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We present a survey of results on the edge-disjoint paths problem and re-
late this problem to the edge-disjoint homotopic path and the edge-disjoint
homotopic cycle problem. The latter problem is: given a graph G = (V, E)
embedded on a surface S and closed curves C1,...,Ck on S, find necessary
and sufficient conditions for the existence of pairwise edge-disjoint cycles
Ci,...,Cf in G so that C; is homotopic to C; fort = 1,..., k. We explain
that a certain cut condition, which is easily seen to be necessary, is also suf-
ficient for a fractional solution of the edge-disjoint homotopic cycle problem.
To this end we use a theorem stating that any system of closed curves can
be made ‘minimally crossing’ by ‘Reidemeister moves’. This establishes a
relation between the edge-disjoint homotopic cycle problem and the theory
of knots.

1. INTRODUCTION

In this article we present a survey of recent results on the edge-disjoint paths
problem and the edge-disjoint cycle problem. We consider the following version
of the edge-disjoint paths problem:

given : a planar graph G = (V, E) embedded in the plane and
pairs {r1,s1},...,{re, sg} of vertices of G, (1)
find : pairwise edge-disjoint paths Pj,..., P; in G where each P;
is a path with endpoints r; and s; (i =1,...,k).

It is assumed throughout that r; #s; fori =1,...,k.

We are particularly interested in finding necessary and sufficient conditions to
guarantee the existence of edge-disjoint paths Py, ..., P asin (1). The question
of actually finding the paths if they exist will not be considered here, although
polynomial-time algorithms are known for the specific problems discussed in
this article.

Let us proceed by defining some notation and terminology.
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Paths and cycles in a graph are not allowed to use an edge more than once.
They may, however, have repeated vertices. The pairs {r;, s;} are called com-
modities and the set of commodities is denoted by R, that is R := {{r1,s1},...,
{rk,sx}}. Given a graph G = (V, E) and W C V, §(W) denotes the cardinal-
ity of the set of edges with one end in W and the other in V\W. We define
p(W) = [{{v,w} € Rlv € W,w ¢ W}|. A graph is called eulerian if all its

vertices have even degree.

The following cut condition is clearly a necessary condition for (1):
(cut condition) for each W C V,6(W) > p(W). (2)

The content of Menger’s theorem is that in the special case |R| = 1 the cut
condition (2) is sufficient for the existence of edge-disjoint paths P, ..., Py as
in (1). One may derive from this that condition (2) is also sufficient in case

NE_i{ri, s} # 0.

One aim of this article is to show how the edge-disjoint path problem (1)
can be interpreted as an edge-disjoint homotopic path problem in graphs em-
bedded on a surface. We will study two special cases of the edge-disjoint
homotopic path problem for which sufficient conditions for the existence of
the edge-disjoint homotopic paths are known. After that, we will see how the
edge-disjoint homotopic path problem can be regarded as an edge-disjoint ho-
motopic cycle problem. For this problem we will discuss the fact that a cut
condition which is easily seen to be necessary, is sufficient for the existence
of ‘fractionally’ edge-disjoint cycles. In order to point out the connection of
the edge-disjoint homotopic cycle problem with problems in algebraic topology,
some steps towards a proof of the latter result are sketched.

In order to interpret the cut condition and the edge-disjoint path problem in
a different way, we introduce some more notation and definitions in the next
section.

2. HOMOTOPY AND CROSSINGS OF CURVES

Let S denote a triangulizable surface. This means that S is homeomorphic to
a 2-sphere S2, with a finite number of open disks removed and either a finite
number of handles or a finite number of cross-caps adjoined.

By an open disk on S we mean a subset of S which is homeomorphic to the
open unit disk in R?. For D C S, we let bd(D) denote the boundary of D with
respect to S.

What a handle is, should be clear from Figure 1. Adjoining a cross-cap means
deleting an open disk D on § and identifying diametrically opposite points on
bd(D).

