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Dedicated to the respectful memory of Dr. Johannes Willem de Roever

In this introductory paper, dedicated to the respectful memory of Dr. Jo-
hannes Willem (Jowi) de Roever, | discuss some ideas and motivations lying
behind the deep and intriguing theory of hyperfunctions and close classes of
analytic functionals, a domain of mathematics where Jowi de Roever made
a worthy contribution.

GENERALIZED FUNCTIONS

In the early fifties it became clear that the development of modern mathemat-
ical physics essentially needs a generalization of the concept of a function. For
example, it was proved that fundamental physical axioms imply that quantum
fields cannot be described by usual functions, having values in all points, and
that some singularities should be present. As a matter of fact, quantum physics
provided mathematicians with a natural way of this generalization. Namely,
one of the basic principles of quantum theory is the concept of measurement.
To get the idea, suppose that some physical quantity is described by a function
y = f(z), and we want to evaluate it at a point z9. To do this we use some
physical instrument, characterized by an aperture function y = ¢(z). The
process of measurement gives us the mean value (see Figure 1)

/f z)dx ~ f m0/¢> Ydz = f(z9) /qS

*Lecture presented on invitation at the Dutch Mathematical congress, April 1993,
Amsterdam
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FIGURE 1.

In particular, different instruments and different tunings of the same instrument
produce different results! Hence, our physical quantity is in fact described by
a linear functional ¢ — f(¢) = [ f(z)¢(x)dz, where ¢ belongs to some space
of smooth functions. Now, it is quite natural to admit linear functionals of a
more general form to do this, and to define generalized functions as continuous
linear functionals over an appropriate space of test functions. This idea was
implicitly used in the thirties by P. A. M. Dirac in his work on quantum me-
chanics (the famous §-function). On the other hand, also in the thirties, S. L.
Sobolev systematically used generalized derivatives to solve the Cauchy prob-
lem for hyperbolic equations. In fact, S. L. Sobolev has laid the foundations
of the theory of generalized functions [1]. The full exposition of the theory
was given by L. SCHWARTZ [2] in 1950-51, who introduced the space of dis-
tributions. After that, generalized functions became rather popular, and were
extensively used in pure and applied mathematics, especially in the theory of
partial differential equations (PDEs) and mathematical physics.

Thus, generalized functions are elements of the dual space to a test function
space. The concrete choice of the test functions space depends on a problem
under study, but usually it consists of smooth functions subject to some growth
or support conditions. Operations over generalized functions are defined as the
dual ones to corresponding operations over test functions. For example, the
partial derivative D, f, where f is a generalized function, and D, = %, is
defined by

(Duf)(@) = =f(Dud) for all test functions @,

while the Fourier transform F[f] is defined by
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F[fl(¢) = f (Fl9]) for all test functions ¢,

where F[¢] is the conventional Fourier transform of ¢. It is said that a general-
ized function f is vanishing on an open set O if f(¢) = 0 for all test functions
¢ having their supports in O, and the support suppf of f is then defined in
the standard fashion.

It is clear that the set of solutions of a given PDE depends on a choice of
a space where these solutions are searched for. So when we pass from smooth
functions and classical solutions to generalized functions and generalized so-
lutions this set increases. It is remarkable that often the choice of a function
space must be included in the axioms of a physical theory. Thus, admissible
singularities of a quantum field in the configuration space determine its pos-
sible high-energy asymptotics in the momentum space. Such considerations
motivated the search and the study of new functions and new spaces of gen-
eralized functions. The basic model is the Schwartz distributions. Here the
test functions space D(O) over an open domain O cousists of all C*°-functions
having their supports in O. Distributions f € D'(O) locally have a finite order,
i.e., f = P(D)g on every compact subset K of O, where P(D) is a partial dif-
ferential operator with constant coefficients, g is a continuous function on K,
and the order of P(D) depends on K. To get generalized functions of infinite
order or ultradistributions one should pass to more smooth test functions, i.e.,
to test functions with controlled growth of high order derivatives, like Gevrey
classes or analytic functions. But then we encounter the problem of defining
the support of an ultradistribution, because in the quasianalytic case there are
no functions with compact supports. In order to overcome these contradictions
M. SaTO [3] proposed a quite new concept of hyperfunction.

