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Seymour�s conjecture on binary clutters with the so�called weak �or Q� ��
max��ow min�cut property implies � if true � a wide variety of results in
combinatorial optimization about objects ranging from matchings to �mul�
ticommodity� �ows and disjoint paths� In this paper we review in particular
the relation between classes of multicommodity �ow problems for which the
so�called cut�condition is su	cient and classes of polyhedra for which Sey�
mour�s conjecture is true�

�� Introduction
Polyhedral Combinatorics studies combinatorial problems using the theory of
linear inequalities� One of its open questions is� for which �� ��matrices A �
Rm�n is

P �A� �	 fx � Rn jAx � �
x � �g

an integral polyhedron� which means that it has integral extreme points only�
For some subclass of �� ��matrices this comes down to a question about disjoint
paths and multicommodity �ows� Consequently� many partial answers to the
polyhedral question come with one or more multicommodity �ow theorems�
Over the years the research on this issue in combinatorial optimization has
been driven by the relevance of disjoint paths for applications varying from
transportation problems to VLSI layout on one side and the study of the inte�
grality of polyhedra on the other side� In this paper we will review old and new
pairs of results for polyhedra and for multicommodity �ows� The research to
the more recent of these results were particularly motivated by a conjecture by
Paul Seymour� which 
 if true 
 contains a wide variety of polyhedral results
on combinatorial objects� ranging from matchings to disjoint paths�

�� Odd circuits and polyhedra
A signed graph is a pair �G��� consisting of an undirected graph G and a
collection � of its edges� The edge set of G will be denoted by E�G�
 the
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node set by V �G�� A collection F of edges in G is called odd in �G��� if
jF ��j is odd� otherwise F is called even� So we speak of odd and even edges�
circuits� cycles� etc� A circuit is a connected �sub�graph with all degrees two�
A cycle is a �sub�graph with all degrees even� The collection of cycles in G is
denoted by G� For the collection of odd circuits in �G��� we write ��G����
As we are mainly concerned with edge sets we will identify a subgraph of G
with the edge set of that subgraph� So �C is a circuit in G� may also mean�
�C is the edge set of a circuit in G�� A cut is a set of edges of the form
��U� �	 fuv � E�G�ju � U� v �� Ug for some U � V �G�� If S is a �nite set
�typically E�G� or ��G����� y � RS and T � S� we write y�T � �	

P
t�T yt�

We call a signed graph �G��� weakly bipartite if

��� P �G��� �	 fx � R
E�G�
� jx�C� � � �C � ��G����g is an integral polyhe�

dron�

Clearly� weak bipartiteness only depends on the collection of odd circuits in
�G���� So it is invariant under re�signing� that is replacing � by the symmetric
di�erence � � ��U� of � with some cut ��U�� We call �G��� and �H���
isomorphic if they are related through re�signing and graph�isomorphism� We
call �G��� bipartite if � 	 ��U� for some U � V �G�� Clearly� �G��� is bipartite
if there are no odd circuits� or equivalently if �G��� is isomorphic to �G� ���
This concurs with the terminology for ordinary graphs when we consider those
as signed graphs with all edges odd� We will denote �G�E�G�� by eG�
It should be noted that specializing any of the results in this paper to ordinary

graphs �with all edges odd� does not really yield weaker statements� Still� we
consider signed graphs because they enable a more natural presentation of
results and arguments than when we con�ne ourselves to ordinary graphs� One
reason for that is that the class of polyhedra P �G��� is closed under intersection

