
Simple Algorithms for Steiner Trees and Paths Packing

Problems in Planar Graphs

Dorothea Wagner

Fachbereich Mathematik� Technische Universit�at Berlin�

Stra�e des ��� Juni ��	�

�
	�� Berlin� Germany�

email� wagner�math�tu�berlin�de

In this paper we give a short survey on e�cient algorithms for Steiner trees
and paths packing problems in planar graphs� We particularly concentrate
on recent results� The �rst result is a linear�time algorithm for packing
vertex�disjoint trees resp� paths within a planar graph� where the vertices to
be connected lie on at most two di�erent faces �	
� �	�� This algorithm is
based on a linear�time algorithm for the vertex�disjoint Menger problem in
planar graphs �	�� The second result is a linear�time algorithm for packing
edge�disjoint paths within a planar graph� where the vertices to be connected
all lie on the boundary of the same face ����� All algorithms discussed in
detail in this paper admit a short and simple description� and are easy to
implement�

�� Introduction
In this paper we consider the following type of problems�

The Steiner Trees Packing Problem

Given� A planar graph G � �V�E�� jV j � n� and sets N�� � � � � Nk � V � In this
context we call the Ni nets and the elements of Ni terminals�

Problem� Find� for each i � �� � � � � k� a Steiner tree Ti for Ni �i� e� a tree
in G connecting all terminals in Ni� such that T�� � � � � Tk are pairwise
vertex�disjoint	edge�disjoint�

Steiner trees packing problems have many practical applications� e� g� in
the design process of integrated circuits� the design of reliable communication
networks or the control of tra
c networks� In all these applications� planarity
of the underlying graph is a natural restriction� Most Steiner trees packing
problems are NP�hard� In this paper we concentrate on restrictions of this

���

problem which admit e
cient solution algorithms� Natural restrictions which
are still of practical relevance concern e� g� the position of the terminals or the
number of terminals of a net�
The algorithms described here are really e
cient�� This means that the

polynomial worst�case running time is not only proved theoretically� In fact�
the algorithms discussed in detail in this paper admit a short and simple de�
scription� They have even linear running time where the order constant is
obviously small� Moreover� they are easy to implement� i� e�� can be of practi�
cal relevance�

�� The Vertex�Disjoint Case
The general vertex�disjoint Steiner trees packing problem in planar graphs is
NP�complete ����� Even when restricted to paths� i� e�� when all nets have
exactly two terminals� the problem remains NP�complete� However� Robert�
son � Seymour ���� showed that the vertex�disjoint paths packing problem
is solvable in polynomial time �also for non�planar graphs� if k� the number of
paths� is �xed� Recently� even a linear�time algorithm has been introduced for
planar graphs ����� But the order constant of these algorithms depends heavily
on the number of paths�
The �rst polynomial time algorithm for the vertex�disjoint Steiner trees pack�

ing problem in planar graphs where the terminals lie only on one or two face
boundaries was given in ����� But this algorithm is far o� from being imple�
mentable� In ���� and in ���� an easy O�n� algorithm is described for the case
that all terminals lie on the boundary of the same face� The proceeding of
this algorithm may be seen as a key idea� for deriving simple linear�time al�
gorithms for similar problems� In fact� the new algorithm discussed in Section
��� for the vertex�disjoint Menger problem is in some sense a generalization�
of this algorithm� Also the algorithm for parenthesis problems given in Section
��� is a slightly modi�ed version of the algorithm� Moreover� a similar method
can be applied to solve a special case of the edge�disjoint one�face paths packing
problem discussed in ��� in linear time�

���� The One�Face Steiner Trees Packing Problem

In this section we describe the algorithm from ���� and ���� solving the following
problem�

Vertex�Disjoint One�Face Steiner Trees Packing Problem

Given� A planar graph G � �V�E�� jV j � n� and pairwise vertex�disjoint sets
N�� � � � � Nk � V � The graph G is embedded in the plane such that all
terminals lie on the boundary of the outer face of G�

Problem� Find� for each i � �� � � � � k� a Steiner tree Ti for Ni such that
T�� � � � � Tk are pairwise vertex�disjoint�

The algorithm runs in two phases� First the topological solvability is tested�
and then the layout of the nets is determined� assuming enough capacity is

���

available� Informally� to guarantee topological solvability the nets must have
a nested structure� i� e�� are not allowed to cross� More precisely� a topological

solution is a collection of Steiner trees for the nets that can be drawn disjointly
in the plane outside the outer face� So a topological solution is not necessarily
contained in G� Obviously� the existence of a topological solution depends only
on the position of the terminals on the outer face boundary of G� Topological
solvability can be decided by a simple algorithm� the Stack Algorithm� The
terminals are scanned in anti�clockwise ordering around the boundary begin�
ning with some arbitrary terminal� and every new visited terminal is pushed
onto a stack� If the pushed terminal is the last non�visited terminal of the
corresponding net� it is tested if all terminals of the net lie on top of the stack�
If this is not the case� the problem is not topologically solvable� Otherwise� all
terminals of the net are popped� When all the terminals of all nets are visited�
and there was no con�ict before� the instance is topologically solvable if and
only if the stack is empty�
For a formal description of the Stack Algorithm� let us assume that the nets

N�� � � � � Nk are numbered according to the occurrence of the last terminals of
the nets� if we walk along the outer face boundary in anti�clockwise ordering
�starting with some arbitrary but �xed terminal�� For net Ni� we denote the
�rst terminal by si and the last terminal by ti�

�Stack Algorithm�

STACK�� �
begin

walk along outer face boundary in anti�clockwise ordering starting with sk�
while not all terminals are visited do

if the visited vertex v is a terminal then
if v is a last terminal ti then
POP until si is popped�
if not all popped terminals belong to Ni

then stop� return �topologically unsolvable��
else PUSH�v	�

return � topologically solvable��

Obviously� the Stack Algorithm can be implemented to run in linear time�
The algorithm to determine a solution� a layout � if it exists is now based on
the Stack Algorithm� To route the nets correctly� they are considered in the
order they have been deleted from the stack� According to our assumption� this
is just the ordering N�� � � � � Nk� The nets are routed anti�clockwise along the
boundary� After a net is routed� the boundary is corrected by deleting all used
edges and vertices� and all edges incident to them� If there is enough capacity�
this method leads to a correct layout�
This algorithm can be interpreted as a right��rst search� i� e�� a depth��rst

search where in each search step the edges are searched from right to left� We
will say that the next edge after e w� r� t� v is the �rst edge to follow e in

���

the adjacency list of v in anti�clockwise ordering� A backtrack � remove step
consists of a backtrack step where in addition the searched edge is deleted
from the graph� We now describe the layout algorithm formally as a right��rst
search� For technical reasons we assume that all si have degree one in G�

�One�Face Layout Algorithm�

for i ��
 to k do

let pi initially consist of the unique edge incident to si�
v �� the unique vertex adjacent to si�
while not all terminals of Ni are visited and v �� si do

if at least one edge incident to v is not yet searched then

let fv� wg be the next edge after the leading edge of pi w� r� t� v�
if w is just occupied by some tree di�erent from Ni then

perform a backtrack remove step�
else add fv� wg to pi�
v �� w�

else perform a backtrack remove step�
v �� the leading vertex of pi�

if v � si then stop� return �unsolvable��
return �p�� � � � � pk	�

An example illustrating the One�Face Layout Algorithm is shown in Figure ��
The running time of the algorithm is again O�n��

���� The Two�Face Steiner Trees Packing Problem

The problem is much more complicated if the terminals are allowed to lie on
two face boundaries�

Vertex�Disjoint Two�Face Steiner Trees Packing Problem

Given� A planar graph G � �V�E�� jV j � n� and pairwise disjoint sets N�� � � � �

Nk � V � The graph G is embedded in the plane such that all terminals
lie on the boundary of at most two di�erent faces of G� w� l� o� g� the
outer face F o and one �xed inner face F i�

Problem� Find� for each i � �� � � � � k� a Steiner tree Ti for Ni such that
T�� � � � � Tk are pairwise vertex�disjoint�

Suzuki� Akama � Nishizeki ���� give an algorithm for this problem that
runs in time O�n logn�� There are essentially two cases to consider for solving
this problem� The case where all terminals of the same net lie on the boundary
of the same face� and the case that at least one net has terminals on both face
boundaries� The algorithm presented in ���� for solving the �rst case has even
linear running time� Surprisingly� in some sense it is the more di
cult case
of the problem� The �rst case is easier to solve since one single net having
terminals on both faces �xes the homotopy of all other nets�

���

�

�

�

�

�

�

�

�

�

�

�

�

�

a�

�

�

�

�

�

�

�

�

�

�

�

�

�

b�

�

�

�

�

�

�

�

�

�

�

�

�

�

c�

Figure �� An example for the One�Face Layout Algorithm�

The algorithm for solving the second case consists of three parts� In the
�rst part the problem is reduced to the vertex�disjoint two�face paths packing

problem�

Vertex�Disjoint Two�Face Paths Packing Problem

Given� A planar graph G � �V�E�� jV j � n� and pairwise disjoint sets of
terminal pairs fs�� t�g� � � � � fsk� tkg � V � The graph G is embedded in
the plane such that all terminals si lie on the boundary of one �xed inner
face F i� and all terminals ti lie on the boundary of the outer face F o�

Problem� Find k pairwise vertex�disjoint paths connecting si and ti� for � �
i � k�

It is not hard to prove that the following reduction to the two�face paths
packing problem is correct� The reduction is done by applying the One�Face

���

Layout Algorithm several times� At �rst� a layout for the nets having all
terminals on the same face is constructed by applying the One�Face Layout
Algorithm to the outer and to the inner face respectively� Then all parts of G
occupied by this layout� as well as all edges incident to a vertex occupied by
this layout� are deleted� Then for each of the remaining nets� trees connecting
all terminals incident to the outer face F o are determined by applying the One�
Face Layout Algorithm� Analogously� trees connecting all terminals incident
to the inner face F i are determined� Now� all edges and vertices occupied by
such a tree are contracted to a super�vertex�� These super�vertices induce a
two�face paths packing problem� Obviously� all these determinations are done
in time O�n��
The solution to this remaining problem is carried out in two parts �the second

and third part of the whole algorithm��
In the second part of the algorithm� vertex�disjoint paths connecting the

terminals on the inner face with some vertices on the outer face are determined�
But� in fact these paths not necessarily connect the correct pairs of terminals�
Basically� this subproblem of the two�face Steiner trees packing problem is just
the classical� Menger problem� Just introduce two new vertices s and t� By
additional edges� connect all terminals si on the inner face F i to s� and all
terminals ti on the outer face F o to t�

Vertex�Disjoint Menger Problem

Given� A graph G � �V�E�� jV j � n and vertices s and t�

Problem� Find a maximum set of �resp� k� internally vertex�disjoint paths
connecting s and t�

A maximum number of vertex�disjoint paths connecting s and t in undirected
graphs can be computed by solving a maximum unit��ow problem ��� ��� If the

graph is planar� this yields an O�n
�

� � resp� O�kn� algorithm� where k is the
number of paths� The approach presented in ���� leads to an algorithm of
running time O�n logn�� It is based on divide�and�conquer techniques similar
to the methods given in ��� and ����� Recently� Ripphausen�Lipa� Wagner �
Weihe ���� ��� presented a linear�time algorithm for the planar vertex�disjoint
Menger Problem� We will discuss the latter approach in Section ����
In the third part of the algorithm solving the two�face Steiner trees packing

problem� vertex�disjoint paths connecting the correct terminals are determined�
The approach given in ���� yields a linear time algorithm for this problem� In
Section ��� we will sketch a di�erent approach which is presented in ����� This
algorithm has linear running time as well� It is based on some special properties
of the algorithm from ���� solving the Menger Problem�

���� The Menger Problem

Now we are going to introduce a linear�time algorithm for the vertex�disjoint
Menger Problem� For technical reasons� we will consider a directed version of
the Menger Problem instead of the undirected problem itself�

���

Directed Version of the Menger Problem

Given� A planar directed graph G � �V�E�� jV j � n� and vertices s and t�

Problem� Find a maximum set of �resp� k� internally vertex�disjoint �s� t��
paths� i� e�� directed paths from s to t�

In the following we consider a directed graph corresponding to G� Let
w� l� o� g� t be on the outer face boundary� The undirected graph G is trans�
formed into a directed graph by replacing each edge fv� wg � E with v� w �� s

by the arcs �v� w� and �w� v�� and each edge fs� vg � E by �s� v� only� We denote
the set of all arcs by A� Obviously� there is a linear�time algorithm solving the
original Menger Problem for undirected graphs� if there is a linear�time algo�
rithm solving the directed version of the Menger Problem for the corresponding
directed graphs� Although the Menger algorithm presented here works in di�
rected graphs� it does not solve the directed version of the Menger Problem in
arbitrary directed graphs� It only works for directed graphs where �v� w� is an
arc if and only if �w� v� is an arc� The directed formulation is used here only
to distinguish between searched from v to w� and searched from w to v��
The algorithm consists in a loop over all arcs leaving s� Let e�� � � � � ek denote

these arcs� in arbitrary order� In the ith iteration the algorithm tries to draw a
cycle�free �s� t��path starting with ei� These paths are determined by a directed
right��rst search� i�e�� a directed depth��rst search where in each search step
all arcs leaving the current vertex are searched from right to left �except the
reverse of the leading arc of the current search path�� The ith iteration is
�nished� when either t is reached or the search returns to s by backtrack steps�
We call an iteration of the algorithm also a search phase�
The main di
culty of the approach is to handle con�icts of the current search

path with itself� resp� with other paths� in an appropriate way� In fact� any
con�ict is resolved by a backtrack step� The idea is to handle all con�icts in a
way that enables us to remove each arc from G� once we perform a backtrack
step with it� As any step of such a right��rst search is a forward step or a
backtrack step� the number of search steps in total is then linear in the size of
the graph� If in addition all search steps can be realized in �amortized� constant
time� the time complexity of the whole algorithm is again linear�
In general� there are two types of con�icts to distinguish� con�icts from the

left and con�icts from the right� That is� either the current search path touches
some vertex occupied by another path or by the current search path itself from
the left side or from the right side�
Con�icts from the left� If a vertex already occupied by another path or by
the current search path itself is entered by the current search path from the
left side� the con�ict is resolved by simply performing a backtrack step� The
corresponding arc is removed� and then the right��rst search is continued�
Con�icts from the right� If the current search path enters a vertex occupied
by another path from the right side� the con�ict is resolved in the following way�
Let v be the vertex where this con�ict occurs� let p and q denote the segment

���

t

w

s

v

a�

t

w

s

v

b�

t

w

s

v

c�

t

s

d�

Figure �� An example where a cycle con�ict from the right is avoided by
deleting arc �v� w�� a� cycle con�ict from the left� b� the situation after back�
tracking� c� the �rst path determined by the algorithm� d� the �nal solution�

of the other path from s to v and from v to t� respectively� and let r denote
the current search path� We now concatenate r with q and let p be the new�
current search path� Now� the same con�ict can be seen as a con�ict from the
left side� That is� the new� current search path p enters the concatenated
path r � q from the left� Again� by a backtrack � remove step this con�ict
is resolved and the search is continued� By that� a path from s to t which is
determined in one search phase� is not necessarily completely contained in the
�nal solution as a path� This procedure may be seen as a recon�guration� of
paths� In Figure � b� and c� the recon�guration� of paths is illustrated� The
question is now� Can we resolve a cycle con�ict from the right� i�e�� a con�ict
of the current search path with itself where the occupied vertex is entered from
the right side the second time�
Avoiding cycle con�icts from the right� In fact� since we are not able to
cope with cycle con�icts from the right� we avoid those con�icts in advance�
Fortunately� it can be proved that any cycle con�ict from the right is in a
sense announced� by a cycle con�ict from the left� where the same cycle is
involved� but in reverse direction� Let �w� v� be the arc removed because of

���

this announcing� cycle con�ict from the left� Then clearly� removing �v� w� at
this moment prevents the announced� cycle con�ict from the right� That is�
in addition to the regular� removing of arcs because of con�icts from the left�
we sometimes remove reverse arcs of such arcs� The proceeding described here
is illustrated in Figure ��
Implementing the algorithm to run in linear time� As previously men�
tioned� the right��rst search has linear running time if each search step can be
performed in �amortized� constant time� Obviously� regular� search steps� i�e��
forward steps and remove steps in consequence of backtrack steps� only cost
constant time� But� in order to decide if the reverse arc of a removed arc has to
be removed as well� we must be able to distinguish between cycle con�icts from
the left and con�icts where the current search path enters another path from
the left� We could do this by comparing the names� of the paths occupying
the two end�vertices of such an arc� But� in consequence of the recon�guration
of paths� the name� of the path occupying a vertex possibly changes during
the algorithm� On the other hand� updating the names of the occupying paths
every time a recon�guration of paths takes place requires too much time�
This problem of identifying� paths is solved by the following trick�� We

maintain a global time counter and for each vertex a local time stamp� The
global time counter is increased by �� whenever the current search path changes�
that is� when either a new search phase is started� or a con�ict occurs where the
current search path touches another path from the right side� The time stamp
of a vertex is set to the value of the global time counter� whenever this vertex
becomes the leading vertex of the current search path� Then the following
procedure prevents all cycle con�icts from the right in advance� Whenever an
arc is considered for going forward� we �rst compare the time stamp of its
head with that of its tail� The arc is removed if and only if both are equal�
Otherwise� it is actually used for going forward�
We now give a formal description of the algorithm� If an arc of a path p

enters �leaves� a vertex v� we call it an in�going arc �out�going arc� of v� Let
e�� � � � � ek be the arcs leaving s in arbitrary ordering�

�Menger Algorithm�

time counter �� ��
for i ��
 to k do

time counter �� time counter �
�
let the current search path be ei � �s� v	�
repeat

time stamp�v	 �� time counter�
if the current search path touches some path at v from the left then

perform a backtrack remove step�
else

if the current search path touches some path at v from the right then
time counter �� time counter �
�
let p be the segment of this path from s to v� and let q be the remaining
segment�

���

connect the current search path with q and let p be the current search path�
perform a backtrack remove step�

else

if at least one arc leaving v is not yet searched �except the reverse of the
in�going arc	 then let �v� w	 be the �rst such arc to appear after
the in�going arc in anti�clockwise ordering�
if time stamp�v	 � time stamp�w	 then remove �v� w	�
else go forward via �v� w	�

else perform a backtrack remove step�
v �� the leading vertex of the current search path�

until v � fs� tg�

t

s

a�

t

s

b�

t

s

c�

t

s

d�

Figure �� An example for the Menger Algorithm� a� the �rst path determined
by the algorithm� b� a con�ct from the right between the the second search path
and the �rst path in� c� the con�ict from the left after recon�guration of paths
in� d� the �rst two paths determined by the algorithm�

���

Theorem ��� ����� The vertex�disjoint Menger Problem in planar graphs can

be solved in time O�n��
The correctness of the Menger Algorithm is induced by the following two

invariants maintained by the algorithm�

I� During the execution of the algorithm no right�cycle con�ict occurs�

I� Let fa�� � � � � amg be the arcs removed during the execution of the algorithm�
Each graphGi � �V�Anfa�� � � � � aig�� � � i � m� still contains an optimal
solution for G�

One very useful property of the Menger Algorithm is based on the following
easy observation�

Observation ���� At any stage of the algorithm	 no arcs leave any path drawn

so far to its right�

Informally� we can say that the solution determined by the Menger Algorithm
is a rightmost� solution� This special solutions can be used to solve the two�
face paths packing problem in linear time as well�

��
� The Two�Face Paths Packing Problem

In ����� a method is presented for solving the two�face paths packing problem
and some related problems in linear time� We sketch this approach here�
Obviously� the Menger Algorithm can be used to determine pairwise vertex�

disjoint paths connecting speci�ed terminals on one face to the boundary of the
other face� Now� the Menger Algorithm is applied twice� On one hand� inner�
paths starting with the terminals si on the boundary of the inner face F i and
ending at some vertices on the boundary of the outer face F o are determined�
On the other hand� by a left��rst version� of the Menger Algorithm� outer�
paths starting with the terminals ti on the boundary of the outer face F o and
ending at some vertices on the boundary of the inner face F i are determined�
Because of the special properties of the Menger Algorithm� the inner paths
are in some sense rightmost and the outer paths are in some sense leftmost�
Therefore� if the vertex�disjoint two�face paths packing problem is solvable�
related inner and outer paths must intersect at least once� Then� a collection
of paths connecting terminal si and ti� for � � i � k� can be constructed
by concatenating appropriate segments of the inner paths with appropriate
segments of the related outer paths� But� since unrelated� inner and outer
paths may intersect as well� not every choice of intersection vertices would yield
a collection of pairwise vertex�disjoint paths� However� it can be proved that
intersection vertices of related inner and outer paths exist which yield a vertex�
disjoint solution �assumed a solution exists at all�� These intersection vertices
can be determined in linear time�
The method can be used to solve related vertex�disjoint paths packing prob�

lems� where the homotopies of the paths are given� in time O�n� as well �����

���

�� The Edge�Disjoint Case
Most cases of the edge�disjoint Steiner trees packing problem areNP�complete�
Even the planar edge�disjoint paths packing problem� i�e�� the Ni are all two�
element sets and G is planar� is NP�complete ����� The problem is also NP�

complete if G is planar and k � � ����� If
Pk

i�� jNij is �xed� the problem is
polynomially solvable �����
There are some special cases where the planar edge�disjoint paths packing

problem turns out to be polynomially solvable� Typically� polynomial algo�
rithms for such problems are based on the existence of certain duality results�
That is� necessary and su
cient conditions for solvability are known� Obvi�
ously� a necessary condition for solvability is the cut condition�
A subset X � V is called a cut of G� For a cut X the capacity of X � cap�X��

is the number of edges leavingX � and the density of X � dens�X�� is the number
of nets leaving X � i�e��

cap�X� �� jffu� vg � E � u � X� v � V nXgj�

dens�X� �� jffsi� tig � N � si � X� ti � V nX or ti � X� si � V nXgj�

The free capacity of X is de�ned as

fcap�X� �� cap�X�� dens�X��

Cut Condition

A graph G � �V�E� together with a set of terminal pairs fs�� t�g� � � � � fsk� tkg
satis�es the cut condition if fcap�X� � � for all cuts X � V �The cut condition

is a necessary condition for solvability� but in general it is not su
cient� An
additional restriction on the problem� which sometimes makes things easier� is
the Eulerian condition or evenness condition�

Eulerian Condition

A graph G � �V�E� together with a set of terminal pairs fs�� t�g� � � � � fsk� tkg
satis�es the Eulerian condition if and only if the graph �V�E � fs�� t�g� � � ��
fsk� tkg� is Eulerian� The two�terminal sets fs�� t�g� � � � � fsk� tkg are also called
demand edges� Notice� that the terminals are not necessarily distinct�

The Eulerian condition is obviously equivalent to the condition that fcap�v�
is an even number� for all vertices v � V � For instances where G together with
the demand� edges is Eulerian and planar� the cut condition is also su
cient
for solvability� As a consequence� the problem is polynomially solvable �����
It again becomes NP�complete if either planarity or the Eulerian condition is
dropped �����

���� Solving the Eulerian One�Face Paths Packing Problem

A basic result of Okamura � Seymour ���� concerns the edge�disjoint one�
face paths packing problem�

Edge�Disjoint One�Face Paths Packing Problem

���

Given� An instance �G�N � consisting of a planar graph G � �V�E� and a set
of terminal pairs N � ffs�� t�g� � � � � fsk� tkgg� The graph G is embedded
in the plane such that s�� � � � � sk� t�� � � � � tk lie on the boundary of the
outer face� �These vertices are not necessarily distinct��

Problem� Find k edge�disjoint paths in G connecting si and ti� for � � i � k�

Theorem ��� �Okamura � Seymour� ���� An instance �G�N � of the edge�
disjoint one�face paths packing problem that satis�es the Eulerian condition is

solvable if and only if the cut condition is satis�ed�

The proof of Theorem ��� is constructive and yields an algorithm that pre�
serves the cut condition and the Eulerian condition as invariants� The core of
the algorithm can be formulated as follows�

�Algorithm of Okamura 	 Seymour�

while E �� � do

choose an edge e � fu� vg on the outer face�
if there is a cut X with u � X� v �� X and fcap�X	 � � then stop�
��cut condition is violated�	
if there is a cut X with u � X� v �� X and fcap�X	 � � then

choose an appropriate net fs� tg with s � X� t �� X�
reserve e for fs� tg�
delete e�
replace fs� tg by nets fs� ug� fv� tg� ��	

else

delete e�
add a dummy net fu� vg� ���	

The correctness of the algorithm is based on the following invariants�

I� ��� and ���� preserve the cut condition�

I� ��� and ���� preserve the Eulerian condition�

Invariant I� is obviously satis�ed� Notice� that in ���� a dummy net is
introduced in order to preserve the Eulerian condition� The proof of invariant
I� consists of a case analysis� where the Eulerian condition is used several
times�
Important for the e
ciency of the algorithm is the following fact�

Fact Restriction to connected cuts

The cut condition is satis�ed for all cuts X � V if and only if the cut
condition is satis�ed for all connected cuts X � V � i�e�� for all cuts X � V

where G�X� and G�V nX� are connected graphs�

���

Only cuts whose density is at least one are considered during the algorithm of
Okamura � Seymour� It is easy to prove that every connected cut X whose
density is at least one cuts exactly two edges of the outer face boundary� i� e��
there exist exactly two edges of the outer face boundary that are incident to
both� a vertex in X and a vertex in V n X � Thus� the conditions on cuts
which are tested during the algorithm can be tested e
ciently� Using the fact
that minimum capacity cuts through two edges of the outer face boundary in
G are equivalent to shortest paths between the corresponding vertices in the
so�called multiple source dual ��� ���� of G leads to an O�n�� implementation
��� ���� The multiple source dual of G is obtained from the dual of G by
introducing as many vertices corresponding to the outer face as there are edges
on the boundary of the outer face� Then the edges dual to the edges on the
boundary of the outer face are drawn such that the end�vertices corresponding
to the outer face are distinct� In ����� the complexity of the algorithm has been

improved to O�n
�

� �log logn�
�

� � by using Frederickson�s decomposition method
for planar graphs ����
Recently� Wagner � Weihe���� introduced a new algorithm which solves

the Eulerian edge�disjoint one�face paths packing problem in time O�n�� In
contrast to the algorithms mentioned above� it does not test cuts explicitly�
The algorithm is� similar to the algorithms for the vertex�disjoint one�face paths
packing problem and the vertex�disjoint Menger problem� based on right��rst
search�� We will explain the main ideas of this approach�
In the sequel we assume that� according to an anti�clockwise ordering starting

with an arbitrary start terminal x� si precedes ti for i � �� � � � � k� and ti precedes
ti�� for i � �� � � � � k � �� All terminals have degree one and all other vertices
have even degree� Obviously� a simple modi�cation transforms any instance
into a completely equivalent instance that ful�lls this assumption�
Before we determine a solution for instance �G�N �� we will �rst consider

an easier� instance �G�N ��� of parenthesis structure� That is� consider the
�k�string of s�terminals and t�terminals on the outer face in anti�clockwise
ordering� starting with x� The ith terminal is assigned a left parenthesis if it
is an s�terminal� and a right parenthesis otherwise� The resulting �k�string of
parentheses is then a string of left and right parentheses that can be paired
correctly� i� e�� such that the pairs of parentheses are properly nested� The
terminals are now newly paired according to this �unique� correct pairing of
parentheses� i� e�� an s�terminal and a t�terminal are paired if and only if the
corresponding parentheses match� It is easy to see that �G�N ��� is solvable� if
�G�N � is�
The following algorithm determines such a solution �q�� � � � � qk� for �G�N ����

This solution will be used for the determination of the �nal solution� In contrast
to the original nets� we denote the nets in N �� by fs��� � t

��
� g� � � � � fs

��
k � t

��
k g� and we

assume w� l� o� g� that ti � t
��
i for i � �� � � � � k� The paths qi are determined by

a right��rst search� In principle� it proceeds in the same way as the One�Face
Layout Algorithm� introduced in Section ���� Let v � V � and let e be incident

���

to v� We will say that the next free edge after e w� r� t� v is the �rst free edge
to follow e in the adjacency list of v in reverse clockwise ordering�

��

��

�� ��

��

��

����

��

� �

a�

��

��

�� ��

��

��

����

��

� �

b�

��

��

�� ��

��

��

����

��

��

c�

��

��

�� ��

��

��

����

��

��

d�

Figure 	� An example for the Algorithm for Parenthesis Problems� a� an
Eulerian instance and the induced instance of parenthesis structure with respect
to start terminal �� b� the �rst path� c� �rst and second path� d� the auxiliary
graph determined by the algorithm�

�Algorithm for Parenthesis Problems�

for i ��
 to k do

let qi initially consist of the unique edge incident to s
��
i
�

v �� the unique vertex adjacent to s
��
i
�

while v is no terminal do
let fv� wg be the next free edge after the leading edge of qi w� r� t� v�
add fv� wg to qi�
v �� w�

if v �� t
��
i
then stop� return �unsolvable��

return �q�� � � � � qk	�

An example illustrating the Algorithm for Parenthesis Problems is shown
in Figure �� The auxiliary paths q�� � � � � qk yield a directed auxiliary graph

A�G�N � x� of instance �G�N � w� r� t� start terminal x� Just orient all edges
on the paths q�� � � � � qk according to the direction in which they are traversed

���

during the algorithm� Then A�G�N � x� consists of all vertices of G and of all
oriented edges� The following properties of the auxiliary paths and the auxiliary
graph are easy to see�

Lemma ���� The auxiliary paths q�� � � � � qk neither cross themselves nor each

other� In particular	 the left and the right sides of all of them are well de�ned�

All edges to the right of an auxiliary path qi are contained in A�G�N � x�� The
auxiliary graph A�G�N � x� does not contain a right�cycle	 i� e�	 a cycle whose

interior is to its right�

The paths p�� � � � � pk for the original instance �G�N � are now determined in
the auxiliary graph� That is� edges that are not contained in the auxiliary graph
will not be occupied by a path p�� � � � � pk of the �nal solution� Even more� the
edges occupied by the �nal solution are exactly the edges of the auxiliary graph�
The solution paths pi are determined by a directed� right��rst search� That
is� edges that belong to A�G�N � x� are used according to their orientations in
A�G�N � x��

�

�

� �

�

�

��

�

�

a�

�

�

� �

�

�

��

�

�

b�

�

�

� �

�

�

��

�

�

c�

�

�

� �

�

�

��

�

�

d�

Figure
� Edge�disjoint paths determined in the auxiliary graph shown in
Figure �� a� the �rst �nal� path� b� the �rst and the second �nal� paths� c�
the �rst three �nal� paths� d� the �rst four �nal� paths determined by the
algorithm�

�The Algorithm�

���

determine A�G�N � x	 for an arbitrary start terminal x�
for i ��
 to k do

let pi initially consist of the unique edge leaving si in A�G�N � x	�
v �� the head of this edge�
while v is no terminal do

let �v� w	 be the next free edge leaving v after the leading edge of pi w� r� t� v�
add �v� w	 to pi�
v �� w�

if v �� ti then stop� return �unsolvable��
return �p�� � � � � pk	�

An example illustrating the algorithm is shown in Figure �� The paths pi
determined by the algorithm have some nice properties similar to those of the
auxiliary paths stated in Lemma ���� These properties are a consequence of
the right��rst search strategy�

Lemma ���� The paths p�� � � � � pk do not cross themselves� In particular	 the

left and the right side of each of them is well de�ned� All edges immediately to

the right of a path pi are either occupied by another path pj 	 or contained in

A�G�N � x� and directed towards pi�

The algorithm for parenthesis problems is just a right��rst search in an undi�
rected graph and is easily implemented to run in linear time� The main al�
gorithm is a right��rst search in a directed graph� For a linear�time imple�
mentation� a special case of Union�Find is used which also runs in linear time
����

Theorem ��	 ����� A solution to a solvable Eulerian instance of the edge�

disjoint one�face paths packing problem can be determined in time O�n��
The correctness of the algorithm follows from two invariants maintained dur�

ing the algorithm� For an instance �G�N � and a path pi determined by the
algorithm� consider the induced residual instance� That is� the instance con�
sisting of the subgraph of G induced by the edges that are not occupied by
p�� � � � � pi� and the set of nets fsi��� ti��g� � � � � fsk� tkg� Then for a solvable
instance �G�N �� the algorithm maintains the following invariants�

I� For any path pi� the induced residual instance is again solvable�

I� For any path pi� the subgraph of A�G�N � x� induced by the edges that are
not occupied by p�� � � � � pi is equal to the auxiliary graph determined by
the algorithm for parenthesis problems for the induced residual instance
�resp� the corresponding instance of parenthesis structure��

To prove these invariants� it su
ces to prove that path p� determined by the
algorithm is correct� i�e�� connects s� and t�� and that I� and I� are correct
for p�� The main part of the correctness proof consists of the proof that I�
is satis�ed for p�� The proof does not use the Theorem of Okamura � Sey�
mour� Instead� it is proved that� for a solvable instance� there exists a solution

���

containing p�� More precisely� it is shown that p� is just the unique rightmost

path of all paths connecting s� and t� which are contained in a solution� The
uniqueness of such a rightmost path follows from the Eulerian condition� In
fact� this is the only statement in the proof of correctness where the Eulerian
condition is necessary�
The correctness is based on the fact that the paths determined by the al�

gorithm are in some sense extremal�� In fact� p� �resp� any path pi� is the
rightmost path connecting s� and t� �resp� si and ti� with the property that
the cut induced by the set of vertices lying to the right of p� �resp� pi� is satu�
rated �in the residual instance�� This means that the paths determined by the
algorithm run along saturated cuts��
The approach of ���� does not only lead to an algorithm with linear running

time to �nd a solution for any solvable instance� but also yields a linear�time
algorithm to �nd a connected oversaturated cut for a non�solvable instance� It
thus gives an alternative proof for the Theorem of Okamura � Seymour�

���� Solving the Weakly Even One�Face Paths Packing Problem

The complexity status of the non�even edge�disjoint one�face paths packing
problem is open� If the Eulerian condition is relaxed to the weak Eulerian or
weak evenness condition� there is again a necessary and su
cient cut condition
for the solvability� the so�called generalized cut condition introduced by Frank
���� It again leads to a polynomial�time algorithm ����

Weak Evenness Condition

An instance �G�N � of the edge�disjoint one�face paths packing problem satis�es
the weak evenness condition if and only if all interior vertices of G have even
degree�

Generalized Cut Condition

A subset Y � V is called odd if and only if the number of vertices of odd degree
contained in Y is odd� A graph G � �V�E�� together with a set of terminal
pairs fs�� t�g� � � � � fsk� tkg� satis�es the generalized cut condition if and only if
Pl

i�� fcap�Xi� �
�
�q for all partitions X�� � � � � Xl � V � where q is the number

of odd sets Xi� � � i � l�

Theorem ��
 ���� An instance �G�N � of the edge�disjoint one�face paths

packing problem that satis�es the weak evenness condition is solvable if and

only if the generalized cut condition is satis�ed�

Let us study the di�erence between even and weakly even solvable instances
�G�N �� Consider a solution for �G�N � and all edges of G that are not occupied
by the solution� If �G�N � is even� the edges not occupied by the solution
induce an Eulerian graph� i�e�� decompose into cycles� On the other hand� if
the instance is weakly even� the edges not occupied by the solution induce a
graph that decomposes into cycles and paths between the odd vertices� Thus�
if a weakly even instance is solvable� it obviously satis�es the generalized cut
condition�

���

The proof of the converse is constructive� It yields an e
cient solution al�
gorithm similar to the algorithm in ���� The basic idea of this algorithm is
to extend weakly even solvable instances into even solvable instances by in�
troducing dummy nets between odd vertices on the outer face boundary� The
existence of such an extension can be decided in time O�nu� �n number of
vertices of G� u number of vertices on the outer face boundary�� In case such
an extension exists� it can be determined in time O�nu� as well� For the more

restricted class of square grid graphs the running time reduces to O�n
�

� � ����
The complexity status of the general case� i�e�� the case that not even the weak

evenness condition holds� is open� If the graph together with the demand�
edges is planar� the non�even edge�disjoint one�face paths packing problem can
be solved in linear time by a slightly modi�ed version of the algorithm for
parenthesis problems from Section ���� Observe that in this case the problem
has parenthesis structure�

���� Further Versions of the Paths Packing Problem

There are several faster algorithms for special grid graphs� mostly based on
the Okamura � Seymour approach� The improvement of the running time is
based on the restricted shape of cuts to be considered� In ���� Nishizeki� Saito
� Suzuki handle convex grids and achieve a running time of O�n�� For more
general grids� so�called general switchboxes� Kaufmann � Mehlhorn ����
present a routing algorithm with running time O�n log� n�� If the class of gen�
eralized switchboxes with any horizontal or vertical cut crossing the boundary
at most twice is considered� which also contains convex grids� the running time
can be reduced to O�n� ���� For grids of rectangular shape or channels� even a
sublinear running time can be achieved� In these cases� the solution is speci�ed
by the positions of the bends performed by the paths� For further references
on disjoint paths problems in grid graphs we also refer to ���� and �����
There are some polynomially solvable variants of the edge�disjoint paths

packing problem where the terminals are allowed to lie on two di�erent face
boundaries� Again� the existence of polynomial�time algorithms is based on
the su
ciency of the cut condition�

Theorem ��� �Okamura� ����� Consider an instance �G�N � consisting of a

planar graph G � �V�E� and a set of terminal pairs N � ffs�� t�g� � � � � fsk� tkgg�
The graph G is embedded in the plane such that s�� � � � � sl	 t�� � � � � tl lie on the

boundary of one �xed inner face	 and sl��� � � � � sk� tl��� � � � � tk lie on the bound�

ary of the outer face	 for some l	 � � l � k� Let �G�N � satisfy the Eulerian

condition� There exist k edge�disjoint paths in G connecting si and ti	 for

� � i � k	 if and only if the cut condition is satis�ed�

Theorem ��� �Okamura� ����� Consider an instance �G�N � consisting of a

planar graph G � �V�E� and a set of terminal pairs N � ffs�� t�g� � � � � fsk� tkgg	
where t� � t� � � � � � tl for some l� � � l � k� The graph G is embedded in

the plane such that sl��� � � � � sk� t�� � � � � tk all lie on the boundary of the outer

���

face� Let �G�N � satisfy the Eulerian condition� There exist k edge�disjoint

paths in G connecting si and ti	 for � � i � k	 if and only if the cut condition

is satis�ed�

The proofs of both theorems are constructive� In ���� a more general mul�
ticommodity �ow problem is considered� The algorithms presented there lead
to algorithms of time complexity O�n�� for the cases described in Theorem ���
and Theorem ����
Another case where the cut condition is also su
cient for the existence of

edge�disjoint paths between terminals on at most two di�erent faces is presented
in ����� But a �simple� algorithm with polynomial running time is not known
for this problem�

Theorem �� �Schrijver� ����� Consider an instance �G�N � consisting of a
planar graph G � �V�E� and a set of terminal pairs N � ffs�� t�g� � � � � fsk� tkgg�
The graph G is embedded in the plane such that s�� � � � � sk lie on the boundary

of one �xed inner face	 and t�� � � � � tk lie on the boundary of the outer face	

where the cyclic order of the s�� � � � � sk is converse to the order of the t�� � � � � tk
is � Let �G�N � satisfy the Eulerian condition� There exist k edge�disjoint paths

in G connecting si and ti	 for � � i � k	 if and only if the cut condition is

satis�ed�

References

�� M� Becker and K� Mehlhorn ������� Algorithms for routing in planar
graphs� Acta Inform�� �
� ��� ����

�� S� Even and R� E� Tarjan ������� Network �ow and testing graph con�
nectivity� SIAM J� Comput�� �� ��� ����

�� L� R� Ford and D� R� Fulkerson ������� Flows in networks� Princeton
University Press� Princeton�

�� A� Frank ������� Edge�disjoint paths in planar graphs� J� Combin� Theory

Ser� B�
�� ��� ����
�� G� N� Frederickson ������� Fast algorithms for shortest paths in planar

graphs with applications� SIAM J� Comput� ��
�� H� N� Gabow and R� E� Tarjan ������� A linear�time algorithm for a

special case of disjoint set union� J� Comput� System Sci�
�� ��� ����
�� R� Hassin ������� On multicommodity �ows in planar graphs� Networks

��� ��� ����
�� R� Hassin and D� B� Johnson ������� An O�n log� n� algorithm for

maximum �ow in undirected planar networks� SIAM J� Comput� ��� ���
����

�� M� Kaufmann ������� A linear time algorithm for routing in a convex
grid� IEEE Trans� Comp��Aided Design� CAD��� ��� ����

��� M� Kaufmann and G� Kl�ar ������� A faster algorithm for edge�disjoint
paths in planar graphs� In� W� L� Hsu and R� C� T� Lee� editors� ISA���
Algorithms	 �nd International Symposium on Algorithms� pages ��� ����
Springer�Verlag� Lecture Notes in Computer Science ����

���

��� M� Kaufmann andK� Mehlhorn ������� Generalized switchbox routing�
J� Algorithms �� ��� ����

��� M� Kaufmann and K� Mehlhorn ������� Routing problems in grid
graphs� In� B� Korte� L� Lov�asz� H� J� Pr�omel and A� Schrijver�
editors� Paths	 Flows and VLSI�Layout� pages ��� ���� Springer�Verlag�

��� B� Korte� H� J� Pr�omel and A� Steger ������� Steiner trees in VLSI�
layout� In� B� Korte� L� Lov�asz� H� J� Pr�omel and A� Schrijver�
editors� Paths	 Flows	 and VLSI�Layout� pages ��� ���� Springer�Verlag�

��� M� R� Kramer and J� van Leeuwen ������� The complexity of wire�
routing and �nding minimum area layouts for arbitrary VLSI�circuits� In�
F� P� Preparata� editor� Advances in Computer Research	 VOL � VLSI

Theory� pages ��� ���� JAI Press Inc��
��� K��F� Liao and M� Sarrafzadeh ������� Vertex�disjoint trees and

boundary single�layer routing� In� R� H� M�ohring� editor� Proceedings
��th International Workshop on Graph�Theoretic Concepts in Computer

Science	 WG���� pages �� ���� Springer�Verlag� Lecture Notes in Com�
puter Science� vol� ����

��� J� F� Lynch ������� The equivalence of theorem proving and the intercon�
nection problem� ACM SIGDA Newsletter �� �� ���

��� K� Matsumoto� T� Nishizeki and N� Saito ������� An e
cient al�
gorithm for �nding multicommodity �ows in planar networks� SIAM J�

Comput� ��� ��� ����
��� M� Middendorf and F� Pfeiffer ������� On the complexity of the

disjoint path problem� Combinatorica �
� �� ����
��� R� H� M�ohring� D� Wagner and F� Wagner ������� VLSI network

design A survey� Technical Report ���� Technische Universit!at Berlin�
��� T� Nishizeki� N� Saito and K� Suzuki ������� A linear time routing

algorithm for convex grids� IEEE Trans� Comp��Aided Design� CAD���
�� ���

��� H� Okamura ������� Multicommodity �ows in graphs� Discrete Appl�

Math� � �� ���
��� H� Okamura and Paul D� Seymour ������� Multicommodity �ows in

planar graphs� J� Combin� Theory Ser� B
�� �� ���
��� B� Reed� N� Robertson� A� Schrijver and P� D� Seymour �������

Finding disjoint trees in graphs on surfaces� Preprint�
��� J� H� Reif ������� Minimum s�t�cut of a planar undirected network in

O�n log��n�� time� SIAM J� Comput� ��� �� ���
��� H� Ripphausen�Lipa� D� Wagner and K� Weihe ������� The vertex�

disjoint Menger�problem in planar graphs� Technical Report ���� Technische
Universit!at Berlin�

��� H� Ripphausen�Lipa� D� Wagner and K� Weihe ������� Linear�time
algorithms for disjoint two�face paths packing problems in planar graphs�
To appear in Proceedings of the
th International Symposium on Algorithms

and Computation	 ISAAC���� Springer�Verlag� Lecture Notes in Computer
Science�

���

��� H� Ripphausen�Lipa� D� Wagner and K� Weihe ������� The vertex�
disjoint Menger�problem in planar graphs �extended abstract�� In Proceed�

ings of the
th Annual ACM�SIAM Symposium on Discrete Algorithms	

SODA���� pages ��� ����
��� N� Robertson and P� D� Seymour ������� Graph minors VI� disjoint

paths across a disc� J� Combin� Theory Ser� B ��� ��� ����
��� N� Robertson and P� D� Seymour ������� An outline of a disjoint paths

algorithm� In� B� Korte� L� Lov�asz� H� J� Pr�omel and A� Schrijver�
editors� Paths	 Flows	 and VLSI�Layout� pages ��� ���� Springer�Verlag�
Berlin�

��� A� Schrijver ������� The Klein bottle and multicommodity �ow� Com�

binatorica �� ��� ����
��� P� D� Seymour ������� On odd cuts and plane multicommodity �ows�

Proc� London Math� Society ��� ��� ����
��� H� Suzuki� T� Akama and T� Nishizeki ������� Finding Steiner forests

in planar graphs� In Proceedings of the �st Annual ACM�SIAM Symposium

on Discrete Algorithms	 SODA���� pages ��� ����
��� H� Suzuki� T� Nishizeki and N� Saito ������� Algorithms for multicom�

modity �ows in planar graphs� Algorithmica �� ��� ����
��� D� Wagner and K� Weihe ������� A linear time algorithm for edge�

disjoint paths in planar graphs� In� T� Lengauer� editor� First Euro�

pean Symposium on Algorithms	 ESA���� Springer�Verlag� Lecture Notes
in Computer Science�

���

