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We describe an algorithm due to Reed� Robertson� Schrijver and Seymour�

that �nds vertex disjoint paths in a planar graph given the endpoints� When

the number of required paths is �xed the algorithm runs in linear time� It

can be extended � with the same time complexity � to graphs embeddable

in any �xed surface�

�� The problem

A graph G consists of a set V �G� of vertices and a set E�G� of edges each of
which is an ordered pair of vertices� These objects� despite their simple struc�
ture� can be used to model important properties of a wide variety of math�
ematical and physical systems� One of their most important applications is
to the study of routing in networks� Here� the vertices represent sites �cities�
computers� airports� and the edges represent connections �roads� telephones�
�ights��
A fundamental result in routing theory concerns disjoint paths between two

speci�ed sets of vertices in a graph G� �A path is a sequence of distinct vertices
between each consecutive pair of which there is an edge� The endpoints of a
path are the �rst and last elements of the sequence� The vertices of a path of
length at least three form a simple cycle if there is an edge between the path	s
endpoints��

Menger�s Theorem �see 
���� If S and T are disjoint sets of vertices of a
graph G then exactly one of the following holds�

�i� There are k vertex disjoint paths each with one endpoint in S and the
other in T �

�ii� There is a set X of at most k� � vertices in G such that there is no path
in G�X with one endpoint in S and the other in T �
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Note that it is obvious that at most one of �i� or �ii� can hold�

Practical polynomial time algorithms exist to �nd a maximum cardinality
set of vertex disjoint paths between two sets S and T of vertices in a graph�
These algorithms can be generalized to solve problems in commodity routing
as well as in scheduling and resource allocation� Indeed� practical problems of
this type with tens of thousands of nodes are routinely solved�
In many applications� we actually want to �nd paths for which the endpoints

have been speci�ed in advance �wire routing in VLSI design is one example�
another is commodity routing with more than one commodity� we do not want
to send apples to someone who wants oranges�� Routing problems of this type
are much harder to solve� In fact� the following problem is NP�complete 
��
even on the plane 
���

RVDP �Rooted Vertex Disjoint Paths�

Input� A graph G� an integer l and two sets of vertices S �
fs�� ���� slg and T � ft�� ���� tlg�

Question� Are there l vertex disjoint paths P�� ���� Pl such that Pi
has endpoints si and ti�

In a groundbreaking series of papers� Robertson and Seymour recently proved
�amongst a host of other seminal results� that for any l there is a polynomial
time algorithm to solve those instances of RDVP in which we are trying to �nd
at most l paths� �Previously� this could only be done for l � � see 
�����������
Actually� Robertson and Seymour	s algorithm solves the more general problem�
given below�
A graph is connected if there is a path between any two of its vertices� A tree

is a graph which is connected but such that removing any edge destroys the
connectivity� Alternatively� a graph is a tree if it is connected and contains no
cycle� A partition � � f��� �����pg of a set X of vertices of G is realizable if
there are vertex disjoint trees T�� ���� Tp in G such that �i � Ti� A realization
of � is such a set of trees�

realizations

Input� A graph G and a set X with jX j � k�

Question� which partitions of X are realizable in G�

Now� in an instance of RVDP �G�S�T� we are simply asking if the partition
ffs�� t�g� ���� fsl� tlgg of S�T is realizable in G� Thus we can apply an algorithm
for l�realizations directly to solve instances of RVDP in which we are trying
to �nd l paths�
Robertson and Seymour	s algorithm for k�realizations is described and ana�

lyzed in 
�� using results from 
������� It runs in O�n�� times and actually �nds
all the realizations which exist� Reed �unpublished� has developed a modi�ed
version of the algorithm which runs in O�n�� time�
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In this paper� we discuss a linear�time algorithm for instances of k�realizations
in which G is a planar graph �a graph is planar if it can be drawn in the plane
so that its edges do not cross�� This algorithm is due to Reed� Robertson�
Schrijver� and Seymour 
�� �see also 
���� We will also discuss how to gener�
alize this algorithm to more complicated surfaces and make some remarks about
Robertson and Seymour	s algorithm for k�realizations in arbitrary graphs�

�� The algorithm

Part of our work has already been done for us� In 
��� Robertson and Sey�
mour discuss a procedure which yields a linear�time algorithm for solving in�
stances of k�realizations for graphs drawn in a disk so that all the vertices of X
are on the boundary of the disc� Furthermore� Suzuki et al� 
�� have devel�
oped a linear�time algorithm for solving instances of k�realizations for which G

is a graph embedded in a cylinder �i�e� a disk from whose interior an open disc
has been removed� so that the vertices of X lie on the boundary of the cylin�
der� We will use these algorithms as the basis of our algorithm� In fact we will
obtain for each c and k an algorithm which solves instances of k�realizations for
which G is a graph embedded on a surface � obtained by removing from the
plane c open discs whose closures are disjoint� We call such a surface a punc�
tured plane� The boundary of � is denoted bd���� Each componenent of the
boundary of a punctured plane is a cu�� We will give a linear�time algorithm
to solve the following problem for any �xed c and k�

c�embedded k�realizations

Input� A graph G embedded on a punctured plane � and a subset
X of the vertices of G on bd��� with jX j � k�

Question� which partitions of X are realizable in G�

We remark that any instance of k�realizations �G�X� for which G is planar
is also an instance of k�embedded k�realizations as we can draw k disjoint discs
each intersecting G at one of the vertices of X � Thus� we obtain our desired
algorithm for k�realizations on planar graphs�
As we have already remarked� there are algorithms for solving c�embedded

k�realizations in linear time if c is � or � We describe a recursive algorithm
for solving such problems for c at least three� Our algorithm is based on two
reduction procedures�

Schisms 	 cutting the surface
We begin with an example of the �rst procedure� Consider the situation de�
picted in Figure ��a�� We have a graph G embedded on a punctured plane ��
X �indicated by black squares� on bd���� as well as a simple closed curve J in
� intersecting G in one vertex v� Cutting along J yields two new punctured
planes �� and �� each with three cu�s �to be precise� each of these surfaces
is the closure of some component of � � J and hence their intersection is J��
As shown in Figure ��b�c�� we also obtain two subgraphs G� �� �� � G and
G� �� �� �G�
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Figure �� A cut reduction

As we are about to see� cutting along J splits this problem into two simpler
problems� To begin� consider any partition � � f��� �����pg of X � If � is
realizable in G then let T�� ���� Tp be a realization of � in G� Obviously� either v
is in Ti for some i between � and p� or we have that T�� ���� Tp� v is a realization
of �� � f��� �����p� fvgg in G� Thus� if we set �i � f��� �����i����i �
v��i��� ����pg� then � is realizable in G if and only if one of ��� �����p is
realizable in G� Now� for each i between � and p� set �i�� � f�i

� �G�� �����
i
p �

G�g� set �
i�� � f�i

� � G�� �����
i
p � G�g� and note that �i is realizable in G if

and only if �i�� is realizable in G� and �i�� is realizable in G�� Thus� setting
X� � �X � v� � G� and X� � �X � v� � G�� we see that we can solve our
instance �G�X��� of ��embedded ��realizations by solving the two instances
�G�� X����� and �G�� X����� of ��embedded ��realizations�
More generally� assume we are given an instance �G�X��� of c�embedded

k�realizations and a simple closed curve J such that J intersects G only at
vertices� jJ � V �G�j � l� and each component of � � J contains at least two
cu�s of �� Then� for some c�� c�� k�� k� with c�� c� � c and k�� k� � k � l we
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can combine the solution of an instance of c��embedded k��realizations with
the solution of an instance of c��embedded k��realizations to obtain a solution
to our original problem� Figure  shows six di�erent types of cuts which will
permit reductions of the same kind� In each case� we obtain �� � or � new