with coordinate hyperplanes� whereas the class of polyhedra P � eG� is not�

Minors � intersection with and projection on supporting hyperplanes

Obviously� the orthogonal projection of an integral polyhedron in RE�G� on the
hyperplane de�ned by xe 	 � for any e � E�G� is integral too� In case of
P �G��� this projection is P ��G��� n e�� Here �G��� n e �	 �G n e�� n feg��
where G n e is obtained from G by deleting edge e� Similarly� when P �G��� is
integral� then so is its intersection with the �supporting�� hyperplane xe 	 ��
In �G��� this corresponds to contracting e in �G���� This operation is de�ned
as follows� �rst re�sign �G���� if necessary� such that e becomes even� next
contract e in G �that is remove it and identify its end nodes�� The resulting
signed graph will be denoted by �G����e� Clearly� the de�nition of �G����e is
only de�ned up to re�signing� But� as this does not a�ect weak bipartiteness�
this is speci�c enough for our purposes�
A minor of �G��� is the result of a series of re�signings� deletions and con�

tractions� We say that �G��� has a �H����minor if it has a minor isomorphic
to �H���� So we have�
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��� The class of weakly bipartite signed graphs is closed under taking minors�

Non�weakly bipartite signed graphs � Seymour�s conjecture

It is an easy exercise to show that the signed graph fK� consisting of the com�
plete graph on � nodes with all edges odd is not weakly bipartite� Indeed�
the vector � �� � � � � �

�
� � is contained in P �fK��� but cannot be written as a convex

combination of integral vectors in that polyhedron� as each such integral vector
x satis�es x�E�K��� � � � ��� �

� � A conjecture by Seymour prophesies that
fK� is the only minimal non�weakly bipartite signed graph�

��� Conjecture� �Seymour ���� 	�
� �G��� is weakly bipartite if and only

if it has no fK��minor�

Intermezzo� Binary clutters
In fact� Seymour states his conjecture in a more general context� Let C be a
binary space on a �nite ground set E� i�e� a linear subspace of the linear space
GF ���E over the two element �eld GF ���� Think of C as a collection of subsets
of E closed under taking symmetric di�erences� Let � be a subset of E� Then
we denote by �C��� the collection of elements C � C with jC � �j odd� So
�C��� is an a�ne subspace of C of co�dimension � �unless it is empty�� The
collection of inclusion�wise minimal elements of �C��� is denoted by ��C����
Any such set systems is called a binary clutter� We call �C���� and also ��C����
weakly bipartite if P �C��� �	 fx � RE� jx�C� � � �C � �C����g is an integral
polyhedron� Conjecture ��� is a special case of�

��� Conjecture� �Seymour ���� 	�
� ��C��� is weakly bipartite if and
only if it has no minor isomorphic to one of the following three binary
clutters� ��fK��� the complements of cuts in K�� the lines of the Fano
plane�

We leave it to the reader to �nd out howminor should be appropriately de�ned�
�It should correspond to projection on and intersection with hyperplanes xe 	
��� Conjecture ��� is ��� restricted to graphic spaces� i�e� when� for some graph
G� C 	 G �which is a binary space�� Of the three con�gurations in ��� only the
�rst one can occur when C is graphic� Actually� none of the three con�gurations
in ��� can occur when C is cographic� that is the collection G� of cuts of a graph
G� So� according to Seymour�s conjecture� �G���� should be weakly bipartite�
This is in fact a theorem� It amounts to the polyhedral characterization of
T �joins due to Edmonds and Johnson ��� which is equivalent to Edmonds�
well�known polyhedral characterization of �perfect� matchings �Edmonds �����
Seymour calls weakly bipartite binary clutters� binary clutters with the Q� �

max��ow min�cut property� The reason for his terminology will be obvious
after reading this paper� Our terminology originates from Gr�otschel and
Pulleyblank ����� They introduce the notion of weak bipartiteness for or�

dinary graphs� so for eG� in relation with the max�cut problem� The max�cut
problem asks for a maximum weight cut in a graph� In general it is NP �hard
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�Karp ������ but for weakly bipartite graphs it is polynomially solvable� The

reason is that� if eG is weakly bipartite� minimizing a weight�function over P � eG�

 which is solving a linear programme
 yields the complement of a maximum
weight cut�
In the context of general ����matrices� also the term ideal is often used� refer�

ring to the similarity with perfect matrices �	 perfect graphs� where systems
of the form Ax 	 � are considered� Ideal matrices are even less understood
than weakly bipartite graphs� Not even a conjecture is available 
 at least not
just in terms of forbidden minors� In fact� there are over a thousand �minor�
minimal non�ideal matrices� known with just �� columns �Cornu
ejols and
Novick ����� But there are hopeful results as well� in particular by Lehman
���� �cf� Padberg �� �� Seymour ������

	� Odd Circuits� paths and flows
We relate weak bipartiteness with multicommodity �ows�

The Multicommodity flow problem�
Given an undirected graphG� a collectionD � E�G� of demand edges d 	 sdtd�

and a capacity	demand�function c � Z
E�G�
� � Do there exist paths Pdi in G nD�

going from sd to td� and �ow values fdi � � �with i 	 �� � � � � nd
 d � D�� such
that�

ndX
i��

fdi 	 cd �d � D� �For each d � D
 there goes a
total amount cd of �ow in GnD
from sd to td
 ���

X
d�D

ndX
i���Pdi�e

fdi 	 ce �e � E�G� nD� ��� such that no edge e carries
more �ow than its capacity ce��

End nodes of demand edges are called terminals� Note that� against custom� we
included the demands as edges in the graph� We denote an instance of the mul�
ticommodity �ow problem by �ow�G�D
 c�� If additionally we require the �ows
fdi to take integral values� we write path�G�D
 c�� The disjoint paths problem
is the collection of instances path�G�D
��� which ask for edge�disjoint paths
Pd �d � D� where Pd runs from sd to td� When the answer to �ow�G�D
 c�
�resp� path�G�D
 c�� is a�rmative we say that �ows �resp� paths� exist for
�G�D
 c��
A natural necessary condition for the multicommodity problem to have a

solution is the

��� Cut�condition� If U � V �K�
 then c���U� �D� 	 c���U� nD��

The cut�condition is not always su�cient for �ows to exist �see Figure ��� The
relation between multicommodity �ows and weakly bipartite graphs lies in the
question of the su�ciency of the cut�condition�
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Figure �� Bold edges are in D� c �	 ��

� � If �G�D� is weakly bipartite and c � Z
E�G�
� then the cut�condition is

su
cient for the existence of �ows for �G�D
 c��

The converse is not true� but�

��� �G��� is weakly bipartite if and only if for each �G�D� isomorphic to

�G��� and for each c � Z
E�G�
� the cut�condition is su
cient for the exis�

tence of �ows for �G�D
 c��

To see that � � is true indeed� observe that �ows exist if and only if�

��� c�D� 	 maxfy��� j
P

C���C�e yC 	 ce �e � E�G��
 y � R��g


where � �	 ��G�D�� The reason is that each path from sd to td closes with
the edge sdtd a circuit in G meeting D exactly once
 so that is an odd circuit�
Clearly� not each odd circuit yields a path� but if ��� holds� then each C for
which yC takes a positive value in an optimal solution y of ��� must meet D
exactly once� hence corresponds to a path in G nD�
If �G�D� is weakly�bipartite then� by LP �duality� ��� is equivalent to�

�!� c�D� 	 minfc�x j x�C� � � �C � ��
 x � Z
E�G�
� g�

However� each optimal solution of �!� can be proved to be the characteristic
vector of a set ��U��D for some U � V �D�� Moreover� all such vectors are
feasible for �!�� Hence ��� is equivalent to�

���� c���U� nD�
 c���U��D� 	 c���U��D�
C�D� � � for all U � V �K�


which is the cut�condition� So� � � follows� As an illustration� observe that

�G�D� in Figure � is isomorphic to fK��

Intermezzo� Su
cient conditions for the existence of paths � dual integrality
When dealing with weak bipartiteness� one is more concerned with existence
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Figure �� Bold edges are in D� c �	 ��

of �ows than with existence of paths� But� also the existence of paths has
polyhedral aspects� Even when the cut�condition is su�cient for �ows to exist�
it might not be good enough for paths �see Figure ��� There are two typical
conditions which can help us out here� First� consider the case that ��� has an
integral optimal solution for all integral non�negative c �call such signed graphs
strongly bipartite�� It is well�known from polyhedral theory �Edmonds and
Giles � �� that a strongly bipartite signed graph is also weakly bipartite� So�
in that case� the cut�condition is su�cient for paths to exist� Strongly bipartite
graphs are known in terms of forbidden minors� �Note the relation of ���� with
Figure ���

���� Theorem �Seymour �	�
�� �G��� is strongly bipartite if and only if it

has no fK	�minor�

In fact� the theorem holds for all binary clutters� with the same forbidden minor
�Seymour ������
Another condition which together with the cut�condition is in some cases

su�cient for the existence of paths is the so�called parity condition�

���� Parity Condition� c is integral and c���v�� is even for all v � V �G��

Let us call a signed graph evenly bipartite if the parity condition is su�cient
for the maximization problem in ��� to take integral optimal solutions� It can
be proved that even bipartiteness implies weak bipartiteness� So� if �G�D�
is evenly bipartite� then the cut�condition and the parity condition together
are su�cient for the existence of paths for �G�D
 c�� Informally� the parity
condition sometimes allows to re�route fractional �ows into paths�
Let us spend a few lines on �strong bipartiteness implies weak bipartiteness�

and �even bipartiteness implies weak bipartiteness�� Let Ax 	 b be a system of
inequalities with A � Zm�n and b � Zm� Let " be a �nitely generated lattice in
the linear space generated by the rows of A and containing the lattice generated
by the rows of A� What Edmonds and Giles essentially proved is the following�
if minfy�b j y�A 	 c�� y � �g has an integral optimal solution for all c � " for
which the minimum exists� then for each c� maxfc�x j Ax 	 bg has an optimal
solution which is contained in "� �	 fx � Qn j y�x � Z if y � "g� The most
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quoted version of this result is the case that " 	 "� 	 Zn� For signed graphs
this means that strong bipartiteness implies weak bipartiteness� In case " is the
collection of all c satisfying the parity condition� "� is the set of all half�integral
vectors x with x�C� � Z for each C � C�G�� Combining this with the fact that
��G��� is a binary clutter� implies that even bipartiteness implies weak bipar�
titeness� So� �strong bipartiteness implies weak bipartiteness� is a property
that the system of inequalities de�ning P �G��� shares with all systems of lin�
ear inequalities
 whereas �even bipartiteness implies weak bipartiteness� also
relies on the way the system relates to a binary space�

�� Weakly bipartite graphs and multicommodity flow theorems
In the table below we list the best�known classes of weakly bipartite signed
graphs and the corresponding multicommodity �ow problems where the cut�
condition is su�cient for the existence of �ows� In all cases the signed graphs
are in fact evenly bipartite� so the parity condition plus the cut�condition is
su�cient for the existence of paths in the corresponding multicommodity �ow
problems�
We use the following compact �bordered� surfaces�

The disk D �	 fz � C j jzj 	 �g� with boundary B�D� �	 fz � C j jzj 	
�g�

The annulus A �	 fz � C j � 	 jzj 	 �g� with inner boundary I�A� �	
fz � C j jzj 	 �g and outer boundary O�A� �	 fz � C j jzj 	 �g�

The projective plane� which can be obtained from D by identifying oppo�
site points on B�D� �i�e� ei� with 
ei���

The Klein bottle� which can be obtained from A by identifying opposite
points on I�A� �i�e� ei� with 
ei�� and opposite points on O�A� �i�e� �ei�

with 
�ei��� The Klein bottle can also be obtained by identifying I�A�
in �reverse cyclic order� with O�A�� meaning� identifying ei� with �e�i��

The torus� which can be obtained from A by identifying I�A� in �cyclic
order� with O�A�� meaning� identifying ei� with �ei��

Both the projective plane and the Klein bottle are non�orientable surfaces� they
contain curves with the property that when you walk exactly once entirely along
them� the �left�hand side� and �right�hand side� of the curve are interchanged�
We call those curves one�sided �or orientation�reversing�� Curves with the
property that the sides are distinguishable are called two�sided �or orientation�
preserving�� �G��� n U � with U � V �G�� denotes the signed graph obtained
from �G��� by deleting all nodes in U and all edges with end nodes in U � If
F � E�G�� then V �F � denotes the collection of end points of edges in F �
The best�known classes of weakly bipartite signed graphs and the correspond�

ing multicommodity �ow problems where the cut�condition is su�cient for the
existence of �ows are�
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�G��� is weakly bipartite� Cut�condition is su
cient for
�G�D
 c��

� There exists a node u � V �G�
such that �G���nfug is bipartite
�special case of �����

jDj 	 � �Menger ����� Ford and
Fulkerson �!��

� There exist two nodes u� v �
V �G� such that �G��� n fu� vg is
bipartite �Barahona ����

jDj 	 � �Hu ��!�� Rothschild and
Whinston �����

� G is planar �Edmonds and
Johnson ���� Hadlock �����

G is planar �Seymour �����

� �G��� can be embedded in
the projective plane such that
��G��� consists of the one�sided
circuits in G �Lins �����

G n D can be embedded in D such
that V �D� � B�D� �Okamura and
Seymour �����

� �G��� can be embedded in the
Klein bottle such such that
��G��� consists of the one�sided
circuits in G �Schrijver ��!�

D 	 DI �DO and G nD can be em�
bedded in A such that V �DI� � I�A�
and V �DO� � O�A� �Okamura �����

D 	 ffs�� t�g� � � � � fsk� tkgg and G n
D can be embedded in A such that
s�� � � � � sk lie on I�A� in clockwise or�
der and t�� � � � � tk lie on O�A� in anti�
clockwise order �Schrijver ��!��

We refer to the di�erent results in the table by� Case �� �� etc� Note that in
Case � only the multicommodity �ow theorems together are equivalent to the
result on weakly bipartite signed graphs in Case �� The reason is that weak
bipartiteness is invariant under re�signing� but su�ciency of the cut�condition
not� Moreover� note that Case � is contained in Case � �although signed graphs
as in Case � need not be strongly bipartite�� Also� Case � is contained in Case
��

Remark� The careful reader might notice a little bit of cheating in the table�
If one tries to derive the weak bipartiteness results in Cases � and � from the
related �ow theorems� one will end up with a multicommodity �ow problems
di�erent from the ones indicated in the table� However a simple additional
construction yields the proper ones� And� if one wants to derive the results
by Okamura and Seymour in Cases � and � of the table from the related mul�
ticommodity �ow problems one will have problems to embed �G�D� in the
projective plane or the Klein bottle� The reason is that in these multicommod�
ity �ow problem we did not impose a special order in which the terminals lie on
the boundary of the disk or annulus� However� there exists a simple construc�
tion �cf� Frank ����� which transforms each multicommodity �ow problem as
in the results of Okamura and Seymour to one which has the terminals ordered
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around the boundaries such that the desired embedding of �G�D� is possible�

We shall now try to weaken the conditions for weak bipartiteness given in the
table�

Generalization of Case 	� What are the graphs which 
 like planar graphs

 have the property that �G��� is weakly bipartite irrespective of �# If ���
is true� all the graphs with no K��minor� �A minor for an undirected graph
is taken as minor for a signed graph ignoring parity of edges�� Seymour ����
�cf� Fonlupt� Mahjoub and Uhry ���� proved that this is indeed the case�
using a result of Wagner�s ���� saying that all graphs with no K��minor are

 with one easy�to�settle exception 
 either planar� or can be decomposed
into smaller such graphs �allowing an inductive argument�� In fact� Seymour
characterized all binary spaces C with �C��� weakly bipartite irrespective of ��
using an extention of Wagner�s result from Seymour �����

Generalization of Case �� What is an obvious generalization of the case
that �G��� n fu� vg is bipartite# That �G��� n fu� v� wg is bipartite# No� fK�

satis�es that property� However� there is a correct extension possible�

���� Theorem �Gerards ���
�� Let �G��� be a signed graph� If there exists

a node u � V �G� with the property that �G��� n fug has no fK	�minor
then �G��� is weakly bipartite�

�Note that this is as far as you can get in terms of �G���nfug�� A special case
of ���� is that �G���nfug can be embedded in the plane such that exactly two
faces are bounded by an odd cycle �Gerards ������

Common generalization of Cases � and �� Signed graphs as in Cases �
and � have the property that each two odd circuits have a node in common�
Although this is also the case for fK�� the following can be proved�

���� Theorem� Let �G��� be a signed graph with V �C�� � V �C
� �	 � for all

C�� C
 � ��G���� If �G��� has no fK��minor
 then it is weakly bipartite�

This is true because� if in a signed graph each two odd circuits intersect� then
it is either as in Case � or �� or it is fK�� or it can be decomposed into smaller
signed graphs without disjoint odd circuits 
 allowing an inductive argument
�Gerards� Lov
asz� Schrijver� Shih� Seymour� Truemper ������

Generalization of Cases � and �� Observe that the condition in Case � can
be equivalently formulated as ��G��� can be embedded in the projective plane
such that all faces of that embedding are bounded by even cycles in �G�����
Call an embedding of a signed graph in a surface such that all faces are bounded
by even cycles an even face embedding� Which other compact surfaces have the
property that all even face embedded signed graphs are weakly bipartite# An

��!



embedding on the Klein bottle as in Case � is an even face embedding� but not
all even face embeddable graphs on the Klein bottle arise in that way� But� as
we will see in the next section� they still are weakly bipartite� On the other
hand� as we see in Figure �� fK� has an even face embedding in the torus� As

2
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1

3
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1 2

Figure 	� The shaded area is the annulus� To obtain an even�face embedding
of eK� in the torus
 identify nodes and edges on the outer boundary with nodes
and edges on the the inner boundary �so identify � with �
 � with � etc���

all compact surfaces other than the sphere� the projective plane and the Klein
bottle can be obtained from the torus by adding �handles� and �cross�caps��
it follows that the sphere� the projective plane and the Klein bottle are the
only �weakly bipartite surfaces�� �Note that the case of the sphere is virtually
empty� even�face embedded signed graphs in the sphere are bipartite��
We will make one other attempt to �nd more weakly bipartite graphs� A

pinched surface is a compact surface or a topological space obtained from a
compact surface by identifying �possibly several times� two or more points to
one pinch point� If $ is a �pinched� surface we de�ne� �recursively� a k�pinched
$ by identifying k non�pinch points of $ to one pinch point� It can be shown
that all pinched surfaces contain an even face embedding of fK�� except for� the
��pinched projective plane
 the k�pinched spheres �with k 	 �� �� � � �� and the
k�l�pinched spheres with � 	 k� l 	 �� And indeed� all these exceptions have
the property that each even face embedded bipartite graph is weakly bipartite�
The case of the k�pinched spheres is contained in Cases � and � together �as one
easily observes� and the case of the k�l�pinched spheres is essentially a special
case of ����� So these give no new classes of weakly bipartite graphs� But the
��pinched projective plane does� Both the case of the Klein bottle and of the
��pinched projective plane give rise to new multicommodity �ow%disjoint paths
theorems� namely on the M&obius strip�
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�� Disjoint paths on the M�obius strip