Some examples of surfaces are: the sphere, the plane, the torus and the
projective plane. The plane can be considered as a sphere with one open disk
removed, the torus as a sphere with one handle adjoined, the projective plane
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as a sphere with one cross-cap adjoined.

handle

Ccross-cap

(the arrows indicate which
points are to be identified)

FicURE 1. Handles and cross-caps.

A curve on S is a continuous function C : [0,1] — S; a closed curve on S is a
curve C with C'(0) = C(1). For a curve C, we call C(0) and C(1) the endpoints
of C. If no confusion arises, we identify (closed) curves with their images on S.

Two curves C and C' are homotopic, in notation C' ~ C’, if there exists
a continuous function ® : [0,1] x [0,1] — S such that ®(0,z) = C(z) and
®(1,z) = C'(z) for all z € [0,1] and ®(¢,0) = C(0) = C'(0) and P(¢,1) =
C(1) =C'(1) for all t € [0, 1].

Two closed curves C' and C' are freely homotopic, in notation C ~y C', if
there exists a continuous function ® : [0, 1] x [0, 1] — S such that ®(0, z) = C(z)
and ®(1,z) = C’'(z) for all z € [0,1] (so the endpoint need not be fixed). A
closed curve is called nullhomotopic if it is freely homotopic to a point.

For convencience, we let ‘C' is homotopic to C”’ be the shorthand notation
for: ‘C is freely homotopic to C' if C' is a closed curve’ and ‘C' is homotopic to
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C' if C is not a closed curve’. In notation: ‘C' ~ C"” means C ~; C'if C'is a
closed curve and C ~ C' if C is not a closed curve.

Loosely speaking, two curves are homotopic if they both go in the ‘same’
way around (or over) the removed open disks and adjoined handles and cross-
caps. For example, on the sphere and plane (where no open disks are removed
or handles or crosscaps adjoined) all closed curves are nullhomotopic and all
curves with the same endpoints are homotopic.

For any curve C on S, the number of self-crossings (counting multiplicities)

of C is denoted by cr(C). That is,

cr(C) = 5 [{(w,2) € [0,1] x [0,1]|C(w) = C(2),w # z}|. (3)

2

A curve C is called simple if cr(C) = 0. Moreover, mincr(C) denotes the
minimum of cr(C') where C’ ranges over all curves homotopic to C. So,

mincr(C) = min{cr(C")|C' ~ C}. (4)

For any pair of curves C, D on S, the number of crossings of C' and D (counting
multiplicities) is denoted by cr(C, D). That is,

cr(C, D) = [{(w, 2) € [0,1] x [0, 1]|C(w) = D(2)}]. (5)

Moreover, mincr(C, D) denotes the minimum of cr(C’, D') where C' and D’
range over all curves homotopic to C and D, respectively. So,

mincr(C, D) = min{cr(C',D")|C' ~ C,D" ~ D}. (6)

For a graph G and a curve C we denote by cr(G, C') the number of intersections

of G with C. That is,

cr(G,C) = [{z € §'|C(2) € G}|. (7)

3. HOMOTOPIC EDGE-DISJOINT PATH PROBLEM

Let us reconsider the edge-disjoint paths problem (1). By letting Cy,...,C) be
curves on the sphere S2 so that the endpoints of C; are r; and s; fori = 1,...,k,
we see that (1) is equivalent to the following:

given : a planar graph G = (V, E) embedded on the sphere S?
and curves C1,...,Cy on S2, 8
find : pairwise edge-disjoint paths Py,..., P in G so that (8)
P,' NC,’, fori = ].,...,k.

A natural generalization of problem (8) is to allow the graph G to be em-
bedded on any surface S:
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given : a surface S and a graph G = (V, E) embedded on S and
curves Cq,...,Cf on S, 9)
find : pairwise edge-disjoint paths P, ..., P in G so that
P,~Cion S, fori=1,...,k.

Problem (9) will be called the edge-disjoint homotopic paths problem. This
problem is ‘easier’ in the sense that in (9) it is prescribed how the paths we are
searching for ‘globally look’. Note that, even though these homotopic paths
may not exist in the graph, there might exist edge-disjoint paths P;,..., P, in G
so that P; has the same endpoints as C; (i = 1,...,k). On the other hand, the
problem of finding edge-disjoint paths P, ..., P, in G so that P; has the same
endpoints as C; (¢ = 1,...,k) can be solved by enumerating homotopy types
and solving several edge-disjoint homotopic path problems. Thus, problem (9)
is interesting for further study.

