Simple Algorithms for Steiner Trees and Paths Packing
Problems in Planar Graphs

Dorothea Wagner
Fachbereich Mathematik, Technische Universitat Berlin,
StraBe des 17. Juni 136,
10623 Berlin, Germany.
email: wagner@math.tu-berlin.de

In this paper we give a short survey on efficient algorithms for Steiner trees
and paths packing problems in planar graphs. We particularly concentrate
on recent results. The first result is a linear-time algorithm for packing
vertex-disjoint trees resp. paths within a planar graph, where the vertices to
be connected lie on at most two different faces [26, 32]. This algorithm is
based on a linear-time algorithm for the vertex-disjoint Menger problem in
planar graphs [27]. The second result is a linear-time algorithm for packing
edge-disjoint paths within a planar graph, where the vertices to be connected
all lie on the boundary of the same face [34]. All algorithms discussed in
detail in this paper admit a short and simple description, and are easy to
implement.

1. INTRODUCTION
In this paper we consider the following type of problems.

The Steiner Trees Packing Problem
Given: A planar graph G = (V, E), |V| = n, and sets Ny,..., N, C V. In this

context we call the N; nets and the elements of N; terminals.

Problem: Find, for each ¢ = 1,...,k, a Steiner tree T; for N; (i. e. a tree
in G connecting all terminals in N;) such that 73,...,T} are pairwise
vertex-disjoint /edge-disjoint.

Steiner trees packing problems have many practical applications, e. g. in
the design process of integrated circuits, the design of reliable communication
networks or the control of traffic networks. In all these applications, planarity
of the underlying graph is a natural restriction. Most Steiner trees packing
problems are A"P-hard. In this paper we concentrate on restrictions of this

219

problem which admit efficient solution algorithms. Natural restrictions which
are still of practical relevance concern e. g. the position of the terminals or the
number of terminals of a net.

The algorithms described here are “really efficient”. This means that the
polynomial worst-case running time is not only proved theoretically. In fact,
the algorithms discussed in detail in this paper admit a short and simple de-
scription. They have even linear running time where the order constant is
obviously small. Moreover, they are easy to implement, i. e., can be of practi-
cal relevance.

2. THE VERTEX-DISJOINT CASE

The general vertex-disjoint Steiner trees packing problem in planar graphs is
NP-complete [16]. Even when restricted to paths, i. e., when all nets have
exactly two terminals, the problem remains NP-complete. However, ROBERT-
SON & SEYMOUR [29] showed that the vertex-disjoint paths packing problem
is solvable in polynomial time (also for non-planar graphs) if k, the number of
paths, is fixed. Recently, even a linear-time algorithm has been introduced for
planar graphs [23]. But the order constant of these algorithms depends heavily
on the number of paths.

The first polynomial time algorithm for the vertex-disjoint Steiner trees pack-
ing problem in planar graphs where the terminals lie only on one or two face
boundaries was given in [28]. But this algorithm is far off from being imple-
mentable. In [15] and in [32] an easy O(n) algorithm is described for the case
that all terminals lie on the boundary of the same face. The proceeding of
this algorithm may be seen as a “key idea” for deriving simple linear-time al-
gorithms for similar problems. In fact, the new algorithm discussed in Section
2.3 for the vertex-disjoint Menger problem is in some sense a “generalization”
of this algorithm. Also the algorithm for parenthesis problems given in Section
3.1 is a slightly modified version of the algorithm. Moreover, a similar method
can be applied to solve a special case of the edge-disjoint one-face paths packing
problem discussed in 3.2 in linear time.

2.1. The One-Face Steiner Trees Packing Problem
In this section we describe the algorithm from [15] and [32] solving the following
problem.

Vertex-Disjoint One-Face Steiner Trees Packing Problem

Given: A planar graph G = (V, E), |V| = n, and pairwise vertex-disjoint sets
Ni,...,Ni C V. The graph G is embedded in the plane such that all
terminals lie on the boundary of the outer face of G.

Problem: Find, for each « = 1,...,k, a Steiner tree T; for N; such that
Ti,...,Ty are pairwise vertex-disjoint.

The algorithm runs in two phases. First the topological solvability is tested,
and then the layout of the nets is determined, assuming enough capacity is

220

available. Informally, to guarantee topological solvability the nets must have
a mested structure, i. e., are not allowed to cross. More precisely, a topological
solution is a collection of Steiner trees for the nets that can be drawn disjointly
in the plane outside the outer face. So a topological solution is not necessarily
contained in G. Obviously, the existence of a topological solution depends only
on the position of the terminals on the outer face boundary of G. Topological
solvability can be decided by a simple algorithm, the Stack Algorithm. The
terminals are scanned in anti-clockwise ordering around the boundary begin-
ning with some arbitrary terminal, and every new visited terminal is pushed
onto a stack. If the pushed terminal is the last non-visited terminal of the
corresponding net, it is tested if all terminals of the net lie on top of the stack.
If this is not the case, the problem is not topologically solvable. Otherwise, all
terminals of the net are popped. When all the terminals of all nets are visited,
and there was no conflict before, the instance is topologically solvable if and
only if the stack is empty.

For a formal description of the Stack Algorithm, let us assume that the nets
Ni, ..., N are numbered according to the occurrence of the last terminals of
the nets, if we walk along the outer face boundary in anti-clockwise ordering
(starting with some arbitrary but fixed terminal). For net NV;, we denote the
first terminal by s; and the last terminal by t;.

“Stack Algorithm”

STACK:=0
begin
walk along outer face boundary in anti-clockwise ordering starting with sg;
while not all terminals are visited do
if the visited vertex v is a terminal then
if v is a last terminal ¢; then
POP until s; is popped;
if not all popped terminals belong to V;
then stop: return “topologically unsolvable”;
else PUSH(v);
return “ topologically solvable”;

Obviously, the Stack Algorithm can be implemented to run in linear time.
The algorithm to determine a solution, a layout, if it exists is now based on
the Stack Algorithm. To route the nets correctly, they are considered in the
order they have been deleted from the stack. According to our assumption, this
is just the ordering Np,..., Ni. The nets are routed anti-clockwise along the
boundary. After a net is routed, the boundary is corrected by deleting all used
edges and vertices, and all edges incident to them. If there is enough capacity,
this method leads to a correct layout.