HYPERFUNCTIONS OF ONE VARIABLE
We start with the case of one independent variable. Let w be an open interval
in R, 2 be its complex neighborhood in C, so w = Q2N R. Let

QOF={z=x+iyecQ:y20}
be the intersections of  with the upper and lower half-plane (see Figure 2).

FIGURE 2.
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Let f(z) € H(Q") be a function analytic in Q. Suppose that for every ¢(z) €
7T (w) with compact support in w, where 7 (w) is some test function space, there
exist a limit

bvf(¢) = lim [ f(z+iy)é(z)de,
y—+0 /,
and this limit uniquely defines a generalized function bvf € 7'(w), then bvf
is called the generalized boundary value of the analytic function f(z). Usually,
the boundary value bvf exists in a given space 7'(w) if f(z + iy) satisfies some
estimate when y — +0. For example, bv f exists in D'(w) if for every compact
K C w there exist M, p,e > 0, such that

|f(z+iy)| <My ™ forallz € K,0<y<e.

As a rule, generalized functions have analytic representations. Namely, if T'(w)
is a typical space of generalized functions, and g € 7'(w), then there exist a
complex neighborhood © of w and analytic functions f* € H(Q%), such that

g=bvft +bvf~ in T'(w).

EXAMPLE A nice and familiar example is the Dirac 6 —function, which can be
written as

1 1 1
6(z) = — — — — ).
2me \z—10 x40
Moreover, two pairs {f;", f7'} and {f;", f; } represent the same generalized
function g iff there exists an analytic function f € H(2), such that

I = 1 = £flo=.

Now, the bright idea of Sato was to give up any growth conditions! Namely,
for an open interval w C R he considers pairs {f¥, f~} of arbitrary analytic
functions f* € H(Q*), where the complex neighborhood Q depends on a pair,
he introduced the equivalence relation

{f*,f7} ~0iff f£¥ = +£f|q+ for some f € H(Q),

and defined a hyperfunction g over w as the equivalence class [fT, f7] of a pair
{f*, f~}. The linear space of all hyperfunctions over w he denoted by B(w).

At first glance, this definition is rather abstract. To see its essence I present
some simple properties of hyperfunctions.

1. Embedding of generalized functions into hyperfunctions.

Every space T'(w) of generalized functions having analytic representations is
embedded into B(w) via this analytic representation. So, the concept of hyper-
function is indeed a wide extension of the concept of generalized function.

2. Differentiation.
The derivative Dg of a hyperfunction g = [f*, f~] € B(w) is defined as the
equivalence class
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Dg=[ff,f7] € Bw),

where f* = 9f*/0z. This definition agrees with the above embedding of
generalized functions.

3. Multiplication by real analytic functions.

The product ¢g of a real analytic function ¢ € A(w) and a hyperfunction
g=1[f",f7] € B(w) is defined as the equivalence class

bg=loft,of7] € Bw),

where p(z) € H(Q) is an analytic extension of ¢(z) into some complex neigh-

borhood Q of w.

By these rules the action of a linear differential operator
P(D) =) ai(z)D',  ai(z) € AWw),

is defined over B(w), and we can look for hyperfunction solutions of a differential
equation

P(D)g = h, g, h € B(w).
If h is a generalized function, then any generalized solution g of the above equa-
tion will be its hyperfunction solution, also, but even in this case new solutions
may appear. Moreover, in hyperfunction classes uniqueness and existence the-
orems take their natural closed form.
4. Hyperfunction boundary values.

For every analytic function f € H(QT) (f € H(Q7)) its hyperfunction boundary
value bvf € B(w) is defined as the equivalence class [f,0] ([0, f]). Notice that

bvf = [fla+,0] = [0, fla-] for all f € H(Q).

5. Restrictions.
Let w D wp be open intervals in R. For every hyperfunction g = [fT, 7] € B(w)
its restriction g|,, € B(wo) is defined by the rule

Iluo = [f+|3’23'7f7|3’20—]7
where Qp =QN{z=24+1iy: 2 € wy} (see Figure 3).
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FIGURE 3.

