysis� we estab�

lish a means of generating a smoothed approximation of an input image�

This approximation can be decoded and displayed in real�time at the video

frame rate by the Di�erence Engine� CWI�s systolic array display proces�

sor� This forward di�erence engine can rapidly compute the value of such a

compact image representation across a span in constant time� Some results

are given which con�rm the suitability of the spline�wavelet transform as a

means of producing a compact image code�

�� Introduction
The rapid growth of multi�media applications and the resultant need to process
real�time video and audio streams have given renewed impetus to the search for
high compression systems� These systems should �at least� satisfy the following
criteria�

� they should achieve maximal� possibly lossy� compression whilst main�
taining as high a degree of apparent �delity as possible for a human
viewer�

� both the encoding and decoding process should be su	ciently rapid to
permit real�time processing
 in particular� decompression should be pos�
sible on the �y without excessive cost�
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The nature of the speci�c application�s requirements determine which of the
above criteria may be weakened so as to achieve a workable solution�
For the compression of still images� we may accept a comparatively lengthy

compression or decompression delay if the results are of su	ciently high quality�
The JPEG still compression standard remains the method of choice for most
hardware implementations� JPEG achieves compression by applying a Discrete
Cosine Transform to the image �which is segmented into �x� blocks to improve
performance��
Fractal based methods� which claim to achieve much higher compression

ratios than JPEG� have emerged in commercially available products� Unfor�
tunately� the artefacts introduced at high compression ratios cannot be objec�
tively quanti�ed� the blocking of JPEG may be considered preferable to the
uniform blotches produced by fractal compression at high ratios� The issue of
speed also intrudes� JPEG compresses signi�cantly faster than fractal methods

however� the converse holds for decompression times� Fractal methods also pos�
sess an inherent scale�independence which allows them to re�size images with
a minimal amount of computation and no obvious pixelation�
Another group of methods that are gaining prominence are those based on

the Wavelet Transform �WT�� This transform comes in a variety of �avours�
each with their associated advantages and problems �See Table ��� However�
they all possess the ability to encode texture regions e	ciently � precisely
what one requires when encoding �natural� scenes ����� Nacken ���� for a
good introduction and some encouraging results� From a computational point
of view� the WT is superior to the DCT ����� In addition� even when the
transform is blocked� it is able to withstand a much higher level of compression
before blocking e�ects become apparent �����
An issue which is seldom addressed� is the level of e	ciency one can achieve

when actually displaying the decompressed image� It is taken for granted that
each pixel value will have to be computed by the controlling program� However�
this is not necessarily the case � as illustrated by CWI�s Di�erence Engine� In
this case the display processor itself can set multiple pixels using only a small
set of parameters� provided these pixel values are constrained to lie on the graph
of a polynomial of some arbitrary degree� Hence� if we can describe our image
as a set of polynomial primitives� we can display our image e	ciently� without
the need to explicitly compute the intensity value of each pixel ���� This paper
investigates the feasibility of using such an approach for the reconstruction of
compressed images�
Before we can proceed� however� we must introduce the necessary mathe�

matical tools� We have decided to do this in a tutorial fashion� over the next
three sections� so that readers who are unfamiliar with the subject matter can
gain insight into the theory underpinning our approach�
The next two sections contain a brief introduction to wavelet theory and

multi�resolution analysis� with an emphasis on ��D images� Section � discusses
some of the bene�ts associated with the Wavelet Transform� i�e�� ease of com�
putation and compression potential� The �nal part of the tutorial� Section 
�
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introduces the cardinal spline formalism needed to understand Chui�s spline
wavelets� These wavelets form an essential part of our analysis�
Section � discusses the implementation of these ideas on the Di�erence En�

gine and the suitability of this device for the display of multi�resolution images�
The results of our investigations are presented and discussed in Section �� Con�
cluding remarks and an overview of further work is given in Section ��

���� Mathematical notation and preliminaries
The signals we deal with whether ��D or ��D are assumed to be well�behaved�
that is� they are elements of the space L��R�� This vector space may be de�ned
�barring a few technicalities� as the space of all functions which satisfy the
criterionZ

jf�x�j� dx ��

with a double integration substituted if our signal is ��D� Outline characters
are used as follows� C is the set of complex numbers� R the set of reals and
Z the set of integers� Continuous functions �over the reals� are denoted as
elements of C�R�� The notation Cm�R� refers to the space of m�times continu�
ously di�erentiable functions� The norm of u is denoted k u k with a subscript
indicating the space w�r�t which the norm is taken� The inner product of u� v
is represented as follows� hu� vi�
A circum�ex is used to denote the Fourier Transform of a function f �

�f�x� �

Z
f�t�e�ixtdt�

We use the symbols �� and � to denote a direct sum� The former is a generic
direct sum� while the latter denotes an orthogonal direct sum�
An asterisk� ���� denotes convolution
 the nature of the convolution �whether

discrete or continuous� will be clari�ed when the operator is used�
Sequences are generally indicated as follows� fakgk�Z� The space ���R�

contains all the sequences which satisfy the criterion

k fckg k
�
���

X
k

jckj
� ���

Of course� our sequence index will usually have a �nite range� To simplify
formulae� we will often ignore the range subscript� it usually being the case
that our index ranges from �� to ��� Similarly� if there are no range limits
on an integral� one may assume it is taken over the entire domain�

�� The integral wavelet transform �iwt�
The IWT is de�ned in terms of a special kernel function �� known as a wavelet�
which is an element of the space L�� Functions� f � in this space must satisfyR
jf�x�j�dx ��� The wavelet is subject to the following additional constraints

�in ��D��
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��
R
��x� dx �  

�� both � and �� �its Fourier Transform� must be window functions� A
function w�x� � L� is called a window function if xw�x� � L�� This
window function has a well de�ned centre� t� and radius� !w� This
implies that the function w is such that it is localized in both the time
and frequency domains �within the limits imposed by the Uncertainty
Principle� �see ��� ����

More intuitively� the wavelet must decay rapidly and also exhibit some degree
of oscillation � hence the name� With our wavelet constrained in this manner�
we are able to de�ne the IWT� �W�f��b� a�� of an L� function f �

�W�f��b� a� � jaj�
�
�

Z
f�t��

�
t� b

a

�
dt� ���

where a� b � R and f � L� and the overbar denotes complex conjugation�
Because � is essentially localisable in both time and frequency �scale�� the

IWT is also localised and gives us information in both domains� within the
bounds of the Uncertainty Principle� If we permit our variables a� b to be
continuous� the inverse transform involves computing a �n � �� dimensional
integral �if the function has n variables�� To ensure computational e	ciency� we
discretize both the scale� a and the time�localization� b� in the following manner�
a � ��j � b � k��j � k� j � Z� If we then de�ne �j�k�x� � �j�����jx� k�� j� k �
Z� we obtain

�W�f�

�
k

�j
�
�

�j

�
� hf� �j�ki � d

j
k� ���

where we have used inner product notation for compactness�� In order that
we may recover our original function from this sampling� we require that
f�j�kgj�k�Z form a Riesz basis ��� ��� This is a less restrictive requirement
than orthogonality of the �j�k� and permits us to construct wavelets which are
not orthogonal� If � constitutes a Riesz basis� then there is a unique Riesz
basis

�
�j�k

�
which is dual to f�j�kg i�e�

h�j�k� �
l�pi � �jl � �kp� j� k� l� p � Z� ���

Every f � L� then has the unique series expansion�

f�x� �
X
j�k

hf� �j�ki�
j�k�x�� ���

If� in addition� there is a function "� � L� which generates the dual basis in the
same fashion that � generates the Riesz basis �j�k� then we may also expand
f�x� as follows�

f�x� �
X
j�k

hf� �j�ki�j�k�x�� �
�

�The L� inner product of two functions f� g is given by
R
f�x�g�x� dx�
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Equations ��� and �
� are inverse transform formulae� These formulae relate
the transform coe	cients to the original function� In what follows� we assume
that such a function does indeed generate the dual basis� Property ��� is called
the bi�orthogonality property and is satis�ed by all wavelets� If a wavelet is
orthogonal it satis�es

h�j�k� �l�pi � �jl � �kp� j� k� l� p � Z� ���

That is� orthogonal wavelets are self�dual� having � � "�� Thus� when one
deals with orthogonal wavelets� the added complexity of having a dual present
is avoided� A wavelet which is orthogonal only between scales �frequencies� is
called a semi�orthogonal wavelet � Chui�s spline�wavelets are semi�orthogonal
�cf� Table ���

�� Multi�resolution analysis
The concept of a Multi�Resolution Analysis �MRA� is already familiar to those
who have dealt with pyramidal image decompositions
 it serves to formalize
such a decomposition� Firstly� one must de�ne the term �resolution�� The in�
tuitive interpretation� viz�� that it serves to quantify the amount of permissable
variation in a region� is formalized� Hence� a high resolution image has a large
amount of detail in a region� whereas a low resolution image is much smoother
over this same region� One may further quantify this concept with a statement
such as� �a kth resolution image contains k� k samples per unit square�� The
idea here is that we can capture more detail if we are able to sample at a higher
rate�
To develop the theory of such an analysis� we �rst consider the case of one

dimensional signals�
Our signal� f�x�� must be an elements of the space L��R�� that is� it must

contain �nite energy� We seek a decomposition of this signal which will re�
veal its structure on di�erent #resolution� levels� Such an analysis can provide
invaluable information about the relative importance of variations in the signal�
Each of these multi�resolution approximations resides in a space which con�

tains all possible approximations at that resolution of every L��R� function�
These spaces are denoted Vj 
 the parameter j indicates the resolution level�
the �resolution� of the jth level is given by r � �j � Thus� level  has r � ��
By convention� this is the input level�
Just as the wavelet spaces� Wj are spanned by the scaled translates of a

single kernel function� �� we seek a single function� �� the so�called scaling
function� which will span the spaces Vj in the same way� If this is the case�
then we may de�ne a Multi�Resolution Analysis of L��R�� Since we desire that
this analysis be complete� the MRA must encode the detail that is sacri�ced
when we go from a higher to a lower resolution� This detail is stored in the
complementary wavelet spaces� Wj � We have the following relationship for any
resolution level j

�Wj � closL�spanf�jk � k � Zg� the operation of CLOSure essentially adds all the limit
points to a space� thus �closing	 it up�
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Vj�� � Vj ��Wj ���

This states that the higher resolution approximation may be resynthesized from
the next lower approximation by adding the detail that we sacri�ced to achieve
that lower approximation� One can deduce the following properties�

�� � � � 	 V�� 	 V� 	 V� 	 � � �


�� closL�
�S

jVj

�
� L��R�


��
T
j Vj � f g


�� Vj�� � Vj ��Wj � j � Z



� f�x� � Vj 
� f��x� � Vj��� j � Z�

For a more detailed discussion and alternative formulation of these properties�
see ����

���� The Wavelet Transform and Multi�Resolution Analysis in ��D
Since we wish to apply these techniques to images� we have to extend the

previous results to ��D� A common method of constructing the ��D scheme�
and simultaneously generating a MRA of L��R� �� is to de�ne the space Vj as
the tensor product of the space Vj with itself ���� Then Vj induces a MRA
of L��R� �� Vj 	 Vj�� with the properties we discussed before and a scaling
function %j�m�n�x� y� � ���jx�m����jy � n�� m� n � Z�

De�ning Wj to be the orthogonal� complement of Vj in Vj�� then gives us�

Vj�� � Vj�� � Vj��

� �Vj �Wj�� �Vj �Wj�
� �Vj � Vj�� ��Wj � Vj�� �Vj �Wj�� �Wj �Wj��
� Vj �Wj �

���

So the complementary subspace Wj consists of three pieces� with Riesz Bases�

�j�m�x��j�n�y�� for �Wj � Vj�
 �$�

�j�m�x��j�n�y�� for �Vj �Wj�
 �� �

�j�m�x��j�n�y�� for �Wj �Wj� ����

These three detail spaces contain the detail lost between two consecutive res�
olution approximations� In fact� each space contains the sharp variation �high
frequency� information of the previous approximation in a particular direction
Equation �$� gives the basis for the detail space which detects �represents�
sharp variations in our function which are orientated in the x�direction� i�e�
vertical edges� Similarly� the basis given by Equation �� � will represent edges

�We use � here since Chui	s cardinal spline MRA induces such an orthogonal decompo

sition� one would use �� for a more general setting�
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in the horizontal direction� Equation ���� is the basis for the detail space which
detects diagonal edges� We can now de�ne three wavelets�

&��	�x� y� � ��x���y� ����

&��	�x� y� � ��x���y� ����

&��	�x� y� � ��x���y�� ����

Then
n
&

�i	
j�m�n
 i � �� �� �m�n � Z

o
is a Riesz basis for Wj 
 when we allow

the scale parameter j to vary over all integers this basis is then a basis for

L��R� �� As in the ��D case� we can also �nd a dual� "&
�i	
j�m�n which satis�es the

bi�orthogonality relationship

h&
�m	
k�i�p�

"&
�n	
l�j�qi � �mn�kl�ij�pq � ��
�

One may decompose any �well�behaved� �L��R� �� signal �image� in this man�
ner� However� before we can proceed with our decomposition� we must ensure
that we have a �valid� image at our zeroth �the input or highest� resolution
level� By valid we mean that the image must be expressible on the basis�
%��lm�x� y�� which generates the approximation space of zeroth level functions�
that is� V�� For our image to be an element of the zeroth resolution space� it
must satisfy the following requirement �i�e�� be expressible on the zeroth level
basis��

I��x� y� �
X
i�j

c�ij%��ij�x� y� �
X
i�j

c�ij%�x� i� y � j�� ����

where the coe	cients fc�ijg are our zeroth level approximation coe�cients� The
means of generating these initial coe	cients will be dealt with presently �Sec�
tion �� Assuming� for the moment� that such a relationship does hold� how do
we generate subsequent lower resolution approximations' These approxima�
tions must be expressible on the appropriately scaled bases� where the scaling
re�ects the resolution concerned�

Ik�x� y� �
X
i�j

ckij%k�ij�x� y� �
X
i�j

ckij%��
kx�i� �ky�j�� k � ������ � � � ����

Thus far� we have ignored the sequence of detail images which makes this rep�
resentation complete� Just like the approximation images� these detail images
are elements of particular spaces and must thus be expressible in terms of a
particular basis�

gk�x� y� �
X
ij

�X
p
�

dp
k
ij&

�p	��kx� i� �ky � j� ����

The coe	cients fdp
k
ijg are called detail coe�cients� The functions &�p	�x� y�

are ��D wavelets� Wavelets are particularly well suited to encoding detail

hence the appearance of the wavelet in the basis of the detail space is not
really surprising� We may formalize the relationship between the detail and
approximation images as follows �recall the corresponding ��D relationship��
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Figure �� The �rst four approximation images in our quadratic Multi�
Resolution structure� The resolution decreases clockwise from top left�

Ik���x� y� � Ik�x� y� � gk�x� y�� ��$�

This states that an image at the �k���th resolution level is obtained by adding
the lower resolution kth level image to the kth resolution detail image� which
contains the information lost when we go from level k�� to level k� Using this
formula� we may express our �valid� input image as follows�

I��x� y� � g���x� y� � � � �� g�M �x� y� � I�M �x� y�� �� �

That is� we may decompose our image into a sequence of successively lower
resolution images
 this decomposition is� in turn� exactly equivalent to a se�
quence of detail images plus a low resolution approximation image� To extract
a particular approximation image� we merely add back the relevant number of
detail images to our lowest resolution approximation�
Figure � shows the third level detail images for our test image� Assuming

we have determined our zeroth level approximation coe	cients from our in�
put image� the remaining approximation and detail coe	cients required by our
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decomposition may be found by costly inner product calculations� However�
Mallat ���� derived the following e	cient algorithms for producing these coef�
�cients� The decomposition algorithm �which produces the next lower resolution
level�s coe	cients��

c
j��
kl �

X
m

X
n

am��kan��lc
j
mn ����

d�
j��
kl �

X
m

X
n

am��kbn��lc
j
mn

d�
j��
kl �

X
m

X
n

bm��kan��lc
j
mn

d�
j��
kl �

X
m

X
n

bm��kbn��lc
j
mn�

The reconstruction algorithm �which provides the next higher resolution level�s
coe	cients��

c
j
km �

P
l

P
p pk��lpm��pc

j��
lp � ����P

l

P
p pk��lqm��pd�

j��
lp �P

l

P
p qk��lpm��pd�

j��
lp �P

l

P
p qk��lqm��pd�

j��
lp �

The fakg� fbkg are called decomposition sequences� while the fpkg� fqkg are
called reconstruction sequences�
These summations can be interpreted as ��D linear convolutions which are

down�sampled �i�e�� we keep only even index output values� in the case of the
decomposition algorithm and up�sampled �i�e�� the coe	cient sequences have
zeros inserted between their entries� in the case of the reconstruction algorithm�
Since these ��D convolutions are separable �i�e�� expressible as the product

of two independent ��D sequences�� they can be implemented much more ef�
�ciently if one does not employ direct brute�force summation� We see that if
we are given the input approximation coe	cients� fc�ijg we can decompose and
reconstruct as we wish
 the only time we must explicitly concern ourselves with
the scaling function� %�x� y�� is when we wish to output our pth level approx�
imation of the input image� At this point we are forced to compute discrete
samples of our pth resolution image� utilising Equation ����� If one desires to
access the detail images then a similar calculation must be performed using the
detail coe	cients �but this is not necessary if one just wishes to quantize or
threshold the detail coe	cients��

�� The Wavelet Transform and Compressibility
The wavelet transform �cf� Equation ����� provides a �sparse� mapping from
the spatial domain to some transform domain� This means that many of the
transform coe	cients are close to zero and can be ignored� One may thus
achieve a considerable reduction in data by performing such a mapping and
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Figure �� Third level detail images� These images illustrate the directional
sensitivity of the Wavelet Transform� It decomposes the detail lost between con�
secutive levels into images which contain the detail information in the horizontal
�top left�� vertical �top right� and diagonal �bottom� directions� The bases un�
derlying these images are �respectively� the wavelets &��	�x� y�� &��	�x� y� and
&��	�x� y� � cf� Equations ���� ����
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Properties Wavelet Classes
Orthonormal Semi�orthog �Chui� Bi�orthog

Dual' self�dual yes yes
Compact support' wavelet only wavelet wavelet and dual
Symmetry' no yes yes
Sequences' �nite truncated �nite

Table �� Some comparisons between the three major classes of wavelet� Only
orthogonal wavelets do not possess a Dual Wavelet �see Section �� If the wavelet
or dual has compact support� we can achieve perfect reconstruction
 otherwise
we must truncate when we implement� Symmetry is important to reduce dis�
tortion when we reconstruct�

eliminating these small coe	ceints� although naturally at some cost� it is no
longer possible to achieve perfect reconstruction and there is the added over�
head of performing the transform computations�
As regards the latter issue� the WT can be recast as a series of convolutions�

which in turn can be very rapidly calculated using FFT based hardware� The
degradation of the image with increased compression is not easily quanti�ed� al�
though it is often measured by means of signal�to�noise ratios �SNR�� However�
the WT is able to retain structure at very high compression ratios ���� unlike
many of its rivals
 this ability coupled with the existence of fast algorithms�
make the WT an excellent choice for image coding�
The wavelet transform of an image yields the set of detail coe	cients over

all resolutions� j� However� since we only consider a �nite range of resolutions�
the transform must be restricted to re�ect this� The approximation coe	cients
encode the information contained at the lower resolutions we do not wish to
consider and are thus part of the restricted transform� Also� since we do not deal
with resolutions higher than � �level  �� we do not require the detail �wavelet�
coe	cients for j 
  � Thus� the WT actually provides the set of coe	cients

ffdp
l
ijg� fc

�L
ij g� l � ������ ���� L
 p � �� �� �g ����

The transform is given by the decomposition algorithm of the previous section
�Equations ����� ������ The inverse transform �the reconstruction algorithm�
then recombines these coe	cients to arrive at the input approximation coe	�
cients �which then provide us with the input image��
The detail coe	cients provide a very compact encoding of texture in the

image
 during quantization� many of these coe	cients will be mapped to zero�
The approximation coe	cients will be highly correlated� re�ecting the smooth
nature of the low resolution approximation� Since the dynamic range of the
coe	cient values will be small� we do not need many bits to represent them�
that is� they may be quantized fairly coarsely� In addition� the supports� of