This algorithm can be interpreted as a right-first search, i. e., a depth-first
search where in each search step the edges are searched from right to left. We
will say that the next edge after e w. r. t. v is the first edge to follow e in

221

the adjacency list of v in anti-clockwise ordering. A backtrack & remove step
consists of a backtrack step where in addition the searched edge is deleted
from the graph. We now describe the layout algorithm formally as a right-first
search. For technical reasons we assume that all s; have degree one in G.

“One-Face Layout Algorithm”

for i :=1to k do
let p; initially consist of the unique edge incident to s;;
v := the unique vertex adjacent to s;;
while not all terminals of IV; are visited and v # s; do
if at least one edge incident to v is not yet searched then
let {v,w} be the next edge after the leading edge of p; w. r. t. v;
if w is just occupied by some tree different from N; then
perform a backtrack & remove step;
else add {v,w} to ps;
v = w;
else perform a backtrack & remove step;
v := the leading vertex of p;;
if v = s; then stop: return “unsolvable”;
return (p1,...,pr);

An example illustrating the One-Face Layout Algorithm is shown in Figure 1.
The running time of the algorithm is again O(n).

2.2. The Two-Face Steiner Trees Packing Problem
The problem is much more complicated if the terminals are allowed to lie on
two face boundaries.

Vertex-Disjoint Two-Face Steiner Trees Packing Problem

Given: A planar graph G = (V, E), |V| = n, and pairwise disjoint sets Ny, ...,
N C V. The graph G is embedded in the plane such that all terminals
lie on the boundary of at most two different faces of G, w. . o. g. the
outer face F° and one fixed inner face F'.

Problem: Find, for each ¢« = 1,...,k, a Steiner tree T; for N; such that
Ti,...,Ty are pairwise vertex-disjoint.

SuzukIl, AKAMA & NISHIZEKI [32] give an algorithm for this problem that
runs in time O(nlogn). There are essentially two cases to consider for solving
this problem. The case where all terminals of the same net lie on the boundary
of the same face, and the case that at least one net has terminals on both face
boundaries. The algorithm presented in [32] for solving the first case has even
linear running time. Surprisingly, in some sense it is the more difficult case
of the problem. The first case is easier to solve since one single net having
terminals on both faces fixes the homotopy of all other nets.

222

FIGURE 1. An example for the One-Face Layout Algorithm.

The algorithm for solving the second case consists of three parts. In the
first part the problem is reduced to the vertex-disjoint two-face paths packing
problem.

Vertex-Disjoint Two-Face Paths Packing Problem

Given: A planar graph G = (V, E), |V| = n, and pairwise disjoint sets of
terminal pairs {s1,t1},..., {sk,tx} C V. The graph G is embedded in
the plane such that all terminals s; lie on the boundary of one fixed inner
face F, and all terminals ¢; lie on the boundary of the outer face F°.

Problem: Find k pairwise vertex-disjoint paths connecting s; and ¢;, for 1 <
1 < k.

It is not hard to prove that the following reduction to the two-face paths
packing problem is correct. The reduction is done by applying the One-Face

223

Layout Algorithm several times. At first, a layout for the nets having all
terminals on the same face is constructed by applying the One-Face Layout
Algorithm to the outer and to the inner face respectively. Then all parts of G
occupied by this layout, as well as all edges incident to a vertex occupied by
this layout, are deleted. Then for each of the remaining nets, trees connecting
all terminals incident to the outer face F'° are determined by applying the One-
Face Layout Algorithm. Analogously, trees connecting all terminals incident
to the inner face F' are determined. Now, all edges and vertices occupied by
such a tree are contracted to a “super-vertex”. These super-vertices induce a
two-face paths packing problem. Obviously, all these determinations are done
in time O(n).

The solution to this remaining problem is carried out in two parts (the second
and third part of the whole algorithm).

In the second part of the algorithm, vertex-disjoint paths connecting the
terminals on the inner face with some vertices on the outer face are determined.
But, in fact these paths not necessarily connect the correct pairs of terminals.
Basically, this subproblem of the two-face Steiner trees packing problem is just
the “classical” Menger problem. Just introduce two new vertices s and ¢. By
additional edges, connect all terminals s; on the inner face F' to s, and all
terminals ¢; on the outer face F° to t.

Vertex-Disjoint Menger Problem
Given: A graph G = (V, E), |V| = n and vertices s and ¢.

Problem: Find a maximum set of (resp. k) internally vertex-disjoint paths
connecting s and ¢.

A maximum number of vertex-disjoint paths connecting s and ¢ in undirected
graphs can be computed by solving a maximum unit-flow problem [2, 3]. If the
graph is planar, this yields an O(n%) resp. O(kn) algorithm, where k is the
number of paths. The approach presented in [32] leads to an algorithm of
running time O(nlogn). It is based on divide-and-conquer techniques similar
to the methods given in [8] and [24]. Recently, RIPPHAUSEN-LIPA, WAGNER &
WEIHE [25, 27] presented a linear-time algorithm for the planar vertex-disjoint
Menger Problem. We will discuss the latter approach in Section 2.3.

In the third part of the algorithm solving the two-face Steiner trees packing
problem, vertex-disjoint paths connecting the correct terminals are determined.
The approach given in [32] yields a linear time algorithm for this problem. In
Section 2.4 we will sketch a different approach which is presented in [26]. This
algorithm has linear running time as well. It is based on some special properties
of the algorithm from [25] solving the Menger Problem.

2.3. The Menger Problem

Now we are going to introduce a linear-time algorithm for the vertex-disjoint
Menger Problem. For technical reasons, we will consider a directed version of
the Menger Problem instead of the undirected problem itself.

224

Directed Version of the Menger Problem
Given: A planar directed graph G = (V, E), |V| = n, and vertices s and ¢.

Problem: Find a maximum set of (resp. k) internally vertex-disjoint (s,t)-
paths, i. e., directed paths from s to ¢t.

In the following we consider a directed graph corresponding to G. Let
w. 1. 0. g. t be on the outer face boundary. The undirected graph G is trans-
formed into a directed graph by replacing each edge {v,w} € E with v,w # s
by the arcs (v, w) and (w, v), and each edge {s,v} € E by (s, v) only. We denote
the set of all arcs by A. Obviously, there is a linear-time algorithm solving the
original Menger Problem for undirected graphs, if there is a linear-time algo-
rithm solving the directed version of the Menger Problem for the corresponding
directed graphs. Although the Menger algorithm presented here works in di-
rected graphs, it does not solve the directed version of the Menger Problem in
arbitrary directed graphs. It only works for directed graphs where (v, w) is an
arc if and only if (w,v) is an arc. The directed formulation is used here only
to distinguish between “searched from v to w” and “searched from w to v”.

The algorithm consists in a loop over all arcs leaving s. Let ey, ..., e; denote
these arcs, in arbitrary order. In the it* iteration the algorithm tries to draw a
cycle-free (s, t)-path starting with e;. These paths are determined by a directed
right-first search, i.e., a directed depth-first search where in each search step
all arcs leaving the current vertex are searched from right to left (except the
reverse of the leading arc of the current search path). The i** iteration is
finished, when either ¢ is reached or the search returns to s by backtrack steps.
We call an iteration of the algorithm also a search phase.

The main difficulty of the approach is to handle conflicts of the current search
path with itself, resp. with other paths, in an appropriate way. In fact, any
conflict is resolved by a backtrack step. The idea is to handle all conflicts in a
way that enables us to remowve each arc from G, once we perform a backtrack
step with it. As any step of such a right-first search is a forward step or a
backtrack step, the number of search steps in total is then linear in the size of
the graph. If in addition all search steps can be realized in (amortized) constant
time, the time complexity of the whole algorithm is again linear.

In general, there are two types of conflicts to distinguish, conflicts from the
left and conflicts from the right. That is, either the current search path touches
some vertex occupied by another path or by the current search path itself from
the left side or from the right side.

Conflicts from the left: If a vertex already occupied by another path or by
the current search path itself is entered by the current search path from the
left side, the conflict is resolved by simply performing a backtrack step. The
corresponding arc is removed, and then the right-first search is continued.

Conflicts from the right: If the current search path enters a vertex occupied
by another path from the right side, the conflict is resolved in the following way.
Let v be the vertex where this conflict occurs, let p and ¢ denote the segment

225

S

t
s b)s

t
c) d)

FIGURE 2. An example where a cycle conflict from the right is avoided by
deleting arc (v,w): a) cycle conflict from the left, b) the situation after back-
tracking, ¢) the first path determined by the algorithm, d) the final solution.

of the other path from s to v and from v to t, respectively, and let r denote
the current search path. We now concatenate r with ¢ and let p be the “new”
current search path. Now, the same conflict can be seen as a conflict from the
left side. That is, the “new” current search path p enters the concatenated
path r + ¢ from the left. Again, by a backtrack & remove step this conflict
is resolved and the search is continued. By that, a path from s to ¢ which is
determined in one search phase, is not necessarily completely contained in the
final solution as a path. This procedure may be seen as a “reconfiguration” of
paths. In Figure 3 b) and c¢) the “reconfiguration” of paths is illustrated. The
question is now: Can we resolve a cycle conflict from the right, i.e., a conflict
of the current search path with itself where the occupied vertex is entered from
the right side the second time?

Avoiding cycle conflicts from the right: In fact, since we are not able to
cope with cycle conflicts from the right, we avoid those conflicts in advance.
Fortunately, it can be proved that any cycle conflict from the right is in a
sense “announced” by a cycle conflict from the left, where the same cycle is
involved, but in reverse direction. Let (w,v) be the arc removed because of

226

this “announcing” cycle conflict from the left. Then clearly, removing (v, w) at
this moment prevents the “announced” cycle conflict from the right. That is,
in addition to the “regular” removing of arcs because of conflicts from the left,
we sometimes remove reverse arcs of such arcs. The proceeding described here
is illustrated in Figure 2.
Implementing the algorithm to run in linear time: As previously men-
tioned, the right-first search has linear running time if each search step can be
performed in (amortized) constant time. Obviously, “regular” search steps, i.e.,
forward steps and remove steps in consequence of backtrack steps, only cost
constant time. But, in order to decide if the reverse arc of a removed arc has to
be removed as well, we must be able to distinguish between cycle conflicts from
the left and conflicts where the current search path enters another path from
the left. We could do this by comparing the “names” of the paths occupying
the two end-vertices of such an arc. But, in consequence of the reconfiguration
of paths, the “name” of the path occupying a vertex possibly changes during
the algorithm. On the other hand, updating the names of the occupying paths
every time a reconfiguration of paths takes place requires too much time.

This problem of “identifying” paths is solved by the following “trick”. We
maintain a global time counter and for each vertex a local time stamp. The
global time counter is increased by 1, whenever the current search path changes,
that is, when either a new search phase is started, or a conflict occurs where the
current search path touches another path from the right side. The time stamp
of a vertex is set to the value of the global time counter, whenever this vertex
becomes the leading vertex of the current search path. Then the following
procedure prevents all cycle conflicts from the right in advance: Whenever an
arc is considered for going forward, we first compare the time stamp of its
head with that of its tail. The arc is removed if and only if both are equal.
Otherwise, it is actually used for going forward.