The cut condition (2) can be restated as: for each closed curve D on S,
intersecting G only a finite number of times and not intersecting V', one has

cr(G, D) > 5 mingi g, er(C', D). (10)

Let us consider the edge-disjoint homotopic path problem (9) in the case
where G is embedded on S?. Let I, ..., I, denote the interiors of some fixed
faces of G and let the curves C1,...,Cy have their endpoints on bd(U;’:le).
Let S denote a sphere with the p open disks removed: S := 52\(U§:1.Tj), and
consider the edge-disjoint homotopic path problem (9).

Note that for p = 1 the problems (1) and (9) are equivalent. For p = 1, the
cut condition (10) is not sufficient for the existence of edge-disjoint paths. In
Figure 2 a counterexample is given. This example does not satisfy the following
Euler condition:

(Euler condition) GUCyU---UCy is eulerian. (11)

Here GUC1 U- - -UC} denotes the graph formed by adding the curves C,...,Cy
to G as edges. OKAMURA and SEYMOUR [7] show that if a graph G together
with a set of curves C1, ..., C} satisfies the Euler condition then the cut con-
dition is necessary and sufficient.

THEOREM 1 [7]. Let G be a graph embedded on the sphere S?. Let I be the
interior of some fized face and C1, . .., Cy be curves on S?\I each with endpoints
on bd(I) so that the Euler condition (11) is satisfied. Then there exist edge-
disjoint paths Py,..., Py in G so that P; ~ C; on S?\I fori =1,...,k if and
only if the cut condition (10) is satisfied.

A generalization of this theorem to the case where the curves Ci,...,Cy have
their endpoints on the boundary of two fixed faces (p = 2), is shown by VAN
HOESEL and SCHRIJVER [4].

THEOREM 2 [4]. Let G be a graph embedded on the sphere S?. Let I and I be
the interiors of two fized faces of G and C4,...,Cy, be curves on S?\(I, U I5),
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FIGURE 2. The cut condition is not sufficient.

each with endpoints on bd(I; U I5) so that the Euler condition (11) is satisfied.
Then there exist edge-disjoint paths Py, ..., P in G so that P; ~ C; on S?\(I;U
L) fori=1,...,k if and only if the cut condition (10) is satisfied.

If G is a planar graph embedded on the sphere $? and the curves Ci,...,Ck
have their endpoints on the boundary of three faces (p = 3), conditions (10)
and (11) are not sufficient for the existence of edge disjoint paths P; ~ C;
(¢=1,...,k) as is shown in Figure 3.

4. PROJECTIVE PLANE

Let us go back to the edge-disjoint paths problem (9) where S is the sphere S2
and the endpoints of C1,...,C are all on the boundary of one face I. Denote
the endpoints of C; by s; and t; fori = 1,..., k. Suppose that the commodities
S1,t1,- .-, 8k, tg occur on bd(I) in the order s1,s9,..., 8k, t1,t2,. .., k-

In that case, the general picture (see for example Figure 4) looks like a picture
of the projective plane. (The projective plane can be regarded as a closed unit
disk D where diametrically opposite points on bd(D) are identified.) There
are only two free homotopy classes for closed curves: a closed curve is either
nullhomotopic or homotopic to a closed curve connecting two diametrically
opposite points on bd(D). Let B denote some non-nullhomotopic closed curve.

Now instead of asking for edge-disjoint paths Pi,..., Py in G homotopic to
the given curves Ci,...,Cy on the disk, we can ask for (many) edge-disjoint
closed curves freely homotopic to B on the projective plane. For this surface
the cut condition reads: for each closed curve D on S, intersecting G only a
finite number of times and not intersecting V', one has
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FiGURE 3. Endpoints of curves on the boundary of three faces

cr(@, D) > % miner(D, B). (12)

Note that mincr(D,B) =1 if D ~ B and mincr(D, B) = 0 otherwise. The cut
condition (12) is not sufficient for the existence of edge-disjoint closed curves
homotopic to B, as the example of Figure 4 shows. However, for eulerian
graphs embedded on the projective plane, the following theorem was proved by

Lins [6].