(d)

(c)

(f)

(a) (b)

(e)

Figure �� The schisms

problems each of which is an instance of c��embedded k��realizations for some
integers c� and k� with c� � c� For each pair �c� k� we will permit reductions
using cuts of these �ve types whose intersection with V �G� is bounded by some
function h�c� k� de�ned below �we must bound this value to ensure that the
new problems are manageable��
We now de�ne precisely the cuts depicted in Figure � Let � be a punctured

plane� An O�arc of � is a simple �i�e� non self�intersecting� closed curve of
� � bd���� An I�arc is a simple arc with both endpoints on bd���� we also
permit the degenerate case when the two endpoints coincide� An arc is proper
if it intersects G only at vertices� The length of a proper arc is the number
of times it intersects V �G�� We say that an O�arc J surrounds a cu� C if for
some component U of � � J we have C � U � bd���� A lollipop consists of
a proper O�arc J surrounding some cu� C and a proper simple arc from J to
bd��� � C whose interior is contained in � � bd��� � J �see Figure �c��� A
bicycle consists of two disjoint proper O�arcs J� and J� surrounding di�erent
cu�s and a proper simple arc between them whose interior is contained in
� � bd��� � J� � J� �see Figure �d��� A butter
y consists of two proper O�
arcs surrounding di�erent cu�s which meet at a single point �see Figure �e���
A three�path consists of three proper simple arcs J�� J�� J� in � � bd��� with
the same endpoints but internally disjoint such that the three components of
��J��J��J� each contain exactly one cu� �and thus there are precisely three
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cu�s� see Figure �f��� A schism is any of a lollipop� a bicycle� a butter�y� a
three�path� a proper I�arc with its endpoints on di�erent cu�s �see Figure �a���
or a proper O�arc J such that each component of � � J contains at least two
cu�s �see Figure �b��� We always cut along schisms�
Upon an application of a cut reduction a problem splits into at most three

new problems� So� an easy induction shows that if we repeatedly reduce the
new problems obtained until we are left only with instances of c�embedded k�
realizations where c is at most two� then we consider at most �d subproblems
whilst solving an instance of d�embedded k�realizations �a slightly more com�
plicated induction shows that we consider at most �d�� subproblems�� We
can solve each of the � or  cu� problems which remain using the algorithm of
Suzuki et al� mentioned earlier� Thus� if each reduction can be performed in
linear time then the whole algorithm can be implemented in linear time� We
avoid the details of the simple procedures for combining the solutions of the
subproblems�
Unfortunately� some graphs may not permit cut reductions and for this rea�

son we may �nd it necessary to apply a sequence of reductions of a second type�
namely deletion of an �irrelevant	 vertex� to obtain a cut reduction� However�
this is simply a complication in the cut �nding procedure� The analysis of the
algorithm still follows the lines given in the above paragraph�

Deleting an irrelevant vertex
A vertex v in G is irrelevant ifX has the same realizable partitions in G�v as in
G� It is plausible that if a vertex is �deep	 in a simple part of G which is disjoint
from X � then it is irrelevant� To make this precise� call a vertex v of a graph G
embedded in a surface � l�isolated if there are vertex disjoint cycles C�� ���� Cl

of G bounding discs D�� ���� Dl of � � bd��� such that v � D� � D���� � Dl

�see Figure ��� Our second reduction procedure is motivated by the following
lemma which is proved in the next section�

Lemma �� For every c and k there exists a g�c� k� such that each g�c� k��isolated
vertex is irrelevant for every instance �G�X��� of c�embedded k�realizations�

Deleting g�c� k��isolated vertices is our second reduction� Actually� in each
iteration of the algorithm we will apply a sequence of vertex deletions which
will �nally permit us to apply a cut reduction� That this is� in fact� possible is
suggested by the following lemma�

Lemma �� Let g be a function satisfying the conditions of Lemma �� Let
h�c� k� � �g�c� k���� Let �G�X��� be an instance of c�embedded k�realizations�
Then either there is a g�c� k��isolated vertex v or there is a schism J in � with
jJ � V �G�j � h�c� k��

The proof of Lemma  contains most of the core ideas we use in developing
a fast implementation of the isolated vertex deleting�cut �nding procedure�
After proving Lemma � we discuss this implementation brie�y�
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Figure �� An l�isolated vertex

Proof of Lemma �� We begin with the following lemma�

Lemma �� If G is a graph embedded on a punctured plane� and v is a vertex
of G then for any positive integer l� either

�i� v is l�isolated�

�ii� there is a proper simple arc J of � with one endpoint v and the other in
bd��� such that there are at most l � � vertices on the interior of J �

�iii� there is a proper O�arc J� of � and a proper simple arc J� with one
endpoint v� the other on J�� and no internal points on J� such that each
component of ��J� contains a cu� and jJ��V �G�j�j�J��J���V �G�j �
l� �Note that we permit J� to be a single point in which case J� is simply
an O�arc through v��

Proof� We shall prove this lemma by induction on l�
Consider a vertex v in a graph G embedded on a punctured plane� Let f

be the face of the drawing of G � v which contains v �a face of the drawing
is a connected component of the surface obtained by removing the edges and
vertices�� Let f� U�� ���� Um be the components of ��bd�f� �see Figure ��� Note
that each Ui is bounded by a simple cycle of bd�f� and that for any two distinct
Ui and Uj � there is a proper O�arc J intersecting G at v and possibly in one
vertex of bd�f� such that Ui and Uj are in di�erent components of �� J �
Now� if f�bd�f� intersects bd��� then there is an O�arc J with one end v and

the other in bd��� and all of its interior vertices in f � Otherwise� if there are
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at least two distinct components Ui and Uj of �� bd�f� containing cu�s then
as noted above we can �nd a proper O�arc J of length at most  containing
v such that each component of � � J contains a cu�� Finally� if there is a Ui

such that all of the cu�s of � are in Ui then we let C be the simple cycle in
bd�f� bounding Ui� We note that the existence of C implies that v is ��isolated�
Since� one of these three possibilities must occur� we see that Lemma � is true
for l � ��
So� we assume that l �  and the lemma holds for all l� � l� As discussed

above� either there is an arc as in �ii�� an O�arc as in �iii�� or a component U
of � � f � bd�f� bounded by a simple cycle C of bd�f� such that U contains
all the cu�s of �� In this case� let G� be the graph obtained from G � U by
adding a vertex v� adjacent to precisely those vertices of G�U which in G are
adjacent to some vertex of C� It is clear that the given embedding of G � U

can be extended to an embedding of G� in such a way that v� coincides with v

�see Figure ��� We now apply our inductive hypothesis and obtain that either
v� is l � ��isolated in G�� there is a simple arc J proper with respect to G�

from v� to bd��� whose interior contains at most l �  vertices� or there is an
O�arc J� proper with respect to G� and a simple arc J� proper with respect to
G� which links v� to J� such that there is a cu� in each component of �� J�
and jJ� � V �G�j�j�J� � J�� � V �G�j � l� If v� is �l� ���isolated in G� then
v is l�isolated in G� because C can be added to the set of cycles isolating v� to
obtain a larger set isolating v� On the other hand� if either an arc J or arcs J�
and J� as described above exist then these can be modi�ed to show that one
of �ii� or �iii� holds� Thus the lemma holds for l� as desired� �

Corollary �� For any l� if G is a graph embedded on a punctured plane
then either G contains an l�isolated vertex� G contains a proper I�arc with its
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endpoints on di�erent cu�s containing at most l �  vertices� or G contains
an O�arc F containing at most l vertices such that each component of G� F

contains a cu��

Proof� Let J be a proper I�arc J of G withs its endpoints on di�erent cu�s
and subject to this intersecting G as little as possible� Let v be a vertex of J

such that one component of J � v contains b jJ�V �G�j��
� c vertices and the other

contains d jJ�V �G�j��
� e� Now apply Lemma � to v� We see that either v is l�

isolated� or there is an O�arc J� of length at most l such that each component
of � � J� contains a cu�� or there is an I�arc from v to some cu� containing
at most l � � vertices� The minimality of J implies that in this last case� J
contains at most l�  vertices� The corollary follows� �

Now� consider a graphG embedded in a punctured plane with cu�s C�� ���� Cc�
For each i� if there is a proper O�arc surrounding Ci which contains at most
g�c� k� vertices then let C �

i be such an O�arc which cuts o� as much of �
as possible� in the sense that there is no proper O�arc C�

i containing at most
g�c� k� vertices and surrounding Ci such that Ci and C �

i �C�
i are in the same

component of �� C�
i � If there is no such proper O�arc then we set C �

i � Ci�
If for some distinct i and j� C �

i and C
�
j intersect then there is a schism �either a

butter�y� three�path� or an O�arc J such that each component of ��J contains
at least two cu�s� which is contained in their union and hence contains at most
�g�c� k� vertices of G�
Otherwise� let �� be the surface obtained from � by deleting for each i such

that C �
i is an O�arc� the component of ��C �

i containing Ci� Let G
� � G ����

Then G� is a graph embedded in a punctured plane with c cu�s� �See Figure ���
So� by Corollary � applied to G�� either there is a g�c� k��isolated vertex v in
G or there is a proper O�arc J of �� of length at most g�c� k� such that each
component of ���J contains a cu�� or there is a proper I�arc with its endpoints
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on di�erent cu�s of �� of length at most g�c� k� � �
Now� we note that any g�c� k��isolated vertex of G� is also a g�c� k��isolated

vertex of G� Furthermore� any proper I�arc in �� of length at most g�c� k�� 
corresponds to an I�arc� lollipop� or bicycle of � of length at most �g�c� k� �
� Finally� if J is an O�arc in �� of length at most g�c� k� such that both
components of �� � J contain a cu� then by our choice of the C �

i both these
components must contain two cu�s�
Thus� we see that our application of Corollary � to G� yields either a g�c� k��

isolated vertex of G or a schism in G of length at most �g�c� k� � � �

Our Proof of Lemma  is algorithmic� We now discuss how to convert the
proof into a linear time algorithm for �nding a cut reduction� To begin we
remark that the proof of Lemma � and Corollary � can be converted into an
algorithm which returns a vertex v� an integer l� as well as both l nested circuits
C�� ���� Cl surrounding v each of which bounds a disc disjoint from bd��� and
either a proper I�arc of length at most l� � whose endpoints are on di�erent
cu�s or a proper O�arc J� and a proper simple arc J� from v to J� such that
jJ� � V �G�j � j�J� � J�� � V �G�j � l �  and each component of � � J�
contains a cu��
Suppose �rst that we return an O�arc J� and an arc J� from v to J� such that

each component of ��J� contains at least two cu�s� If l is less than g�c� k���
then J� is a schism of length at most g�c� k� � � which is less than h�c�k� and
we can cut along it� If l is greater than g�c� k� then� as shown in Figure �� we
�rst delete all the vertices of G contained inside the disk bounded by Cl�g�c�k�

to obtain a new embedded graph G�� Repeated applications of Lemma � ensure
that a partition of X is realizable in G if and only if it is realizable in G�� Note
also that J� is now a schism intersecting G� in at most g�c� k� � � vertices so
we can cut along it to reduce the problem�
Similarily� if we return with an I�arc whose endpoints are on di�erent cu�s
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Figure ��

then we can �nd a new graph G� and a corresponding I�arc which intersects G�

in at most g�c� k� � � vertices such that cutting along this I�arc yields a new
problem in a punctured plane with one fewer cu�s�
Finally� if we return with an O�arc J� surrounding some cu� K and a proper

simple arc J� from v to J� then we will iterate the cut �nding process described
above� In each iteration� we delete permanently part of our graph and also
temporarily delete a part of our graph which we will replace at the end of the
cut �nding procedure� The part temporarily deleteted is contained inside an
O�arc surrounding a cu� and in fact this O�arc will take the place of the cu�
as we also temporarily delete part of the surface� Now� in the �nal iteration
of the cut �nding algorithm� if we �nd a schism which is an O�arc this will
still be a schism of the same length in the graph obtained by replacing all
the momentarily deleted parts� However� if we terminate by �nding an I�arc
then this I�arc need not be an I�arc in the original surface� It will however
correspond to a short lollipop� bicycle� or I�arc along which we can cut�
Forthwith the details� First� in a non��nal iteration� we can permanently

delete vertices as in the �nal iteration to obtain a new graph G� such that
J� has length at most g�c� k� � � with respect to G� and still surrounds K�
Now� we will repeat the cut �nding process just described on the graph G�

obtained from G� by temporarily deleting the component of �� J� containing
K �thus G� is embedded on a new punctured plane one of whose cu�s is J���
Of course� we may repeat this process many times but eventually we must
terminate in one of the two ways described above as it is clear that the length
of the shortest of all the I�arcs between two cu�s halves at each step� Further�
since each  pseudo�cu� is actually an O�arc with length at most g�c� k� � ��
it is clear that we can reduce along a schism of length at most h�c� k� in the
graph obtained by replacing the temporarily deleted parts of the graph�
This completes the description of the cut �nding algorithm we avoid dis�
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cussing the straightforward details of the linear time implementation� We re�
mark only that the time taken in a non��nal iteration is actually proportional
to the sum of the sizes of the subgraphs deleted temporarily and permanently�
We close by remarking that we actually only ever cut along I�arcs� O�arcs�

bicycles� and lollipops� The other schisms were added for ease of exposition�

�� Other surfaces

Essentially the same algorithm can be applied in any surface �see 
�� for details�
see 
��� for an introduction to graphs on surfaces�� However there are two
other kinds of schisms along which we may need to cut� Examples of these are
depicted in Figure �� Figure � shows a two simple closed curves J� and J� in

1

J2

J

Figure ��

a double torus� Cutting along J� yields two surfaces each of which is obtained
from the torus by deleting an open disc� Cutting along J� yields one surface
which is obtained from the torus by deleting two open disks� In general� we
can cut along an O�arc J to simplify our problem as long as J does not bound
a disc of the surface and does not surround a cu� �i�e� there is no cu� K such
that J and K together bound a cylinder of the surface�� Although such cuts
may not decrease the number of cu�s� they always create �simpler	 surfaces�
We note that there is a technical detail we have not mentioned� How do we

�nd the cut if there is only one cu�� This is very easy� but we omit the details�

�� A Crucial Lemma

The key to our algorithm is Lemma �� It is a consequence of the following
theorem of Robertson and and Seymour �rst proved in 
���

Theorem 	� For every pair c and k� there is an f�c� k� such that for any
instance �G�X��� of c�embedded k�realizations� if the following three conditions
hold then a partition f��� � � � ��pg of � of X is realizable in G if and only if
it is realizable in ��

�i� No schism of � has length less than f�c� k��
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�ii� There is no O�arc J of � surrounding a cu� K such that jJ � V �G�j �
jK �X j�

�iii� If J is an I�arc with both of its endpoints on the same cu� then either J
has length at least f�c� k� or for some component U of �� J � J �U is a
disk and j�U � J� �X j � j�J � bd���� � V �G�j�

Although Robertson and Seymour derive a strengthening of Lemma � from
Theorem � �only partially published�� we include a derivation of Lemma �
assuming Theorem � here� This is because we require about of the ��� pages
used by Robertson and Seymour�

Proof of Lemma �� We only prove the lemma for c � �� the base case c � �
follows in a straightforward manner from results of 
��� whilst the case c � 
can be proved in a manner similar to that we use for larger values of c�
We choose a function f satisfying Theorem � and then de�ne a function g

recursively by �rst setting�

h�c� k� � maxfmaxfg�c�� k��jc� � c� k� � k � f�c� k�g�

maxfg�c� k��jk� � kgg

and then setting�

g�c� k� � h�c� k� � f�c� k� � ��

�Again� we assume g��� k� and g�� k� have been shown to exist for each value
of k��
We want to show that for each pair c and k of integers if �G�X��� is an

instance of c�embedded k�realizations and v is a g�c� k��isolated vertex then
any partition of X realizable in G is also realizable in G � v� We assume the
contrary to derive a contradiction and choose the lexicographically smallest
pair �c� k� for which this statement does not hold� So� we consider an instance
�G�X��� of c�embedded k�realizations and a g�c� k��isolated vertex v in G such
that some partition � of X is realizable in G but not in G� v�
Clearly� � is realizable in � for it is realizable in G� Thus one of �i���iii� in

Theorem � must fail to hold for G� v�
Suppose �rst that there is some I�arc J with its endpoints on di�erent cu�s

which has length at most f�c� k�� Now� as in our reduction algorithm�we can
cut along J � replacing each vertex v on J by two new vertices v� and v� to
obtain from G a new graph G� embedded in a punctured plane �� with c � �
cu�s� We let X � � X � J � fx�jx � J � V g� fx�jx � J � V g and k� � jX �j �
k�f�c� k�� We note that since J has both its endpoints in bd��� and has length
at most f�c� k� we know that it does not intersect Dg�c�k��f�c�k� and hence v is
�g�c� k�� f�c� k���isolated in G�� Since g�c� �� k�� � h�c� k� � g�c� k�� f�c� k�
we know by the induction hypothesis that any partition of X � realizable in G�

is also realizable in G��v� Now� we know that our partition � was realizable in

��



G thus there is a partition �� of X � realizable in G� which yields a realization
of � in G� We have just remarked that �� is also realizable in G� � v and thus
� is realizable in G� v� a contradiction�
Similar reductions apply given any short schism� or short O�arc or short I�arc

with both its endpoints on the same cu�� In these cases� � may be cut into
two or three pieces and we must apply induction to the piece containing v�
Furthermore� if we cut through an O�arc �or a looping I�arc J such that for
some component U of ��J � U�J bounds a disc� then we may apply induction
on k and not c� The tedious but routine details are left to the reader� �

We remark that essentially the same proof yields an analagous result for
graphs embedded on arbitrary surfaces�
Now� the strengthening of Lemma � proved by Robertson and Seymour is�

Theorem 
� For every k there is a g�k� such that the following holds� Suppose
G is a graph� H is a planar subgraph of G�X� there are vertex disjoint cycles
C�� ���� Cg�k� in H bounding �in some embedding of H� discs D� � D���� � Dg�k�

such that no vertex of G�H is adjacent to any vertex in the interior of Dg�k�

and v is a vertex inside D�� Then� any partition of X realizable in G is also
realizable in G� v�

To prove this theorem� they �rst prove Theorem � and then spend six hun�
dred pages developing structure theory which essentially says that a minimal
counter�example to Theorem � must look more or less like a graph on a surface
whose genus is bounded by a function of k� This then allows them to prove
Theorem � using Theorem �� It would be of great interest to obtain a direct
proof of Theorem ��

Acknowledgement� I thank Bert Gerards for extensive editing on this paper�
This included sketching the lines along which the current version runs and
drawing the �gures�
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