�The support of a sequence is the set of indices which have non
zero sequence values
associated with them�
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both these ��D sequences shrink with lower resolution� and so we require fewer
coe	cients to represent lower resolution approximation and detail images�

	� The Cardinal Spline formalism
We have chosen to implement our Multi�Resolution �MR� decomposition in
terms of splines� employing the formalism of Chui ���� Our reasons for choos�
ing this approach over the preferred orthogonal framework� in which one does
not require a dual wavelet� was partly motivated by the architecture of the sys�
tem on which we have implemented this decomposition� However� the spline
approach has several other advantages which compensate for its lack of orthog�
onality � indeed� these properties are present precisely because orthogonal�
ity of the wavelet bases has been sacri�ced� In particular� since splines are
amenable to rapid and e	cient computations� any scheme based upon such
curves o�ers implementational advantages over the aforementioned orthogonal
transforms� For example� simple closed�form expressions are available for many
of the formulae we utilise
 this is not the case with� for example� the compactly
supported orthogonal wavelets of Daubechies ���� where an iterative proce�
dure must be used to calculate the scaling function� In addition� it has been
shown ��� that one must inevitably sacri�ce the desirable property of �general�
ized� linear phase� if one desires both compact support and orthogonality� If
the wavelet and scaling function have this property then one is assured that the
reconstructed signal will be minimally distorted �this is important when one
engages in intensive quantization and thresholding� which introduce distortions
of their own��
In the spline formalism both the wavelet and scaling function are expressed

in terms of a B�spline series� In fact� the ���D� scaling function is precisely
the mth order cardinal B�spline� denoted Nm�x�� This function is computed
recursively as follows�

Nm�x� � �Nm�� �N���x�� N��x� � 	����
�x�� ����

where 	����
 is � on the interval � � �� and zero outside this interval and � is the
�continuous� convolution operator� See Figure ��
When m � �� we have a quadratic cardinal spline with continuous �rst�order

derivatives at the knot�points� A full characterization of the ���D� approxima�
tion spaces Vj is given by

Vj � ff � Cm�� � L��R� � f j� k

�j
� k��
�j �

� 
m��� k � Zg� ��
�

This states that functions which are both well behaved �in L�� and satisfy the
indicated continuity condition are elements of the jth resolution approximation
space� provided that their restriction to the indicated interval shows that they
are contained in 
m�� � the space of all polynomials of degree � m� ��

�One can view the wavelet and scaling functions as band
pass and low
pass 
lters� respec

tively� If one 
lters with a linear phase 
lter� distortions in the input signal are not unduly
magni
ed�
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When j is negative the intervals over which the function is required to have
a uniform polynomial character become progressively larger� This explains the
smoothed nature of low resolution approximations to the original function�
The spline wavelets introduced by Chui� �m�x�� have compact support on the

interval � � �m� ��� The support of the cardinal B�spline is � �m�� In addition�
if the wavelet has even order m� it is symmetric
 otherwise it is antisymmetric
�about �m��

� �� See Figure �� The symmetry(antisymmetry of the wavelet is
responsible for its distortion reduction property�
The reconstruction sequences fpkg and fqkg �cf� Equation ����� are very

short sequences
 the former has m � � terms and the latter �m � �� These
sequences are given by

pmj � ��m��

�
m

j

�
� j �  � � � � �m
 ����

qmj �
����j

�m��

mX
l
�

�
m

l

�
N�m�j � �� l�� j �  � � � � � �m� �� ����

Although these sequences appear complicated� e	cient algorithms are given in
�
� �� for their calculation �see Table � in Appendix �� We may use the following
�two�scale� equation to compute the values of the wavelet� �m�x��

�m�x� �
�m��X
j
�

qmj Nm��x� j� ����

In �
�� details are given concerning the derivation of the sequences fakg and fbkg
�Table � in Appendix gives the �corrected� sequence values we used�� Although
these sequences are not �nite they have rapid exponential decay and can be
truncated after about twenty terms with little obvious e�ect �see Figure ���
However� this truncation should not be done arbitrarily� but with respect to
the sequences centre�s of symmetry �if one wishes to preserve the distortionless
property of the decomposition�� The symmetry of these sequences is clear from
the following relationships

amm�j � amj ��$�

bm�m���j � ����mbmj � j � Z� �� �

One may use this symmetry to reduce storage and computational overheads�
The ��D scaling function and wavelets are obtained from these ��D versions

by means of tensor products� The details of this extension are given in Section �

���� Calculation of
�
c�ij
�
	 the level 
 approximation coe�cients

The resolution ladder stretches o� to in�nity in both directions
 however� we
are only able to measure our image at a �nite resolution� denoted I�� This
is our initial approximation of the continuous image data� The superscript
zero indicates that we have chosen the resolution level j �  as our reference
level� In this case� the cardinal spline which constitutes our scaling function has
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Figure �� Cubic and Quadratic scaling functions and wavelets� #A� is the
quadratic scaling function �the �rd order cardinal B�spline� and #C� the cor�
responding wavelet� #B� is the cubic scaling function and #D� the cubic�spline
wavelet� Observe that the cubic wavelet is symmetric� while the quadratic
wavelet is antisymmetric�

knot points at the integers �we assume that the pixels lie on a two dimensional
integer lattice�
 therefore� the image function expressed on this spline basis
will consist of polynomial segments �patches� of degree m � � translated and
summed over the intervals between the knots �pixels�� and will thus yield a new
polynomial of degree� m�� over each knot interval� Naturally� since our image
is unde�ned between the discrete pixels� we will only sample our reference image
at these integer knot points� Thus� from Equation ����� we have our zeroth
level �continuous� approximation� with Nm�x� de�ned by Equation ����

I��x� y� �
X
p

X
k

c�pkNm�x � p�Nm�y � k�� ����

In general� we wish to decompose our approximation from this reference level
to some arbitrary lower resolution level� say j� Since j must be less than zero
�lower resolution� we write