THEOREM 3 [6]. Let S be the projective plane and G be an eulerian graph
embedded on S. Then G contains k nontrivial edge-disjoint closed curves if
and only if er(G,D) > k for each nontrivial curve D on S\V.

Indeed Lins’ theorem can be seen to imply Theorem 1 by an easy construction.

5. SURFACES

The problem of finding k edge-disjoint non-nullhomotopic closed curves in a
graph embedded on the projective plane is an example of the edge-disjoint
homotopic cycle problem:

given : a graph G = (V, E) embedded on a surface S and closed
curves Cq,...,Cron S, 13
find : pairwise edge-disjoint cycles Cy,...,C}y in G so that (13)

Ci~Cifori=1,... k.

Problem (13) has the following connection with the edge-disjoint homotopic
path problem (9). Given an instance of (9) we make a small hole at the end-
points of each C; and attach a handle H; connecting the two holes, add an edge
e; connecting the two endpoints of C; in such a way that e; goes over handle
H; and let C! be the closed curve C; Ue; for i = 1,..., k. Furthermore we
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FIGURE 4. The cut condition is not sufficient on the projective plane.

let é, S denote the extended graph, respectively surface thus obtained. There
exist pairwise edge-disjoint cycles C7,...,C}, in G on S so that C! ~ C! for
i =1,...,k if and only if there exist pairwise edge-disjoint paths P;,..., Py in
the original graph G so that P; ~ C; for i =1,..., k on surface S.

The formulation (13) has the advantage that the endpoints of the cycles C;
(¢ = 1,...,k) lose their specific role. In a closed curve every point is equal.
Furthermore we can apply tools from algebraic topology, where closed curves
correspond (in a sense that will not be specified here) to distance-preserving
functions on the ‘universal covering’ surface.

The cut condition for (13) becomes: for each closed curve D on S, intersecting
G only a finite number of times and not intersecting V', one has:

(cut condition) cr(G,D) > Ele mincr(C;, D). (14)

In general, however, this cut condition is not sufficient as was already mentioned
for the projective plane. For the case where the surface S is the torus 7', FRANK
and SCHRIJVER [1] consider the following parity condition:
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(parity condition) for each closed curve D on T, not intersecting
vertices of G, the number of crossings of D with edges of G, plus (15)
the number of crossings with C1, ..., C}, is an even number.

THEOREM 4 [1]. Let G = (V, E) be a graph embedded on the torus T, and let
Cy,...,Cy be simple closed curves on T, such that the parity condition (15)

holds. Then there exist pairwise edge-disjoint closed cycles C1,...,Cy in G so
that C; ~ C; (i =1,...,k), if and only if the cut condition (14) holds.

Currently we are investigating if the cut condition and the parity condition
are sufficient for graphs embedded on the Klein bottle as well.

We say that 51, ceey 5u is a fractional packing of cycles homotopic to Cy,...,Cy
if there exist A1,..., A, > 0 so that the following is satisfied:

() X' g =1 (i=1...,k),
(i) i, AxCi(e) <1 (e€ E).

Here x%(e), where C is a cycle in G, denotes the number of times that C tra-
verses e. A fractional path packing is defined in a similar way.

As the cut condition is not sufficient for the existence of edge-disjoint cycles
in general, it is an interesting question to decide if the cut condition is sufficient
for the existence of a fractional packing of cycles homotopic to C,...,Cg. This
gives the following problem.

given : a graph G = (V, E) embedded on S and closed curves

Ci,...,CponS, (16)
find : cycles Cy,...,Cy in G such that Cy,...,C, is a
fractional packing of cycles homotopic to Cy, ..., Ck.