6. Sheaf of hyperfunctions.

Using the Mittag-Leffler theorem one can prove that if a hyperfunction g €
B(w), and g|,, = 0 for all a € A, where a family of open intervals w,,a € A,
covers w, then g = 0 on the whole interval w. In particular, the support suppg of
a hyperfunction g is defined in the usual way. Moreover, by the same theorem,
a hyperfunction can be defined locally. Namely, let again w,,a € A, be an open
covering of w, and let g, € B(wy),a € A, be a family of hyperfunctions with
the property: go = gg on wq Nwg for all o, 3 € A. Then there exists an unique
hyperfunction g € B(w) such that g|,, = ga for all @« € A. This means that
hyperfunctions on R form a sheaf, denoted by B. Notice that many classes of
generalized functions (for example Schwartz distributions) also form sheaves.
It is specific for hyperfunctions that the sheaf B is flabby. In more detail,

the restriction mapping B(w) — B(0) is surjective

for any open sets 8 C w C R. In particular, every hyperfunction g € B(w) can
be extended to some hyperfunction h € B(R), h|, = g. Moreover, there exists
an analytic function f € H(Q?), @ = C\ @, such that g = [f|q+,—f|a-], Where
w is the closure of w.

7. Hyperfunctions with compact supports.
Let a hyperfunction g € B(w) have a compact support K C w. Then there
exists an unique analytic function f € H(Q2), @ = C\ K, such that

f(z) = 0, when |z| = oo, and g = [f|o+, —fla-]-

Consider the linear space A(K) of all real analytic functions on K with its
natural locally convex topology, and let A'(K) be the dual space of real analytic
functionals with their supports in K. The above representation defines an
element g € A'(K) by the formula

A(K) > §(6) = f F(2)pl2)dz,
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where p(z) € H(Q) is an analytic extension of ¢(z) into some complex neigh-
borhood Q of K, and a closed curve « in Q encircles K once (see Figure 4; for
simplicity we assume K to be a closed interval).

FIGURE 4.

This construction establishes an isomorphism of the linear spaces
By (w)—A(K),

where Bg(w) is a linear space of all hyperfunctions with their supports in K
(notice that By (w) does not depend on an open set w D K).

HYPERFUNCTIONS OF SEVERAL VARIABLES

In essence, hyperfunctions are a branch of complex analysis. No wonder that
the many—dimensional case is much more complicated, like it is for analytic
functions. To understand it, one should be intimately acquainted with algebraic
topology and cohomology theory, as well as with many—dimensional complex
analysis itself. I will try to give the definitions and elementary properties of
hyperfunctions using only elementary methods.

In one dimension every complex neighborhood () of an interval w splits nat-
urally in two parts QT and Q. Their counterparts in several dimensions are
"wedges” and more general complex domains ”tuboids” (J. Bros, D. IacoL-
NITZER [4]).

To describe them we need some preliminaries. Remind that a set C' C R™
is called a cone if Az € C for all A > 0 and =z € C. We say that a cone C;
is compact in a cone Cy, write C; C Cy, if C; C {0} UintCy, where M is the
closure and intM is the interior of a set M.

Let 7 : C* — R™ be the natural projection

C'osz=z+iy—n(z) =2z cR"

of the complex space C* onto the real space R™. Thus, for every complex set
M its real projection wM is defined, and for every x € wM the fiber M, =
{y e R* : z+iy € M} over z is defined. We shall speak of fiberwise properties,
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such as fiberwise convexity, fiberwise compactness, etc., understanding by this
that the corresponding property is satisfied for each fiber.

An open complex set V' C C" is called a profile over an open real set w C R™
if 7V = w, and every fiber V,, € w, is a cone. A simple example of a profile
is a wedge profile

V=w+iC, w is a domain in R®, C is an open cone in R".
In one dimension there are exactly three profiles
w+iR, w4+iRy, w4iR_

over an open interval w, where Ry = {22 0}.

An open complex set T' C C™" is called a tuboid with a profile V over an open
real set w CR* if T C V, 7T = 7V = w, and for every point a € w and every
open cone C' C V, there exists a number R > 0, such that the wedge

W ={lz—a|<R}+i{yeC:ly| <R}
= Bg(a) +iCr C T.

A simple example of a tuboid is an ”orange section”
T={z=z+iyeC":|z—a| <R,y € C},

where a € R?, C is an open cone, and R > 0. In general, a tuboid is something
like a twisted orange section.

Now, let T" be a tuboid with a fiber connected profile V' over w. Suppose an
analytic function f(z) € H(T) has locally slow growth when y — 0 in T, i.e.,
for every a € w and every cone C C V,, there exist numbers R, M,p > 0, such
that the wedge W = Bg(a) +iCg C T, and

|flz +iy)| < My™? forall z=xz+iyeW.

Then the function f has the distribution boundary value bvf € D'(w), locally
defined by the limits

buf(6) = lim /B | J i

y—»UinC
for all ¢ € D(Br(a)). Now, it was proved by A. MARTINEAU [5] that every

distribution g € D'(w) has an analytic representation

p
9= bvfa,  fa€H(Ta),
a=1

where T}, are some tuboids over w, and analytic functions f,(z) have locally
slow growth when y — 0 in T,, « = 1,...,p (notice that p depends on g).
Further, according to Martineau’s version of the ”"edge of the wedge” theorem

P
vafazo in D'(w),
a=1
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where analytic functions f, € H(T,) have locally slow growth when y — 0 in
tuboids T,, with profiles V,, iff there exist analytic functions fog3 = —fga €
H(Twp) of locally slow growth when y — 0 in tuboids T,,3 with profiles

Vap = chy (Vo UVg), «a,B8=1,...,p,
such that
p
fo= fap in TaNTay...NToy for a=1,...p.
B=1

Here ch,, (V. U V) denotes fiberwise convex hull of profiles V,, and Vj over w
(see Figure 5). Similar results are valid in many classes of generalized functions.

FIGURE 5.

Again, to define hyperfunctions over an open set w C R™ one should give up
growth conditions. Namely, in the linear space of all finite unordered families

{fla"'afp}: faEH(Ta)a

where T, are tuboids with profiles V,, over w, a = 1, ..., p, the natural number
p depends on the family, let us introduce an equivalence relation by the rule
{flv"'vfp} ~0

iff there exist analytic functions fog = —fga € H(Tug), @, 8 = 1,...,p, such
that

P
fa:Zfag in ToNTa1...NTy, for a=1,...,p,
B=1

where tuboids T,g have profiles Vg = ch,, (Vo U V). By definition, a hyper-
function g = [f1,..., fp] over an open set w C R™ is the equivalence class of a
family {f1,...,fp}. The linear space of all hyperfunctions over w is denoted
by B(w). Notice that for a hyperfunction g = [f1,..., fp] € B(w) analytic func-
tions fo € H(T.), tuboids T,, and even the number p are far from unique. In
particular, every hyperfunction g € B(w) has a representation
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g=|[fe; e =(e1,...,en) € {+1,-1}"], (p=2")

where analytic functions f. € H(Q°), tuboids Q¢ = QNC!, Q& C C* is a
complex neighborhood of w,

Cr={z=2+iyeC":y e R},
n-tants
]R? :{y:(ylvayn)eRn :Elyl >0776nyn>0}

In his original definition Sato used precisely this representation, and gave it a
cohomological interpretation

B(w) = H;(Q,H),

where H(Q,H) is the linear space of n-th relative cohomologies of an open
set w C R™ with coefficients in the sheaf H of germs of analytic functions in
C™. By the excision theorem, the space H?(2, H) does not depend on an open
complex neighborhood 2 of w. This definition allowed Sato to establish the
main properties of hyperfunctions, using powerful methods of algebraic topol-
ogy and theory of sheaves. Moreover, Sato’s definition is coordinate free, so it is
valid for any real analytic manifold. Also, taking different locally free analytic
sheaves, instead of the sheaf H, one gets hyperfunctions of different types. The
definition I presented here is close to the microlocal point of view, developed
in seventies by M. Sato, T. Kawai, M. Kashiwara, J. Bros, D. Iagolnitzer, J.
M. Bony, P. Schapira, F. Treves and others (see, for example, [6], [7]).

We see that the definition of hyperfunctions (especially the original definition
of Sato) is rather abstract, and to apply hyperfunctions to concrete problems
one should know the necessary algebraic tools. Thus, the application of hyper-
functions to linear partial differential equations with real analytic coefficients
produced remarkable results, but many of these results are known only to a nar-
row circle of specialists in microlocal analysis. On the other side, the absence
of a natural physical interpretation of hyperfunctions and the unusual math-
ematical apparatus, essentially restricted an application of hyperfunctions to
mathematical physics, the traditional source of new mathematical ideas. No
wonder that from the start there were made attempts to give a functional
description of hyperfunctions.