We now give a formal description of the algorithm. If an arc of a path p
enters (leaves) a vertex v, we call it an in-going arc (out-going arc) of v. Let
€1,...,ex be the arcs leaving s in arbitrary ordering.

“Menger Algorithm”

time_counter := 0;
for ¢ :=1 to k do
time_counter := time_counter + 1;
let the current search path be e; = (s,v);
repeat
time_stamp(v) := time_counter;
if the current search path touches some path at v from the left then
perform a backtrack & remove step;
else
if the current search path touches some path at v from the right then
time_counter := time_counter + 1;
let p be the segment of this path from s to v, and let ¢ be the remaining
segment;

227

connect the current search path with ¢ and let p be the current search path;
perform a backtrack & remove step;
else

if at least one arc leaving v is not yet searched (except the reverse of the
in-going arc) then let (v, w) be the first such arc to appear after
the in-going arc in anti-clockwise ordering;
if time_stamp(v) = time_stamp(w) then remove (v, w);
else go forward via (v, w);

else perform a backtrack & remove step;

v := the leading vertex of the current search path;

until v € {s,t};

c) d)

FIGURE 3. An example for the Menger Algorithm: a) the first path determined
by the algorithm, b) a confict from the right between the the second search path
and the first path in, ¢) the conflict from the left after reconfiguration of paths
in, d) the first two paths determined by the algorithm.

228

THEOREM 2.1 [27]. The vertez-disjoint Menger Problem in planar graphs can
be solved in time O(n).

The correctness of the Menger Algorithm is induced by the following two
invariants maintained by the algorithm.

I1 During the execution of the algorithm no right-cycle conflict occurs.

I2 Let {a1,...,am} be the arcs removed during the execution of the algorithm.
Each graph G; = (V, A\{a1,...,0a;}), 1 <i < m, still contains an optimal
solution for G.

One very useful property of the Menger Algorithm is based on the following
easy observation.

OBSERVATION 2.2. At any stage of the algorithm, no arcs leave any path drawn
so far to its right.

Informally, we can say that the solution determined by the Menger Algorithm
is a “rightmost” solution. This special solutions can be used to solve the two-
face paths packing problem in linear time as well.

2.4. The Two-Face Paths Packing Problem
In [26], a method is presented for solving the two-face paths packing problem
and some related problems in linear time. We sketch this approach here.

Obviously, the Menger Algorithm can be used to determine pairwise vertex-
disjoint paths connecting specified terminals on one face to the boundary of the
other face. Now, the Menger Algorithm is applied twice. On one hand, “inner”
paths starting with the terminals s; on the boundary of the inner face F' and
ending at some vertices on the boundary of the outer face F*° are determined.
On the other hand, by a “left-first version” of the Menger Algorithm, “outer”
paths starting with the terminals ¢; on the boundary of the outer face F° and
ending at some vertices on the boundary of the inner face F! are determined.
Because of the special properties of the Menger Algorithm, the inner paths
are in some sense rightmost and the outer paths are in some sense leftmost.
Therefore, if the vertex-disjoint two-face paths packing problem is solvable,
related inner and outer paths must intersect at least once. Then, a collection
of paths connecting terminal s; and t;, for 1 < ¢ < k, can be constructed
by concatenating appropriate segments of the inner paths with appropriate
segments of the related outer paths. But, since “unrelated” inner and outer
paths may intersect as well, not every choice of intersection vertices would yield
a collection of pairwise vertex-disjoint paths. However, it can be proved that
intersection vertices of related inner and outer paths exist which yield a vertex-
disjoint solution (assumed a solution exists at all). These intersection vertices
can be determined in linear time.

The method can be used to solve related vertex-disjoint paths packing prob-
lems, where the homotopies of the paths are given, in time O(n) as well [26].

229

3. THE EDGE-DisJoINT CASE

Most cases of the edge-disjoint Steiner trees packing problem are NP-complete.
Even the planar edge-disjoint paths packing problem, i.e., the N; are all two-
element sets and G is planar, is N'P-complete [14]. The problem is also A/P-
complete if G is planar and k = 2 [13]. If Ele |V;| is fixed, the problem is
polynomially solvable [29].

There are some special cases where the planar edge-disjoint paths packing
problem turns out to be polynomially solvable. Typically, polynomial algo-
rithms for such problems are based on the existence of certain duality results.
That is, necessary and sufficient conditions for solvability are known. Obvi-
ously, a necessary condition for solvability is the cut condition.

A subset X C V is called a cut of G. For a cut X the capacity of X, cap(X),
is the number of edges leaving X, and the density of X, dens(X), is the number
of nets leaving X, i.e.,

cap(X) = [{{u,v} € E:ue X,0oeV\ X},
dens(X) := [{{si,ti} EN:s; € X, t;, eV\Xort; € X,s, € V\X}.
The free capacity of X is defined as

feap(X) := cap(X) — dens(X).

Cut Condition
A graph G = (V, E) together with a set of terminal pairs {s1,t1},..., {sk, tx}
satisfies the cut condition if fcap(X) > 0 for all cuts X C V.The cut condition

is a necessary condition for solvability, but in general it is not sufficient. An
additional restriction on the problem, which sometimes makes things easier, is
the Eulerian condition or evenness condition.

Eulerian Condition

A graph G = (V, E) together with a set of terminal pairs {s1,t1},..., {sk, tx}
satisfies the Fulerian condition if and only if the graph (V, E 4+ {s1,t;} +---+
{5k, tr}) is Eulerian. The two-terminal sets {s1,¢1},...,{sk,tx} are also called
demand edges. Notice, that the terminals are not necessarily distinct.

The Eulerian condition is obviously equivalent to the condition that fcap(v)
is an even number, for all vertices v € V. For instances where G together with
the “demand” edges is Eulerian and planar, the cut condition is also sufficient
for solvability. As a consequence, the problem is polynomially solvable [31].
It again becomes NP-complete if either planarity or the Eulerian condition is
dropped [18].

3.1. Solving the Eulerian One-Face Paths Packing Problem
A basic result of OKAMURA & SEYMOUR [22] concerns the edge-disjoint one-
face paths packing problem.

Edge-Disjoint One-Face Paths Packing Problem

230

Given: An instance (G,) consisting of a planar graph G = (V, E) and a set
of terminal pairs N" = {{s1,t1},...,{sk, ¢k} }. The graph G is embedded
in the plane such that si,...,sg,t1,...,tx lie on the boundary of the
outer face. (These vertices are not necessarily distinct.)

Problem: Find k edge-disjoint paths in G connecting s; and t;, for 1 <1 < k.

THEOREM 3.1 (OKAMURA & SEYMOUR) [22] An instance (G,N) of the edge-
disjoint one-face paths packing problem that satisfies the Fulerian condition is
solvable if and only if the cut condition is satisfied.

The proof of Theorem 3.1 is constructive and yields an algorithm that pre-
serves the cut condition and the Eulerian condition as invariants. The core of
the algorithm can be formulated as follows:

“Algorithm of Okamura & Seymour”

while E#0 do

choose an edge e = {u, v} on the outer face;

if there is a cut X with v € X, v ¢ X and fcap(X) < 0 then stop;

(*cut condition is violated™®)

if there is a cut X with u € X, v ¢ X and fcap(X) =0 then
choose an appropriate net {s,t} with s € X,t ¢ X;
reserve e for {s,t};
delete e;
replace {s,t} by nets {s,u}, {v,t}; (x)

else
delete e;
add a dummy net {u, v}; (%*)

The correctness of the algorithm is based on the following invariants.
I1 (%) and (**) preserve the cut condition.
I2 (%) and (**) preserve the Eulerian condition.

Invariant 12 is obviously satisfied. Notice, that in (xx) a dummy net is
introduced in order to preserve the Eulerian condition. The proof of invariant
I1 consists of a case analysis, where the Eulerian condition is used several
times.

Important for the efficiency of the algorithm is the following fact:

Fact Restriction to connected cuts
The cut condition is satisfied for all cuts X C V if and only if the cut
condition is satisfied for all connected cuts X C V,i.e., forallcuts X CV
where G(X) and G(V \ X) are connected graphs.

231

Only cuts whose density is at least one are considered during the algorithm of
Okamura & Seymour. It is easy to prove that every connected cut X whose
density is at least one cuts exactly two edges of the outer face boundary, i. e.,
there exist exactly two edges of the outer face boundary that are incident to
both, a vertex in X and a vertex in V' \ X. Thus, the conditions on cuts
which are tested during the algorithm can be tested efficiently. Using the fact
that minimum capacity cuts through two edges of the outer face boundary in
G are equivalent to shortest paths between the corresponding vertices in the
so-called multiple source dual [7, 33], of G leads to an O(n?) implementation
[1, 17]. The multiple source dual of G is obtained from the dual of G by
introducing as many vertices corresponding to the outer face as there are edges
on the boundary of the outer face. Then the edges dual to the edges on the
boundary of the outer face are drawn such that the end-vertices corresponding
to the outer face are distinct. In [10], the complexity of the algorithm has been
improved to O(n3 (loglogn)3) by using Frederickson’s decomposition method
for planar graphs [5].

Recently, WAGNER & WEIHE[34] introduced a new algorithm which solves
the Eulerian edge-disjoint one-face paths packing problem in time O(n). In
contrast to the algorithms mentioned above, it does not test cuts explicitly.
The algorithm is, similar to the algorithms for the vertex-disjoint one-face paths
packing problem and the vertex-disjoint Menger problem, based on “right-first
search”. We will explain the main ideas of this approach.

In the sequel we assume that, according to an anti-clockwise ordering starting
with an arbitrary start terminal x, s; precedes t; fori = 1,...,k, and t; precedes
tiy1 fori =1,...,k — 1. All terminals have degree one and all other vertices
have even degree. Obviously, a simple modification transforms any instance
into a completely equivalent instance that fulfills this assumption.

Before we determine a solution for instance (G,A), we will first consider
an “easier” instance (G,N()) of parenthesis structure. That is, consider the
2k-string of s-terminals and t-terminals on the outer face in anti-clockwise
ordering, starting with z. The ‘" terminal is assigned a left parenthesis if it
is an s-terminal, and a right parenthesis otherwise. The resulting 2k-string of
parentheses is then a string of left and right parentheses that can be paired
correctly, i. e., such that the pairs of parentheses are properly nested. The
terminals are now newly paired according to this (unique) correct pairing of
parentheses, i. e., an s-terminal and a t-terminal are paired if and only if the
corresponding parentheses match. It is easy to see that (G,N()) is solvable, if
(G,N) is.

The following algorithm determines such a solution (gy,...,gx) for (G, N0).
This solution will be used for the determination of the final solution. In contrast
to the original nets, we denote the nets in 'O by {sg), tg)}, ceey {59, tgc)}, and we

assume w. L. 0. g. that ¢; = tg) fori=1,...,k. The paths ¢g; are determined by

a right-first search. In principle, it proceeds in the same way as the “One-Face
Layout Algorithm” introduced in Section 2.1. Let v € V', and let e be incident

232

to v. We will say that the nezt free edge after e w. r. t. v is the first free edge
to follow e in the adjacency list of v in reverse clockwise ordering.

]')\\ |) 1)\ !)

x\,,,,/,g\\ /,3) \x\————/;\\ //3)
Jemwise oomwises o
AN R) N Vel L ¥e-p)
/)r‘\\\ -\% T\\: 4 /)r‘\\\ -* T\\‘ 4
G\ T Y G T)

)L/\ /,/“\'x/\ \)L/\\ /,‘/-\‘

3 4 (2 3 (4 (2
a) b)

FIGURE 4. An example for the Algorithm for Parenthesis Problems: a) an
Eulerian instance and the induced instance of parenthesis structure with respect
to start terminal 5, b) the first path, ¢) first and second path, d) the auxiliary
graph determined by the algorithm.