Note that the cut condition is not sufficient for the existence of a fractional
path packing for problem (1). A counterexample is given in [7]. But for problem
(16) the cut condition is sufficient. This is shown in [9] for the case where G is
embedded on an orientable compact surface and in [3] for the case where G is
embedded on any compact surface.

THEOREM 5 [9, 3]. Let G = (V, E) be a graph embedded on a compact surface
S and Cq,...,Cy be cycles in G. Then there exists a fractional packing of
cycles homotopic to Cy,...,Cy if and only the cut condition (14) is satisfied.

In this theorem, the necessity of the cut condition is straightforward. The
essence of the theorem is that the cut condition is sufficient for the existence of
fractional edge-disjoint cycles. In order to illustrate the connection of problem
(16) with problems in topology, we will sketch the proof of Theorem 5. (For
details see [3] or [9].)
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First, the problem is formulated as a polyhedral problem. To that aim let
K be the convex cone in R* x RF generated by the vectors

(e5,x") (i=1,...,k, [cyclein G with T'~ C;); (17
(0,€.) (e€ E). (18)

Here €; denotes the i-th unit basis vector in R¥F. Similarly, e, denotes the e-th
unit basis vector in R, 0 denotes the origin in R¥.
The question now is:

Does condition (14) imply that the vector 1 belongs to K ?

Here 1 denotes the all-one vector in RF x RF.

By Farkas’ lemma, 1 € K if and only if each vector (p,b) € Q% x QF with
nonnegative inner product with each of the vectors (17), (18) also has nonneg-
ative inner product with the vector 1. By an easy argument it is sufficient to
restrict the vectors (p,b) to those vectors (p,b) where each entry is an even
integer and b > 0. Let G' be the graph arising from G by replacing each edge
e by a path of length b(e). Now G’ is a bipartite graph. The surface dual of a
bipartite graph is a eulerian graph. From this, one can show that it suffices to
prove the following result on eulerian graphs embedded on a surface.

THEOREM 6 [9, 3]. Let G be an eulerian graph embedded on a compact surface
S. Then the edges of G can be decomposed into cycles Cy,...,Cy in such a way
that for each closed curve D on S\V:

mincr(G, D) = Yi_, mincr(C;, D). (19)

Here mincr(G, D) denotes the minimum of cr(G, D') where D' ranges over all
curves on S\V that are homotopic (on S) to D. That is,

mincr(G, D) := min{cr(G, D")|D' ~ D, D' does not traverse
vertices of G }.

(20)

Note that for any decomposition of the edges of G into cycles Ci,...,C; we
have

mincr(G, D) > Y¢_, mincr(Cy, D). (21)

The content of the theorem is that there exists a decomposition having equality.
In Section 6 we present an outline of the proof of Theorem 6.

6. MAKING CURVE SYSTEMS MINIMALLY CROSSING BY REIDEMEISTER MOVES
At last, we show that Theorem 6 is implied by a theorem which in itself is
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interesting from a topological point of view. In order to formulate this we need
a few more definitions.

Let C4,...,Ck be a system of closed curves on S. We call C,...,Cy mini-
mally crossing if

(1) cr(C;) = mincr(C;) foreach i =1,...,k (22)
(ii) cr(C;, Cj) = miner(C;,Cj) foralli,j=1,...,k with ¢ # j. (23)

We call Cy,...,Cy a regular system of curves if Cy,...,C) have only a finite
number of (self-)intersections, each being a crossing of only two curve parts.
That is, no point on S is traversed more than twice by Cy,...,Cy and each
point of S traversed twice has a disk-neighborhood on which the curve parts
are topologically two crossing straight lines. On such a system of curves we
define four operations called Reidemeister moves, depicted below in (24).

Reidemeister move of type 0: replace /()\ by \C)/
Reidemeister move of type I: replace ‘Q/ by &_‘

(24)

Reidemeister move of type II: replace M by NS
N

Reidemeister move of type III: replace jjé by %C

These moves were introduced by Reidemeister in the study of knots. In
particular he showed that any two knots are ‘equivalent’ if and only if their
diagrams can be moved to one another by a series of moves similar to those in
(24) (see [5] and [8]).