ANALYTIC FUNCTIONALS
The first such description was presented by A. MARTINEAU [8], who proved
that hyperfunctions are locally represented by real analytic functionals.

Let us look at Martineau’s construction in some detail. First, for any compact
K € R” there is an isomorphism of the linear spaces

Bi(w)—=A(K),
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where Bg(w) is a linear space of all hyperfunctions with their supports in
K (cf. the one dimensional case above, the explicit formula, realizing the
isomorphism, is no longer valid, of course), A'(K) is the linear space of real
analytic functionals with their supports in K. Further, when an open set w is
bounded, every hyperfunction g € B(w) has an extension G € B(R"), G|, = g,
with a compact support suppG C w, hence the isomorphism

B(w)—A'(w)/A'(6w)

is defined, where w is the closure and dw is the boundary of w. At last, every
hyperfunction g over an (unbounded or bounded) open set w is completely
defined by its restrictions g, = glu, € B(wa), @ € A, where w, are some
bounded open sets covering w (i.e., w = Ugcawa), A is a finite or infinite set
of indices. Thus, for any open set w we get the local correspondence

Bw)3gm—h= glg— [h] € A'(8)/A(99),

for any bounded open subset 8 of w.

These considerations, as well as the studies of new and new classes of ultradis-
tributions, including quasianalytic ones, drew interest to analytic functionals,
i.e., continuous functionals over linear spaces of analytic functions, equipped
with natural topologies. The main problem here is the absence of a concept
of support of an analytic functional, because there are no analytic functions
with compact supports. The only reasonable substitute is the carrier, defined
in terms of seminorms, assigning the topology of the test space. For example,
the locally convex topology of the space H(f2) of all analytic functions in an
open complex set 2 C C" is given by seminorms

lolx = sup |o(2)], p € H(Q),
zeK

where K runs through all compact sets in 2. Hence, a compact set K is called
a carrier of an analytic functional h € H'(Q), I shall write K = carrh, if for
every complex neighborhood @ of K, such that the closure © is compact in Q,
there exists a positive number M, such that

|h(9)| < Mlplg, for all p € H(Q).
The major defect of the carrier is that
K, = carrh and Ky = carrh generally doesn’t imply K; N Ky = carrh,

so the least carrier is not obliged to exist. Notice that the least carrier exists,
and is called the support, in the real analytic case, i.e., for every real analytic
functional h € A'(R™), where

A(w) = lim ind H(1),
QDw
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where 2 runs all complex neighborhoods of a real open set w C R™. This
property was essentially used in Martineau’s definition of hyperfunctions.

A special interest to the concept of support is connected with the fact that
it plays an important role in mathematical physics, describing local properties
of physical objects. In particular, such concept is necessary to formulate the
causality principle in the configuration space and the spectral property in the
momentum space. Further, the Fourier transform relates properties of a physi-
cal object in the configuration space and its spectral function in the momentum
space. A splendid example of results in this field is the Jost-Lehmann-Dyson
representation, providing an explicit description of functions satisfying certain
support conditions both in configuration and momentum spaces (causality and
spectrum).

These considerations stimulated the study of different classes of analytic
functionals and their Fourier (more precisely, Laplace) transforms. The starting
example is the space H'(€2), where Q@ C C" is a complex domain. Here, the test
function space H(§2) contains all linear exponents ¢, where e¥(z) = i¢*, with
parameter ( € C", independent variable z € Q, and (z = (‘2! + ... + (™2™
The Laplace transform L[g] of an analytic functional g € H'(Q) is defined by
the formula

L[g)(¢) = g(e),  (eC™

One can easily check that L[g] is an entire function (i.e., analytic in C*) of
exponential growth. Namely, if carrg = K then for every € > 0 there exist a
positive M such that

|L[g](¢)] < MeSK(CHE‘C‘, for all ( € C",

where

SK(C) = sup %(’LCZ), C € (Cna

ze€K

is the support function of the compact K C Q, R(i(z) is the real part of i(z.
Thus, we have the linear mapping

L :H'(Q) — Exp(C"),
where Exp(C") is the linear space of all entire functions of exponential growth.
If © is a Runge domain then linear combinations of exponents e are dense in
H(R?), and the mapping L is injective. Moreover, if the domain Q2 is convex
then the image L[H'(€2)] has a simple description [9]
Lpe@)] = {70 € ) O] < Mes(© forall ¢ € €
for some compact K = K(f) C Q and M = M(f) > 0}.