���� Theorem� Let G be an undirected graph embedded in the M�obius strip
M� Moreover
 let D 	 fs�t�� � � � � sktkg � E�G� with s�� � � � � sk� t�� � � � tk

on the boundary of M
 and c � Z
E�G�
� �

�a� �Gerards� Seb�o ���
� If going along the boundary of M we meet
s�� � � � � sk� t�� � � � � tk in this order
 then the cut�condition plus the
parity condition is su
cient for the existence of paths for �G�D
 c��

�b� �Gerards ���� ��
� If going along the boundary of M we meet
s�� � � � � sk
 tk� � � � � t� in this order
 then the cut�condition plus the
parity condition is su
cient for the existence of paths for �G�D
 c��

The special location of the terminals on the boundary of the M&obius strip is
illustrated in Figure �� As we shall see below� ���a� relates to even face embed�

k k

1

2 2
1

(a) (b)

1
2

1 2 k

k

Figure �� terminals are indicated only by their indices�

dings in the Klein bottle and ���b� to even face embeddings in the ��pinched
projective plane�

The Klein bottle

Consider the signed graph �G�D� obtained from ���a�� This has an even face
embedding in the Klein bottle� The reason is that if we identify �opposite�
points on the M&obius strip� we obtain the Klein bottle� As the M&obius strip
contains one�sided curves� any reasonably general instance of �G�D� will have
even one�sided circuits in the Klein bottle� so will not be as in Case �� But
Case � and ���a� together imply�

�� � Theorem �Gerards� Seb�o ���
�� Let �G��� be a signed graph� If
�G��� has an even face embedding in the Klein bottle then it is weakly
bipartite�

We will sketch how this follows from the multicommodity �ow theorems

in Case � and in ���a�� We only need to prove that for each c � Z
E�G�
� �

�!�



the minimum in �!� equals the maximum in ���� Choose an integral optimal
solution x to �!� with a minimum number of positive coe�cients� As mentioned
before we may assume that x is the characteristic vector of D �	 ��U��� for
some U � V �G�� Hence� �!� holds� So it remains to prove that ��� holds as well

or in other words� that the cut�condition is su�cient for the existence of �ows
in �G�D
 c�� We do this by showing that G an D are as in the multicommodity
�ow problems in Case � and in ���a��
Select closed curves '�� � � � �'k on the Klein bottle according to the following

rules� The curves are pairwise disjoint and each of them is disjoint from V �G�
and meets G only in edges of D� The curves go from face to face by �crossing�
the edges in D� Each edge in D is crossed by only one curve
 this curve
intersects the edge in a single point�
As �G�D� is isomorphic to �G���� it is embedded such that each face has an

even number of edges in D on the boundary� From this it is quite easy to see
that� indeed� the curves exist� We apply the following surgery on �G�D� and
the Klein bottle� We cut the Klein bottle open along the curves� This yields a
bordered surface S� Each time we cut through an edge d � D we create new
terminals sd and td located at the open ends of the two �half�edges� obtained
by cutting through d �with sd on the left�hand side of the curve cutting through
d and td on the right�hand side�� Between these two new terminals we add a

new demand edge bd� Thus we get a new graph bG and a new collection of
demand edges bD� Clearly� bG n bD is embedded in S with the new terminals on
the boundary� It is also easy to see that each multicommodity �ow problem
on G with demands in D can be transformed to an equivalent one on bG with
demands in bD� Moreover� we know that S is connected� �If not� D contains a
cut
 the symmetric di�erence of D with that cut would correspond to another
optimal solution of �!�� with fewer positive components��
Suppose one of the curves� '� say� is two�sided� If we cut the Klein bottle

only along that curve we get the annulus� Moreover� the terminals sd created
by cutting '� lie all on the outer boundary in clock�wise order �say� and the
nodes td on the inner boundary in anti�clockwise order� So� if there are no
other curves to cut along we end up as in Schrijver�s result in Case �� But�
there cannot be any other curve in our collection� as the annulus has no �non�
separating� curves� So remains the case that all cutting curves are one�sided�
If we cut along '� we obtain the M&obius strip� Moreover� all the terminals
created by '� lie in the same order as in ���a�� So� if there are no other cutting
curves� we end up with a multicommodity �ow as in ���a�� If there is a second
�again one�sided� curve and we cut also along that one� we get the annulus� As
the annulus has no non�separating curves� we end up as in Okamura�s theorem
in Case ��

Recently� Andr(as Seb&o observed that ���a� follows from the following �distance
packing� result� which also implies the results in Case ��

�!�



���� �Schrijver ���
� Let G be a bipartite graph embedded in the annulus�
Then there exists a collection of pairwise edge�disjoint cuts ��U��� � � � � ��Uk�

such that for each pair of nodes s and t of V �G� which both lie on I�A�
or both lie on O�A�
 the length of the shortest st�path in G is equal to the
number of cuts among ��U��� � � � � ��Uk� with jfs� tg � Uij 	 ��

Note that the essence of this result is that one collection of cuts can be selected
which simultaneously satis�es the properties in ���� for all indicated pairs of
nodes� The existence of such a collection for just a single pair� is an easy�
old and well�known fact about distances in graphs� Recently� �� � has been
extended by De Graaf and Schrijver ��� �cf� De Graaf �����

The ��pinched projective plane

Next consider an instance �G�D� of ���b�� Now the signed graph� can be
embedded in the projective plane with all but two faces even� To see this
observe that identifying the boundary of the M&obius strip with the boundary
of a disk yields the projective plane� Moreover� by the order of the terminals�
we can embed the odd edges in such a glued disk� This suggests the following
result�

���� Theorem �Gerards ���
�� Let �G��� be embedded in the projective
plane� If exactly two faces are bounded by an odd cycle in �G���
 then
�G��� is weakly bipartite�

By similar surgeries as used above one can derive this result from ���b� and
Okamura�s theorem in Case �� The only di�erence is that now one of the
cutting curves is not closed but starts in one odd face and ends in the other�

��!� Theorem �Gerards� Schrijver ���
�� Let �G��� have an even face
embedding in the projective plane� Then any signed graph obtained from
�G��� by identifying two of its vertices is weakly bipartite�

Obviously� there are multicommodity �ow theorems related to this� namely one
on a pinched disk where the terminals of a demand edge lie oppositely on the
boundary of the disk� and a multicommodity �ow problem on the disk with all
terminals on the boundary except for the terminals of one demand edge� which
can be anywhere� But we did not use these to prove ��!�� instead we used a
distance packing theorem�

���� Theorem �Gerards� Schrijver ���
�� Let G be a bipartite graph em�
bedded in the disk� Moreover
 let s�� t� � V �G�� Then there exists a
collection of pairwise edge�disjoint cuts ��U��� � � � � ��Uk�
 such that for
each pair of nodes s and t of V �G� which either both lie on the bound�
ary of the disk or satisfy s 	 s� and t 	 t�
 the length of the shortest
st�path in G is equal to the number of cuts among ��U��� � � � � ��Uk� with
jfs� tg � Uij 	 ��

�!�



Together ���� and ��!� imply that all signed graphs with an even face embed�
ding in the ��pinched projective plane are weakly bipartite�

�� Epilogue
Motivated by Seymour�s conjecture ��� and the relation between weakly bi�
partite signed graphs and classes of multicommodity �ow problems for which
the cutcondition in su�cient we searched for weakly bipartite graphs� This
resulted in the following list�

Signed graphs �G��� such that G has no K��minor�

Signed graphs �G��� with a vertex u such that �G���nfug has no fK	�minor�

Signed graphs with even face embedding on the Klein bottle or on the ��
pinched projective plane�

As far as I know� no other weakly bipartite signed graphs are known at this
moment� Seymour�s conjecture ��� ) and even more ��� ) are still a challenge�
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