The pictures in (24) represent the intersection of the union of Cy,...,C
with a closed disk on S. So no other curve parts than the ones shown intersect
such a disk.

The main result of [2] is:

THEOREM 7 [2]. Any regular system of closed curves on S can be transformed
to a minimally crossing system on S by a series of Reidemeister moves.

It is important to note that the main content of Theorem 7 is that we do
not need to apply any of the Reidemeister moves in the reverse direction—
otherwise the result would follow quite straightforwardly with the techniques
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of simplicial approximation. This is also the reason why we have to include
the Reidemeister move of type 0. If we were allowed to apply the Reidemeister
moves in both directions it could have been replaced by two Reidemeister moves
of type II.

The Reidemeister moves can be applied on graphs as well. It is easy to see
that:

if G' rises from G by one Reidemeister move of type III then

mincr(G’, D) = mincr(G, D) for each curve D on S\V. (25)
We show the following proposition:
Theorem 7 implies Theorem 6. (26)

Proor.

I. We may assume that each vertex v of G has degree at most 4. If v would
have a degree larger than 4, we can replace G in a neighborhood of v as in Fig-
ure 5. This modification does not change the value of mincr(G, D) for any D

FIGURE 5. Modification of a vertex with degree 8.

on S\V. Moreover, closed curves decomposing the edges of the modified graph
satisfying (19), directly yield a decomposition of the edges of the original graph
satisfying (19).

Il. Let G = (V,E) be a counterexample to Theorem 6 with each vertex
having degree at most 4 and with |V|+ |E| minimal. We will call such a graph
a minimal counterezample. By (25) it is clear that:

if G arises from G by one Reidemeister move of type III, then G’ (27)
is also a minimal counterexample.

Let Cy,...,Cy be the straight decomposition of G. That is, Cy,...,C; form a
system of closed curves such that each edge of G is traversed exactly once by
C4,...,C; and such that each vertex of degree 4 represents a (self-)crossing of
Cy,...,C;. By the minimality of G, no C; (i = 1,...,t) is a nullhomotopic
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curve without intersections with the other curves (otherwise we could delete
C;). Moreover, we have:

no series of Reidemeister moves of type III when applied to
Cy,...,Cy creates a situation where a Reidemeister move of type I (28)
or of type Il can be applied.

To see (28), we may assume by (27) that G is a minimal counterexample where
a Reidemeister move of type I or of type II can be applied. We will lead this
to a contradiction. Consider the situation just before the move of type II as
in Figure 6(a). Let H denote the graph obtained from G by replacing this

A

(@) (b)

FIGURE 6. configuration where a Reidemeister move of type II can be applied.

configuration by the configuration in Figure 6(b).

It is clear that mincr(H, D) < mincr(G, D). We claim that mincr(H, D) =
mincr(G, D) for each closed curve D not intersecting vertices of G. For suppose
there is a curve D with mincr(H, D) < mincr(G, D). Then any curve D' ~ D
with cr(H, D') = mincr(H, D) should pass through the opening at v. However,
it is possible to reroute the curve D’ to obtain a curve D" (as indicated in
Figure 6(b)) which does not pass through the opening at v. Hence we obtain
the contradiction:

mincr(G, D) > mincr(H, D) = cr(H,D') = cr(H,D") = cx(G, D").

Similar reasoning shows that in a minimal counterexample we cannot apply a
Reidemeister move of type I. This gives (28).

ITI. We complete the proof by showing that Ci,...,C; satisfy (19). Choose
a closed curve D. We may assume that D,C,...,C; form a regular system.
By Theorem 7 we can apply Reidemeister moves so as to obtain a minimally
crossing system D', C],...,C;. By the arguments above we did not apply
Reidemeister moves of type 0, type I or of type Il to C1, ..., C} so for the graph
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G’ obtained from the final Cy,...,C] we have by (25) that mincr(G',D) =
mincr(G, D). This yields,

mincr(G, D) = mincr(G’, D) < cr(G',D') = ¢, er(C}, D') =
= ! miner(C;, D).

Since the converse inequality holds by (21), we have (19). This completes the

proof of (26). m|
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