I�j�x� y� �
X
p

X
k

c
�j
pkNm���jx� p�Nm���jy � k�� ����

in keeping with our earlier de�nition� where j � �� �� �� � � �
As the formulae stand� they contain summations which range across Z� How�

ever� since our image has �nite spatial extent� the ranges of summation for
both the detail and smoothing coe	cients must be curtailed� Our input image�
I��i� j� is expressed on the zeroth level basis with the smoothing coe	cients as
weights� Inspection of the formula� coupled with the assumption of our image�s
�nite extent� produce the necessary ranges of summation for c�ij � and hence

���



reveal the number of these coe	cients we are required to calculate� The limits
on the decomposition and reconstruction algorithm are estimated by consider�
ing the maximum range of index values �given the �nite range of the sequences
fakg� fbkg� fpkg� fqkg� which produce non�zero multiplications in the formu�
lae� Of course� these ranges di�er from level to level� since the convolutions are
down� or up�sampled as required�
Unfortunately� assuming that our image has zero intensity outside some spe�

ci�c interval will introduce irritating boundary e�ects� particularly as one views
lower resolution approximations� The method used to deal with such artefacts�
is to extend the image by symmetry� thus ensuring a smooth transition across
boundaries� However� extending our image generates additional non�zero ap�
proximation �and consequently� detail� coe	cients� since these represent our
image and hence mirror any increase in its extent� Fortunately� the number
of additional coe	cients that one need consider is small �� � �� since distant
pixel values have progressively less in�uence the further away they are from
the pixels on the periphery� and we have no wish to display pixels beyond our
initial image boundary� An alternative strategy would be to allow the image
to decay to zero beyond its support�
From the above it is clear that we need to calculate

�
c�ij
�
before we are able to

begin our decomposition� That is� we must obtain a representation of our image
as a sequence of expansion coe	cients on the basis given in Equation ���� �
we wish to project our true image onto its zeroth level approximation� In order
that we may accomplish this projection� it is necessary that our signal function
be bounded and continuous� Neither of these restrictions is problematic for
images
 they are certainly bounded in the intensity values they may take on
and� since we only sample discrete points� we can always assume that our image
is continuously interpolated between these points�
We wish to determine the solution set fc�i g� i � Z�� of Equation ����� where

our variables x� y are constrained to be integers and the values I��x� y� are our
input intensity values� A true interpolation scheme� in which the interpolant
passes though each input �x�y�I��x� y�� triple� would require the inversion of a
large matrix� at considerable computational expense� Quasi�interpolation ��� ��
o�ers a cheaper alternative� since it only uses local data to determine the values
of the c�ij � However� the interpolant no longer passes through each input point
unless some very strong conditions are imposed �see below� or the computations
are made su	ciently non�local� The scheme is based on a ��D convolutional
operator� This ��D operator is applied to the input intensity values to produce
the c�ij � See Equation ����� This operator has a sequence support that grows
with the order� k� of the quasi�interpolation scheme� For quadratic and cubic
cardinal splines� we have an operator of size ��k � ��� ��k � ���
The parameter k also determines the accuracy of the �t� as k grows larger�

quasi�interpolation tends to true interpolation ��� pg� � 
�� In addition� quasi�
interpolation has the property that it will interpolate a polynomial �in s vari�
ables� of total degree � m � � �that is� an element of 
sm��� perfectly� if
k � m��

� � ��� pg� ����� For example� when m � �� s � � �quadratic cardinal

��$



splines in � variables� ���� we may choose any k �  to achieve perfect repro�
duction of a second degree ��D polynomial� However� this property is of little
use to us� since our image can contain arbitrarily irregular data�
The method may be encapsulated �in our case� as follows ����

�QkI��x� y� �
X
i�j

��kI��i� j�Nm�x �
m

�
� i�Nm�y �

m

�
� j�� ����

where k is the order of the quasi�interpolation operator�� Qk� The � coe	cients
are obtained as follows �by applying the convolutional operator to the input
data set��

f��kI��i�g � �� �m� � � �� ����km � � � � �m� 	z 

k times

� � I�� i � Z
�� ����

where � represents ��D discrete convolution and m � fmig � i � Z� with

mij �

�
Nm� � m

� �Nm� � m
� �� � for i� j �  �

Nm�i� m
� �Nm�j � m

� � for i� j ��  �

and � � f�i�g� where �i� �  if i ��  and ��� � ��
It can be seen that� as the order k grows� it becomes increasingly irksome

to compute explicit representations for this
 we have computed such explicit
coe	cients fore the cases k � �� �� with sequence supports of �� � and 
� 

�Appendix �� Note that the cardinal B�splines have been centred� since the
algorithm in ��� requires this �before this shift� they are symmetric with respect
to m

� �� To reconcile Equation ���� with Equation ���� �and hence extract the
initial smoothing� coe	cients� we make the identi�cation�

c�ij
�
� f��kI��i� j�g � ��
�

However� we must remember to introduce the appropriate shift � �� or �� when
we compute our approximation function Equation ������


� Implementation
���� The Di�erence Engine
The Di�erence Engine is the �nal component in the rendering pipeline of a new
display architecture produced at CWI� Its function is described more fully in
���� but essentially it generates the pixel stream which produces the image on
the display� This processor may be described as a forward di�erence engine for
arbitrary order polynomials � that is� given the appropriate initial di�erences�
it will interpolate an arbitrary order polynomial �representing the intensity
pro�le� across a span of pixels� The logic is implemented by a systolic array�

�We deal with boundary problems by extending the input image symmetrically about its
edges before computing the quasi
interpolant�

�By making this identi
cation� we are shifting our entire image by m
�

in both dimen

sions� thus we must remember to add this value to the x and y arguments of our jth level
approximation�

�
 



allowing the �intensity� data to propagate along the scan�line in a time which
depends on the order of the polynomial and not the length of the pixel span�
Since the processor has an ��ns cycle time� and the systolic array elements need
only perform adds as the data propagates� this leads to very rapid calculation
times
 indeed� the Di�erence Engine is able to produce pixel streams at the
display refresh rate� Originally intended for the rapid production of Phong
shading values along pixel spans� it was realised that the chip�s design was such
that it was ideally suited for the synthesis of images consisting of polynomial
spline patches that is� those which have an appropriately smoothed intensity
pro�le� Naturally� a means would have to be discovered of generating such
an images� Inspired by the spline�wavelets of Chui ���� such a connection was
posited and subsequently veri�ed �see later sections��

���� The Di�erence Engine and Multi�Resolution Approximations
In order to interpolate a span of pixels� one must �rst decide on the order
of the polynomial to be employed� for this determines the number of initial
calculations which must be performed on each span� For example� quadratic
interpolation requires only the computation of �rst and second di�erences�
Once these di�erences have been computed� the chip is able to interpolate
a span of arbitrary length within the limits imposed by rounding errors ����
Higher order polynomial interpolation achieves a better approximation to the
original image� but this accuracy comes at the expense of additional di�erence
calculations� longer instructions and a rapid decrease in the length of the spans
which may be accurately interpolated�
We implement the algorithm as follows� For a particular resolution level

j� the basis elements of our spline space are translations of the tensor prod�
uct Nm���jx�Nm���jy� which has support on � � �jm�� and has knot�points at
�jZ� on this support� If we restrict I�j�x� y� to the intervals ��jk� �j�k������ k �
Z we obtain a polynomial patch �of degree � m � ��� uniquely describable in
terms of a single set of coe	cients� and hence suitable for our di�erence ma�
nipulations� Since the Di�erence Engine operates in one dimension� we �x the
parameter y in our expression for I�j�x� y� and proceed to calculate the requi�
site number of di�erences by evaluating this expression at successive horizontal
pixel locations� Once we have the di�erences� we compose the appropriate
processor instruction and output this to the Di�erence Engine� which then
proceeds to interpolate the span of length �j pixels���

�� Results
These ideas were investigated on a simulator which emulates the action of
the Di�erence Engine� The controlling program performs the wavelet decom�
position(reconstruction �as well as several other functions� and generates the

	See the earlier characterization of Vj �the restriction of our images to the region between
the knots points �jZ� has 
xed polynomial character 
 remember� our �
D Vj is just obtained
by taking the tensor product of our �
D Vj��

�
The span is actually of length �j��� However� the last pixel is set by the next instruction�

�
�



Di�erence Engine instruction stream� which is then piped to the simulator�
The theoretical analysis of the previous sections was used to produce a viable

image encoding scheme� The primary purpose was to evaluate the suitability
of the Di�erence Engine as a reconstruction engine�


��� Di�erence Engine performance
We may quantify the reduction in processing required when displaying a multi�
resolution approximation image� in terms of function evaluations gained per
span� That is� the number of intensity function evaluations along a span which
we are no longer required to perform because of our interpolation scheme� We
only need to evaluate Equation ���� when we compute our di�erences
 the
Di�erence Engine does the rest�
The maximum number of operation occurs when we wish to display our

zeroth level approximation� in this case we are forced to transmit an instruction
to set each pixel � this is our baseline count� If we proceed to level one� we
have spans of length three �the last pixel being taken as the �rst pixel of the
next span�
 we are thus able to compute the necessary di�erence information�
However� it would be more economical to just set each pixel� since this means
we no longer have to compute di�erence information� For the both the above
cases� then� we need to transmit N�M instructions for a display of size N�M �
If we employ the quadratic spline approach� we realise gains from the sec�

ond resolution level downwards� The calculation of the �quadratic� di�erences
involves the evaluation of our intensity function at three consecutive points on
our span� via Equation ����� Since the spans overlap� and we are interpolat�
ing a span of 
 pixels� we gain one function evaluation per span� For level
three we gain a reduction in computation and transmission costs equivalent to
�ve function evaluations� On the jth resolution level we gain �j � � function
evaluations per span �when utilising quadratic interpolation�� In the case of a
cubic� we may quantify the number of function evaluations gained per span as
�j��� For an image of size �x��y pixels� utilising an mth order cardinal spline

scheme� we require approximately �x

m�j �
y � �x�y�j

m Di�erence Engine instruc�
tions to produce a jth resolution approximation of the input image� since our
spans overlap and each scan�line must be interpolated separately� We assume
here that j � x i�e� our spans are no wider than the image� This formula
holds for any order of polynomial interpolation��� However� one must bear in
mind that at least n � � pixels must be available to allow calculation of the
initial di�erences in an nth order scheme� Clearly� as the resolution becomes
coarser these operations become more economical� eventually permitting one
to interpolate the entire scan�line with one instruction� The compression rela�

tive to the baseline case is given by �j

m � �
 thus for m � �� j � � �second level
approximation based on quadratics� we achieve a �

� � � compression gain over
the baseline case� We have implemented both quadratic and cubic schemes
 the
di�erence in quality is scarcely discernable �numerically the quadratic scheme

��Recall that an mth order scheme is based on polynomials of degree m� ��

�
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Quadratic Case Mean Standard Deviation jMax Errorj
k � �  �  ���$ ��
k � �  � �  �$ � 

Cubic Case
k � �  � � ���� ��
k � �  �  ���$ ��

Table �� The error induced by quasi�interpolation of our test image� The
quadratic scheme ensures both a lower projection error and a lower maximum
error� The bene�t of using a higher order quasi�interpolation is clear� even
k � � provides a considerable gain over k � ��

wins out because it� requires fewer di�erence computations and� as we shall
see� has lower interpolation error and is able to reproduce good images even
when the �lters are severely truncated��


��� Reconstruction errors
The following sections deal with the three sources of error we have identi�ed in
our scheme� interpolation error� the error induced by sequence truncation and
the error caused by neglecting small detail coe	cients�


����� Interpolation error
The prime source of error in our approximation is a consequence of our em�
ploying a quasi�interpolation scheme �Equation ������ and not interpolating
the data precisely� �Figure ��� Also� since we are projecting our function into
the space of cardinal splines �which are forced to obey certain smoothness con�
straints at their knot�points� we must expect a measure of smoothing� However�
this is minimal at the input resolution level and can be eliminated entirely if
one employs true interpolation� To quantify these results� we have the following
estimate for an upper bound on the projection error �adapted from �����

max
�
j�Qkf � Jmf����j � �max

�
f��� � min

�
f����

�

�

k��
m ����

where the function f represents our ��nitely supported� image values� m is
either � or �� depending on whether the scheme used is based on quadratics or
cubics and 
� �

�
� � 
� �

�
� � The function �Jmf��l� is a true interpolant based

on the appropriate spline� It is clear from this that the quadratic scheme
produces a better approximation than the cubic scheme
 this rather counter�
intuitive result is borne out by Table ��
Table � also illustrates the kind of errors which arise from such an approxi�

mation
 in particular� the mean error is very acceptable even for such low order
k�s� although the maximum error can be large� Fortunately� the regions where
such error would occur �i�e� sharp spikes� can be less accurately interpolated
without noticeable degradation of the image� Smoothing is an integral part
of picture capture� since any device has a �nite spatial�frequency bandwidth