“Algorithm for Parenthesis Problems”

for ¢ :=1 to k do
let ¢; initially consist of the unique edge incident to slo;
v := the unique vertex adjacent to slo;

while v is no terminal do
let {v,w} be the next free edge after the leading edge of g; w. r. t. v;

add {v,w} to g¢;;
v = w;
if v # tlo then stop: return “unsolvable”;
return (qi1,...,qk);

An example illustrating the Algorithm for Parenthesis Problems is shown
in Figure 4. The auziliary paths qi,...,qr yield a directed auziliary graph
A(G,N,z) of instance (G,N') w. r. t. start terminal z. Just orient all edges
on the paths ¢, ...,q according to the direction in which they are traversed

233

during the algorithm. Then A(G,N,z) consists of all vertices of G and of all
oriented edges. The following properties of the auxiliary paths and the auxiliary
graph are easy to see.

LemMMA 3.2. The auziliary paths qi,...,qr neither cross themselves nor each
other. In particular, the left and the right sides of all of them are well defined.
All edges to the right of an auziliary path q; are contained in A(G,N,z). The
auziliary graph A(G,N,z) does not contain a right-cycle, i. e., a cycle whose
interior is to its right.

The paths p, ..., py for the original instance (G, N') are now determined in
the auxiliary graph. That is, edges that are not contained in the auxiliary graph
will not be occupied by a path pq,..., pr of the final solution. Even more, the
edges occupied by the final solution are exactly the edges of the auxiliary graph.
The solution paths p; are determined by a “directed” right-first search. That
is, edges that belong to A(G, N, z) are used according to their orientations in

A(G, N, z).

. A2 L. A2
<A 43 <Al g

N

\

FIGURE 5. Edge-disjoint paths determined in the auxiliary graph shown in
Figure 4: a) the first “final” path, b) the first and the second “final” paths, ¢)
the first three “final” paths, d) the first four “final” paths determined by the
algorithm.

“The Algorithm”

234

determine A(G, N, z) for an arbitrary start terminal z;
for i:=1to k do
let p; initially consist of the unique edge leaving s; in A(G, N, z);
v := the head of this edge;
while v is no terminal do
let (v, w) be the next free edge leaving v after the leading edge of p; w. r. t. v;
add (v,w) to p;;
v = w;
if v # t; then stop: return “unsolvable”;
return (p1,...,pr);

An example illustrating the algorithm is shown in Figure 5. The paths p;
determined by the algorithm have some nice properties similar to those of the
auxiliary paths stated in Lemma 3.2. These properties are a consequence of
the right-first search strategy.

LemMA 3.3. The paths p1,...,pr do not cross themselves. In particular, the
left and the right side of each of them is well defined. All edges immediately to
the right of a path p; are either occupied by another path p;, or contained in
A(G,N,z) and directed towards p;.

The algorithm for parenthesis problems is just a right-first search in an undi-
rected graph and is easily implemented to run in linear time. The main al-
gorithm is a right-first search in a directed graph. For a linear-time imple-
mentation, a special case of Union-Find is used which also runs in linear time

[6].

THEOREM 3.4 [34]. A solution to a solvable Eulerian instance of the edge-
disjoint one-face paths packing problem can be determined in time O(n).

The correctness of the algorithm follows from two invariants maintained dur-
ing the algorithm. For an instance (G, N') and a path p; determined by the
algorithm, consider the induced residual instance. That is, the instance con-
sisting of the subgraph of G induced by the edges that are not occupied by
Diy---,Di, and the set of nets {s;41,ti+1},...,{sk,tx}. Then for a solvable
instance (G, N), the algorithm maintains the following invariants.

I1 For any path p;, the induced residual instance is again solvable.

I2 For any path p;, the subgraph of A(G, N, z) induced by the edges that are
not occupied by pi,...,p; is equal to the auxiliary graph determined by
the algorithm for parenthesis problems for the induced residual instance
(resp. the corresponding instance of parenthesis structure).

To prove these invariants, it suffices to prove that path p; determined by the
algorithm is correct, i.e., connects s; and t;, and that I1 and I2 are correct
for p;. The main part of the correctness proof consists of the proof that I1
is satisfied for p;. The proof does not use the Theorem of Okamura & Sey-
mour. Instead, it is proved that, for a solvable instance, there exists a solution

235

containing p;. More precisely, it is shown that p; is just the unique rightmost
path of all paths connecting s; and ¢; which are contained in a solution. The
uniqueness of such a rightmost path follows from the Eulerian condition. In
fact, this is the only statement in the proof of correctness where the Eulerian
condition is necessary.

The correctness is based on the fact that the paths determined by the al-
gorithm are in some sense “extremal”. In fact, p; (resp. any path p;) is the
rightmost path connecting s; and ¢; (resp. s; and t;) with the property that
the cut induced by the set of vertices lying to the right of p; (resp. p;) is satu-
rated (in the residual instance). This means that the paths determined by the
algorithm “run along saturated cuts”.

The approach of [34] does not only lead to an algorithm with linear running
time to find a solution for any solvable instance, but also yields a linear-time
algorithm to find a connected oversaturated cut for a non-solvable instance. It
thus gives an alternative proof for the Theorem of Okamura & Seymour.

3.2. Solving the Weakly Even One-Face Paths Packing Problem

The complexity status of the non-even edge-disjoint one-face paths packing
problem is open. If the Eulerian condition is relaxed to the weak Eulerian or
weak evenness condition, there is again a necessary and sufficient cut condition
for the solvability, the so-called generalized cut condition introduced by FRANK
[4]. Tt again leads to a polynomial-time algorithm [1].

Weak Evenness Condition

An instance (G, N) of the edge-disjoint one-face paths packing problem satisfies
the weak evenness condition if and only if all interior vertices of G have even
degree.