To get new classes of analytic functionals it is enough to replace seminorms
| - |k with weight seminorms
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o = Sgg{e_”(z)lw(dl}a p € H(Q),

where p(z), z € Q, is some real weight function (in the original case of the
seminorms | - | the function p(z) is the indicator function of a compact K,
ie, p(z)=0if z € K, and p(z) = +o0 if z € @\ K). In particular,

|eiC|p — sup{e—P(Z)+9?(iCz)} — eﬂ*(f),
z€Q

where

P () = Sug{%(i@) -p(2)},  CeCr,
ze
is the Legendre transform of the weight function p. Now, if an analytic func-
tional g € H'(€) is bounded by a seminorm | - |, then its Laplace transform

L[g)(¢) = g(e*), ¢ € domp",

is defined, where
domp® = {¢ € C" : p*({) < o0}

If the domain © and the weight function p are good enough (for example,
and domp* are convex complex domains), then the Laplace transform has nice
properties, like in the original case with seminorms | - |x.

Notice that the Fourier transform of a functional as the dual operation,
defined above, usually appears as a limit case of the Laplace transform. Many
researchers don’t separate these operations and use the joint term Fourier-
Laplace transform or simply Fourier transform.

A profound study of different classes of analytic functionals with real and
complex carriers and their Fourier-Laplace transforms was done by Jowi de
Roever in his thesis [10].

There is a special class of analytic functionals closely connected with the
Fourier-Laplace transform, when test function spaces consist of functions ana-
lytic in tube domains

Q=TP =R"+iB={2=2+iy:y € B}, B C R™ is a base

with controlled growth in real directions, i.e., weight functions p = p(z) do not
depend on y.
A simple but important space of the last type is the space

B(E) = {0 € HTP): sup (o)} <o B = {lv] <

for some € = €(¢p) > 0}.

This space has a natural topology of the inductive limit of Banach spaces. For
every function ¢ € ®(R") the Fourier transform
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ﬂﬂ@r=/a@wwm

is defined. It is easy to check that F[y] € ®(R™). Moreover, there is the
isomorphism

F: 3(R")—S3(R"),

and the dual isomorphism of the dual spaces. Elements of the dual space
®(R™) are called Fourier hyperfunctions, and below I shall explain why.

FOURIER HYPERFUNCTIONS

First, the one dimensional case. Let g € B(w) be a hyperfunction over an open
interval w. Then there exists an analytic function f € H(C \ @) representing
g,ie., g=[f",f7], where @ is the closure of w,

fi::*:_ﬂcj:, (Ci:{,z::v+iy:y20}.

Moreover, such representing function f is not unique, and one can choose a
representing function bounded or even decreasing fast in real directions! In
particular, there exists a representing function f of g of an infra-exponential
growth in real directions, i.e., satisfying the estimate: for every € > 0 and
0 < a < 8 < oo there exists M = M (e, a, 8) > 0, such that

|f(z +iy)] < Me®l forall —oco <z < +o0and a< |yl <B.

Let f be a representing function of g of an infra-exponential growth, define an
analytic functional § € ®'(R) by the formula

ﬂmawngra/ﬂmnmww+mww—/}u—wwww4mma

where yo = yo(p) > 0 is small enough. The described procedure is called
an extension of a hyperfunction g to a functional §. In general, a bounded
representing function f of g is not unique, so the extension g is not unique,
also. (Notice that if @ = K is a compact then

mwsz@waw,

where a closed curve 7 is shown in Figure 4.)