�
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Figure �� Quasi�interpolation Error E�ects� Cross�section at scan�line ��� of
the lenna image
 the interpolation error is biased by ���� #A� gives the quadratic
quasi�interpolation �k � �� of the scan�line� #B� the cubic interpolation �k � ���
The graph #C� is the input data for scan�line ���� Graph�s #D� and #E� give
the interpolation error for the quadratic and cubic cases� respectively� Observe
that the interpolation error for the cubic scheme is greater than that of the
quadratic scheme for the same k�
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Figure 	� Failure of the cubic �lters at low truncations� #A� gives the data on
scan�line � � #B� the �nd resolution level cubic decomposition approximating
the image and #C� the reconstruction to level � after decomposing with the over
truncated cubic decomposition sequences� When the cubic �lters are not over
truncated� they result in a reconstruction which is very similar to the quadratic
case� Note� the reconstruction sequences are never truncated�
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Quadratic Case Mean Standard Deviation jMax Errorj
k � �  �
 ���� ��
k � �  �
  �$� ��

Table �� E�ect of reconstruction after projecting with di�erent order quasi�
interpolation schemes� With k � � the reconstruction is� on average� within
one grey�scale value of the input image�

)a )b Mean Std Dvtn jMax Errorj O�
P

a� O�
P

b�

Quad � ��  ���  �$� � � �� � ��

Cubic �$ �� ���� �� � �� � �� � ��

Quad �� � � ��  �$� � � �� � ��

Cubic �� �� ���� �� $ �
 � �� � ��

Quad � ��  �
  �$� �� � �� � ��

Cubic �$ �� ���
� ���� �� � �� � ��

Quad �� � �
�
� ���� �� � �� � ��

Cubic �� � �� ��� ����� ��� � �� � ��

Table �� Reconstruction error after truncating the decomposition sequences
�order � quasi�interpolation�� The left�most two columns indicate the number
of a� b coe	cients we maintain after truncation� The statistical data gives
an indication of the e�ects of our truncation on the error image� The �nal
two columns indicate the order of magnitude of the error to within which the
sequences approach their �lter conditions� Equations �����

and thus performs a low�pass �ltering on the original image
 a little additional
smoothing is more than acceptable when one considers the local nature of the
quasi�interpolation operator�


����� Errors induced by sequence truncation
The length of the decomposition sequences has a profound e�ect on the pro�
cessing required to calculate the detail and smoothing coe	cients and on the
accuracy of these coe	cients� Longer sequences require more work but result
in a more accurate image representation�
How then� does intensive truncation of the decomposition sequences fakg

and fbkg a�ect the quality of the image' We truncated the sequences simul�
taneously� Table � provides some data to quantify our experiments� It is clear
that for low truncation limits the reconstruction is badly distorted
 as the
number of terms increases the error quickly falls to acceptable limits� There
is� however� a very noticeable asymmetry in the performance of the quadratic
and cubic schemes� which is manifest at low truncations� The cubic represen�
tation su�ers noticeable high�frequency distortion when we truncate to below
a critical threshold ��� terms in fbkg�� This noise is realised as a tartan�like
pattern which distorts the image �see the cross�section scan Figure 
� and is a
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Figure 
� The decomposition sequences fag and fbg for the quadratic case�
Both these sequences have in�nite extent but decay exponentially� fag is sym�
metric about ��
 while fbg is anti�symmetric about ��
�

consequence of the �lter�s full�integer symmetry �that is� it is symmetric about
a particular coe	cient index in the sequence �index 
 for the cubic case�� Both
the �lters fag and fbg are required to satisfy the following conditions�X

k

fakg � ��
X
k

fbkg �  � ����

If these conditions are not met� then the �lters are dysfunctional and the output
signal is polluted by unwanted frequency components�
Referring to Table �� we see that the cubic fbg sequence is very sensitive

to truncation when we take few terms� This same sensitivity is not present
in the quadratic case� since the sequence fbg is perfectly symmetric with re�
spect to a half�integer point and hence tends to zero regardless of our trunca�
tion level �that is� its form is ���d�e�f��f��e��d��� about its centre of symmetry�
whereas the cubic case is ���d�e�f�g�f�e�d��� about its centre of symmetry �g� and
is thus not guaranteed to sum near zero unless the coe	cients surrounding
the centre of symmetry are appropriately de�ned� which no longer happens
below �� terms for fbg�� Note that� in all cases� we truncate so as to preserve
the sequences� symmetry �which is responsible for the linear phase property
that eliminates(reduces distortion�� A comparative test of the impact of this
formalism�s linear phase aspect was not done� since we did not implement a
non�linear�phase scheme� However� one can see from Figure � that even with
very severe truncation of detail� the main structures persist and strong edges
are essentially undistorted�


����� Errors induced by detail coe�cient elimination
To determine the suitability of the spline�wavelet transform for compression

�
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Threshold *zeroed Mean max jErrorj Std Devn
 �� ��*  �

 �
 ����
 ��� $�*  ��� 

 � ���
 �� $�*  ��� �
 ���  
 �� $�*  ��
 �  �$���

Table 	� The e�ect of zeroing detail �wavelet� coe	cients � quadratic case�
The threshold determines the percentage of detail coe	cients which are ne�
glected in the reconstruction� The other three columns give statistical infor�
mation about the nature of the reconstruction error�

Figure �� Reconstruction after zeroing detail coe	cients� Truncation thresh�
olds  ���  ��

purposes� we zeroed all the detail coe	cients below a speci�ed threshold and
produced the data in Table 

 the corresponding reconstructed images are in
Figure �� From this data we can see that the Multi�Resolution structure can be
used to encode an image e	ciently
 one merely decomposes until the support
of the smoothing coe	cients is acceptably small and then applies a suitably
chosen limit which eradicates a large number of detail coe	cients� The position
of the coe	cients can be encoded using some kind of run�length encoding while
the magnitude of the coe	cients has to be quantized �the data may be further
reduced by an entropy coding�� From the images one can see that as we zero
more detail coe	cients we begin to lose texture and eventually larger scale high�
frequency data� such as edges� Examination of our �rst level approximation
image reveals very little di�erence from the input image
 hence we can zero
all �rst level detail coe	cients �cf� Figure ��� One can also see the e�ects
of our assumption of �nite image extent �the support of our input sequence
is essentially the same as the unexpanded image support� in the slight low�
frequency ripples which emanate from the image edges� Taking a larger input
coe	cient support will reduce these e�ects �which are not noticeable when we
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do not engage in intensive thresholding��
The above provides some indication of the Wavelet Transform�s suitability

for image compression� Of course� to obtain high quality reconstructions with
maximal compression� we would have to threshold in a more intelligent way
and(or utilise a scheme such as Vector Quantization� This is an area we are
investigating further�

�� Conclusion
In this paper we have shown how one might exploit the architecture of CWI�s
Di�erence Engine to achieve more e	cient output of an image� provided one is
willing to accept some measure of �blurrings�� Since such a scheme produces
fewer processor instructions� we can produce images at a higher rate�
Another advantage of such a scheme is the ease with which one can achieve

progressive transmission � we merely transmit the next tier of detail coe	�
cients� which are then combined to produce our new approximation image� One
could� conceivably� use this ability to rapidly scan through a video database in
order to get a feel for the material it contained�
We performed some elementary tests which con�rmed the choice of the semi�

orthogonal wavelet transform as one which will enable us to achieve our dual
goals of rapid compression and e	cient display� To achieve higher compres�
sion� we must utilise a Vector Quantization scheme
 preferably one which can
exploit the multi�resolution structure of the WT� as was done in �� �� An e�ec�
tive quantization scheme can ensure high compression ratios while maintaining
image quality� particularly when followed by an entropy coding scheme such as
Hu�man coding�

���� ��D Area Interpolation
Our ��D multi�resolution approximations are required to have a �xed polyno�
mial character over squares with support ��jk� �j�k � ����� This coherence is
not exploited in our decoding� since the Di�erence Engine is inherently one
dimensional� This state of a�airs could be recti�ed if two�dimensional interpo�
lation were used� That is� instead of interpolating along spans only� we could
also interpolate across scan�lines� Naturally� the �nal instruction stream would
have to be a one dimensional pixel stream � we could thus maintain the Dif�
ference Engine and precede it by a �Y�processor� which would accept �square�
area primitives� each supporting a spline patch� and then perform a di�erence
interpolation scheme in the y�direction� outputting a scan�line�s worth of Dif�
ference Engine instructions after each new scan�line� We would be required
to produce eight di�erences per ��D instruction� In addition� we would need
corresponding instruction �elds for the y starting position� initial intensity and
the span length �the same for both dimensions�� Thus� to interpolate a block
of size n � n� we would have to produce �� pieces of information� compared
with the 
n �
 �elds per span over n scanlines� required for a straight Dif�
ference Engine interpolation� With larger block sizes� the gain would become
more signi�cant� The fact that we are now interpolating in ��D would cause a
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reduction in the size of the squares we could accurately interpolate � in the
region of ��x�� with �� precision bits for quadratic interpolation� This is not
really a limitation since spans of ��x�� pixels correspond to an eighth level
approximation � something we would be unlikely to require�

���� Adaptive multi�resolution encoding
Another possibility� which might reduce blurring� is to use an adaptive synthe�
sis procedure� rather than using a �xed level of approximation� we generate
instructions to produce detail where necessary� We can perform such a recon�
struction because our image is the sum of a sequence of detail images and a
low�resolution approximation image � see Equation �� ��
Such a scheme would produce Di�erence Engine instructions to reproduce i�

the low level approximation image and ii� the important regions of the detail
images� These important detail regions will correspond to large detail coe	�
cients
 hence� our level of thresholding would determine the number of detail
instructions that are generated and� consequently� the total number of proces�
sor instructions� There are a number of issues that would have to be addressed
before such a scheme could be successfully implemented�
This scheme will be most appropriate if our detail coe	cients are clustered

around major texture features� with sparse regions where these coe	cients are
zero or may be approximated by zero� From the support of the processed detail
coe	cients we can determine the important non�zero detail areas in our detail
images and hence the spans across a scanline with which these regions intersect�
Calculation of the detail image� gk�l�m�� values requires the evaluation of the

functions &�p	�i� j� which is signi�cantly more expensive than evaluating %�i� j�
�we have three wavelets�� However� if the detail regions are sparse enough this
overhead should be less telling� One could also attempt to accelerate these
computations by means of LPTA �Linear Pascal Triangular Algorithms� ���
pages ��$+�$����
From our point of view the central issue is the number of processor instruc�

tions that we can save when compared to the high�resolution baseline case�
in which we must individually set each pixel� Unfortunately� this problem is
highly dependent on the image � images with little texture will require few
#detail��lling� instructions� while those with a high level of important texture
information will require many such instructions� The level of thresholding on
our detail coe	cients will directly control the number of these instructions�
The automation of such thresholding is a non�trivial problem� since there is lit�
tle agreement on the properties that an objective image �delity metric should
satisfy� Without an extensive analysis� there is little one can say aside from the

fact that our gain over the baseline will be bounded below by �j

m � �� Thus� for
su	ciently large j� the level of detail we wish to reproduce will be the primary
factor determining the number of instructions we require� Care would have
to be taken� however� to ensure that we do not permit excessive detail��lling
instructions to be generated� under no circumstances should we produce more
instruction than the baseline count�

�
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���� More e�cient compression
Using Vector Quantization with a wavelet�based compression scheme can pro�
vide compression ratios of around � �� with very good reproduction �� �� The
possibility exists to improve the compression potential of the wavelet coding
markedly by utilising a so�called �second generation� scheme� which exploits
features inherent in the human visual system� One approach is to extract
and code the visually relevant edge information �which produces an extremely
compact encoding� and then to code the residual error using wavelets� This
approach� a modi�cation of the one proposed by Carlsson ���� forms the the
basis of a compression scheme employed by Froment and Mallat ����
Such a coding should achieve better compression because the edge image we

extract contains most of the high�frequency information � it is this information
that gives us large WT coe	cients� We are currently investigating a coding
scheme which combines all the above elements�
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Appendices

A� Implementational data
This appendix provides the data one needs to implement the quadratic �m � ��
cardinal spline MR scheme� If a higher order quasi�interpolation operator or
more terms in the fag� fbg sequences are desired� then one must consult �
� ���
The coe	cients �ij �for the case k � �� �� are produced when applying the

convolutional operators speci�ed below to the image data� In Figure $� the
matrix represents the support �i�e� grid�points� over which the coe	cients of
the intensity samples Iij are non�zero� The centre of the matrix represents the
coe	cient of Iij �
Cardinal splines satisfy the following recursive identity�

Nm�x� �
x

m� �
Nm���x� �

m� x

m� �
Nm���x� �� ����

where N��x� � 	����
�x�� These formulae can easily be expanded to explicit
�non�recursive� de�nitions� Through the use of LPTA�s �Linear Pascal Trian�
gular Algorithms� ���� one can derive formulae to calculate the values of both
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Figure 
� The arrangement of coe	cients of the quasi�interpolation operator
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Table 
� The reconstruction sequences for case m � �
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Table �� The decomposition sequences for the case m � �

our splines and scaling functions e	ciently� We did not pursue this approach�
The decomposition sequences are derived from the roots of an Euler�Frobenius
polynomial �
�� This complex polynomial �of order �m� �� is de�ned as

E�m���z� � ��m� ��,

m��X
j
�m��

N�m�m� j�zj�m��

and clearly has an intimate relationship with the cardinal splines� We do not
have enough space to develop this approach further here� Interested readers are
referred to �
� ��
 it should be noted that �
� contains some transcription errors
in the quadratic decomposition sequences� By utilising the formulae presented
there� one can check the sequences and produce additional terms �Table ��
contains the sequences we used��
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