Generalized Cut Condition

A subset Y C V is called odd if and only if the number of vertices of odd degree
contained in Y is odd. A graph G = (V, E), together with a set of terminal
pairs {s1,t1},...,{sk,tx}, satisfies the generalized cut condition if and only if
22:1 feap(X;) > %q for all partitions X1,...,X; CV, where ¢ is the number
of odd sets X;, 1 << 1.

THEOREM 3.5 [4]. An instance (G,N) of the edge-disjoint one-face paths
packing problem that satisfies the weak evenness condition is solvable if and
only if the generalized cut condition is satisfied.

Let us study the difference between even and weakly even solvable instances
(G, N). Consider a solution for (G,N') and all edges of G that are not occupied
by the solution. If (G,N) is even, the edges not occupied by the solution
induce an Eulerian graph, i.e., decompose into cycles. On the other hand, if
the instance is weakly even, the edges not occupied by the solution induce a
graph that decomposes into cycles and paths between the odd vertices. Thus,
if a weakly even instance is solvable, it obviously satisfies the generalized cut
condition.

236

The proof of the converse is constructive. It yields an efficient solution al-
gorithm similar to the algorithm in [1]. The basic idea of this algorithm is
to extend weakly even solvable instances into even solvable instances by in-
troducing dummy nets between odd vertices on the outer face boundary. The
existence of such an extension can be decided in time O(nu) (n number of
vertices of G, u number of vertices on the outer face boundary). In case such
an extension exists, it can be determined in time O(nu) as well. For the more
restricted class of square grid graphs the running time reduces to O(n?) [1].

The complexity status of the general case, i.e., the case that not even the weak
evenness condition holds, is open. If the graph together with the “demand”
edges is planar, the non-even edge-disjoint one-face paths packing problem can
be solved in linear time by a slightly modified version of the algorithm for
parenthesis problems from Section 3.1. Observe that in this case the problem
has parenthesis structure.

3.3. Further Versions of the Paths Packing Problem

There are several faster algorithms for special grid graphs, mostly based on
the Okamura & Seymour approach. The improvement of the running time is
based on the restricted shape of cuts to be considered. In [20] Nishizeki, Saito
& Suzuki handle convex grids and achieve a running time of O(n). For more
general grids, so-called general switchboxes, KAUFMANN & MEHLHORN [11]
present a routing algorithm with running time O(n log? n). If the class of gen-
eralized switchboxes with any horizontal or vertical cut crossing the boundary
at most twice is considered, which also contains convex grids, the running time
can be reduced to O(n) [9]. For grids of rectangular shape or channels, even a
sublinear running time can be achieved. In these cases, the solution is specified
by the positions of the bends performed by the paths. For further references
on disjoint paths problems in grid graphs we also refer to [12] and [19].

There are some polynomially solvable variants of the edge-disjoint paths
packing problem where the terminals are allowed to lie on two different face
boundaries. Again, the existence of polynomial-time algorithms is based on
the sufficiency of the cut condition.

THEOREM 3.6 (OKAMURA) [21]. Consider an instance (G, N) consisting of a
planar graph G = (V, E) and a set of terminal pairs N = {{s1,t1},..., {sk, tx}}-
The graph G is embedded in the plane such that s1,...,s;, t1,...,t; lie on the
boundary of one fived inner face, and siy1,..., Sk, tit1,. .., tr lie on the bound-
ary of the outer face, for some l, 1 <1 < k. Let (G,N) satisfy the Eulerian
condition. There exist k edge-disjoint paths in G connecting s; and t;, for
1 <1 <k, if and only if the cut condition is satisfied.

THEOREM 3.7 (OKAMURA) [21]. Consider an instance (G,N) consisting of a
planar graph G = (V, E) and a set of terminal pairs N = {{s1,t1}, ..., {sk, tr}},
where ty =ty = --- = t; for some [,1 <1 < k. The graph G is embedded in
the plane such that si11,...,Sk,t1,...,t, all lie on the boundary of the outer

237

face. Let (G,N) satisfy the Eulerian condition. There exist k edge-disjoint
paths in G connecting s; and t;, for 1 <1 < k, if and only if the cut condition
is satisfied.

The proofs of both theorems are constructive. In [33] a more general mul-
ticommodity flow problem is considered. The algorithms presented there lead
to algorithms of time complexity O(n?) for the cases described in Theorem 3.6
and Theorem 3.7.

Another case where the cut condition is also sufficient for the existence of
edge-disjoint paths between terminals on at most two different faces is presented
n [30]. But a (simple) algorithm with polynomial running time is not known
for this problem.

THEOREM 3.8 (SCHRIJIVER) [30]. Consider an instance (G,N') consisting of a
planar graph G = (V, E) and a set of terminal pairs N = {{s1,t1},..., {sk, tx}}.
The graph G is embedded in the plane such that sy, ..., s lie on the boundary
of one fized inner face, and ty,...,ty lie on the boundary of the outer face,
where the cyclic order of the s1,..., s is converse to the order of the ty,..., t
is . Let (G, N) satisfy the Eulerian condition. There exist k edge-disjoint paths
i G connecting s; and t;, for 1 < ¢ < k, if and only if the cut condition is
satisfied.

REFERENCES

1. M. BECKER and K. MEHLHORN (1986). Algorithms for routing in planar
graphs. Acta Inform., 23, 163—-176.

2. S. EVEN and R. E. TArRJAN (1975). Network flow and testing graph con-
nectivity. SIAM J. Comput., 4, 507-518.

3. L. R. Forp and D. R. FULKERSON (1962). Flows in networks. Princeton
University Press, Princeton.

4. A. FRrRANK (1985). Edge-disjoint paths in planar graphs. J. Combin. Theory
Ser. B, 39, 164-178.

5. G. N. FREDERICKSON (1987). Fast algorithms for shortest paths in planar
graphs with applications. SIAM J. Comput. 16.

6. H. N. GaABow and R. E. TARJAN (1985). A linear-time algorithm for a
special case of disjoint set union. J. Comput. System Sci. 30, 209-221.