On the other side, for every analytic functional h € ®'(R) there exist func-
tions f*(z) analytic in the half-planes C* = {z = = + iy : y2 0} and of an
infra-exponential growth in real directions, such that

M@=/ﬁ@+%wwﬂww+/F@—%ww4mWnweﬂm

where yo > 0 is small enough, again. Clear, the pair {f*, f~} defines a hyper-
function h|r = [fT, f~] € B(R). This hyperfunction is called the restriction of
a functional h.
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Thus, elements of the space ®'(R) are, in fact, extensions of hyperfunctions.
Taking into account that it is invariant under the Fourier transform, one can
easily understand why elements of ®'(R) are called Fourier hyperfunctions.

The theory of Fourier hyperfunctions was developed by T. KAwWAT [11] using
the above mentioned Sato’s general cohomological approach of SATO [3].

Namely, T. Kawai considered the compactification D" = R® U S™ ! of R®
by means of the ”sphere of infinite radius” S% ! and for every open subset
Q of the complex space D" + iR™ he introduced the linear space ﬁ(ﬂ) of all
functions f(z) analytic in the restriction Q' = QN C", C* = R* + (R", and
having infra-exponential growth, i.e., satisfying the estimate: for every ¢ > 0
there exists M = M(e) > 0, such that

|F(2)] < Mecl! forall z =z +iy € .

The collection of all spaces 7‘7(9) forms a presheaf over D" +iIR". The associated
sheaf is denoted by H. Notice that the restriction 7‘~l|cn coincides with the sheaf
‘H of germs of analytic functions in C™.

Then, following the Sato’s general approach, for every open subset w of D™
Kawai defined the linear space

R(w) = H}(Q,H),

of n-th relative cohomologies of w with coefficients in the sheaf H. By the
excision theorem, the space H?(2,H) does not depend on an open complex
neighborhood @ C D™ 4 iR™ of w. Elements of the spaces R(w) are called
Fourier hyperfunctions.

Kawai proved the following statements.

(a) The collection of all spaces R(w) forms a flabby sheaf R over D". In par-
ticular, every Fourier hyperfunction g over some open w C D™ has a standard
representation

g = [fe , €= (617"'7571) € {+17_1}n]7

where representing functions f. € H(C") have infra-exponential growth in real
directions, i.e., satisfy the estimate: for every € > 0 and 0 < r < R < oo there
exists M = M (e,r, R) such that

|f5|§MeE‘Z‘ forall z=a +iy € CC Nn{r < |y| < R}.
Remind that CI = R™ +(R?, with n-tants
]R? :{y:(ylvayn) € R" :Elyl >0776nyn>0}

(b) The restriction R|g~ of the sheaf R to R™ coincides with the sheaf B
of hyperfunctions. In particular, every hyperfunction g € B(w), w is an open
subset of R™, can be extended as a Fourier hyperfunction to D", i.e., there
exists a Fourier hyperfunction h € R(D"), such that the restriction hl|, = g.

(¢) There is the isomorphism
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R(D™)=—=d'(R"™),

given by the following procedure. For a Fourier hyperfunction g € R(D™) with
a standard infra-exponential representation g = [f.] the analytic functional

g € ®'(R™) is defined by the formula
i0) =Y [ Lo+ inde+ivide, e o)

where y. € R?, |y.| is small enough, the sum is taken over all £ € {41, —1}".
Notice that, in fact, Kawai has proved a more refined version of this statement.
Thus, every hyperfunction (with noncompact support, also) can be realized
(nonuniquely) as an analytic functional on ®(R™). This provides a possibil-
ity to use tools of functional analysis (including Fourier-Laplace transform)
while solving hyperfunction problems. In his original paper [11] Kawai applied
his theory to the study of hyperfunction solutions of linear partial differential
equations with constant coefficients. There are other applications of Fourier
hyperfunctions to differential equations. In mathematical physics Fourier hy-
perfunctions were also used as a basis for the formulation of a hyperfunction
version of axiomatic quantum field theory. But, at that time interests and main
trends of quantum physics had changed, and this work had a small impact.
In the seventies, hyperfunction theory adopted the microlocal point of view,
mentioned above. An important concept here is the singular spectrum, the
direct counterpart of the analytic wave front introduced by L. Hérmander in
distribution theory. This concept relates possible analytic representations of a
hyperfunction (or a distribution) and directions in which its Fourier transform
is decreasing. A clear introductory exposition of microlocal theory without any
algebra can be found in L. HORMANDER [12], but I finish my talk at this point.
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