7. R. HassIN (1984). On multicommodity flows in planar graphs. Networks
14, 225-235.

8. R. HassiN and D. B. JouNSON (1985). An O(nlog®n) algorithm for
maximum flow in undirected planar networks. SIAM J. Comput. 14, 612—
624.

9. M. KAUFMANN (1990). A linear time algorithm for routing in a convex
grid. IEEE Trans. Comp.-Aided Design, CAD-9, 180-184.

10. M. KAUFMANN and G. KLAR (1991). A faster algorithm for edge-disjoint
paths in planar graphs. In: W. L. Hsu and R. C. T. LEE, editors, ISA’91
Algorithms, 2nd International Symposium on Algorithms, pages 336-348.
Springer-Verlag, Lecture Notes in Computer Science 557.

238

11

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

M. KAUFMANN and K. MEHLHORN (1985). Generalized switchbox routing.
J. Algorithms 7, 510-531.

M. KAUFMANN and K. MEHLHORN (1990). Routing problems in grid
graphs. In: B. KoRrRTE, L. LovAsz, H. J. PROMEL and A. SCHRIJVER,
editors, Paths, Flows and VLSI-Layout, pages 165—184. Springer-Verlag,.
B. KorTE, H. J. PROMEL and A. STEGER (1990). Steiner trees in VLSI-
layout. In: B. KORTE, L. LovAsz, H. J. PROMEL and A. SCHRIJVER,
editors, Paths, Flows, and VLSI-Layout, pages 185-214. Springer-Verlag.
M. R. KRAMER and J. VAN LEEUWEN (1984). The complexity of wire-
routing and finding minimum area layouts for arbitrary VLSI-circuits. In:
F. P. PREPARATA, editor, Advances in Computer Research, VOL 2: VLSI
Theory, pages 129-146. JAI Press Inc..

K.-F. L1a0 and M. SARRAFZADEH (1990). Vertex-disjoint trees and
boundary single-layer routing. In: R. H. MOHRING, editor, Proceedings
16th International Workshop on Graph-Theoretic Concepts in Computer
Science, WG90, pages 99-108. Springer-Verlag, Lecture Notes in Com-
puter Science, vol. 484.

J. F. LyNCH (1975). The equivalence of theorem proving and the intercon-
nection problem. ACM SIGDA Newsletter 5, 31-65.

K. MarsumoTo, T. NisHIZEKI and N. SAITO (1985). An efficient al-
gorithm for finding multicommodity flows in planar networks. SIAM J.
Comput. 14, 289-302.

M. MIDDENDORF and F. PFEIFFER (1993). On the complexity of the
disjoint path problem. Combinatorica 13, 97-107.

R. H. MOHRING, D. WAGNER and F. WAGNER (1992). VLSI network
design: A survey. Technical Report 323, Technische Universitat Berlin.

T. NisHiZEKI, N. SAITO and K. SUuzUKI (1985). A linear time routing
algorithm for convex grids. IEEE Trans. Comp.-Aided Design, CAD-4,
68-76.

H. OKAMURA (1983). Multicommodity flows in graphs. Discrete Appl.
Math. 6, 55-62.

H. OkaMURA and PAUL D. SEYMOUR (1981). Multicommodity flows in
planar graphs. J. Combin. Theory Ser. B 31, 75-81.

B. REED, N. ROBERTSON, A. SCHRIJVER and P. D. SEYMOUR (1993).
Finding disjoint trees in graphs on surfaces. Preprint.

J. H. REIF (1983). Minimum s-t-cut of a planar undirected network in
O(nlog®(n)) time. SIAM J. Comput. 12, 71-81.

H. RippHAUSEN-LIPA, D. WAGNER and K. WEIHE (1992). The vertea-
disjoint Menger-problem in planar graphs. Technical Report 324, Technische
Universitat Berlin.

H. RippHAUSEN-LIPA, D. WAGNER and K. WEIHE (1993). Linear-time
algorithms for disjoint two-face paths packing problems in planar graphs.
To appear in Proceedings of the 4th International Symposium on Algorithms
and Computation, ISAAC’93. Springer-Verlag, Lecture Notes in Computer
Science.

239

27

28.

29.

30.

31.

32.

33.

34.

H. RiPPHAUSEN-LIPA, D. WAGNER and K. WEIHE (1993). The vertex-
disjoint Menger-problem in planar graphs (extended abstract). In Proceed-
ings of the Jth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’93, pages 112-119.

N. ROBERTSON and P. D. SEYMOUR (1986). Graph minors VI, disjoint
paths across a disc. J. Combin. Theory Ser. B 41, 115-138.

N. ROBERTSON and P. D. SEYMOUR (1990). An outline of a disjoint paths
algorithm. In: B. KORTE, L. LovAsz, H. J. PROMEL and A. SCHRIJVER,
editors, Paths, Flows, and VLSI-Layout, pages 267—292. Springer-Verlag,
Berlin.

A. SCHRIJVER (1989). The Klein bottle and multicommodity flow. Com-
binatorica 9, 375-384.

P. D. SEYMOUR (1981). On odd cuts and plane multicommodity flows.
Proc. London Math. Society 42, 178-192.

H. Suzuki, T. Akama and T. NisHIZEKI (1990). Finding Steiner forests
in planar graphs. In Proceedings of the 1st Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA’90, pages 444-453.

H. Suzuki, T. NisHIZEKI and N. SATTO (1989). Algorithms for multicom-
modity flows in planar graphs. Algorithmica 4, 471-501.

D. WACNER and K. WEIHE (1993). A linear time algorithm for edge-
disjoint paths in planar graphs. In: T. LENGAUER, editor, First Euro-
pean Symposium on Algorithms, ESA’93. Springer-Verlag, Lecture Notes
in Computer Science.

240

