Packing Paths and Steiner Trees:
Routing of Electronic Circuits

A. Martin and R. Weismantel
Konrad-Zuse-Zentrum Berlin
Heilbaneer StaBe 10
D-10711 Berlin-Wilmersdorf
Germany
email: martin@zib-berlin.de
email: weismantel@zib-berlin.de

One of the challenging problems in the design of electronic circuits is the
so-called routing problem. Roughly speaking, the task is to connect so-called
terminal sets via wires on a predefined area. In addition, certain design rules
are to be taken into account and an objective function such as the wiring
length must be minimized. The routing problem in general is too complex to
be solved in one step. Depending on the user's choice of decomposing the
chip design problem into a hierarchy of stages, on the underlying technology,
and on the given design rules, various subproblems arise. We discuss several
variants of practically relevant routing problems and give a short overview on
the underlying technologies and design rules. Many of the routing problems
that come up this way can be formulated as the problem of packing so-called
Steiner trees in certain graphs. We consider the Steiner tree packing problem
from a polyhedral point of view and present three possibilities to define an
appropriate polyhedron. Weighing their pros and cons we decide for one of
these polytopes and sketch some of our investigations.

1. INTRODUCTION

Electronic circuits are — not least due to the incredible improvements in the last
decades — one of the backbones of today’s technology. For example, modern
automatic control technology, manufacture or communication systems are sim-
ply inconceivable without electronic control. An electronic circuit is a complex
connexion of semi-conductor elements (so-called transistors). This connexion
is the physical realization of a logic function. Today it is possible to integrate
hundreds of thousands or even millions of transistors on a few square centime-
ters (Very Large Scale Integration). The complexity and the large scale of the
problems arising in the design of such circuits provide a great challenge to those
interested in integrated system design. In fact, the involved problems touch the

185

fields of computer science, engineering and mathematics. A number of these
problems can be modelled as combinatorial optimization problems, and thus,
solution methods of this field are applicable. Several versions of the so-called
routing problem belong hereto. Roughly speaking, the routing problem can be
formulated as follows:

Let a certain area (typically a rectangle with some “forbidden zones”)
and a list of sets of points be given. The routing problem is to
connect each set of points by wires on the area such that certain
technical side constraints are met and some objective function is
optimized.

Each set of points is called a net and every single point a terminal. The routing
problem strongly depends on the chosen technology, the design rules and the
customer requirements. For example, the design rules restrict the routing area
(i.e. the area that is available for connecting the nets) or prescribe the distance
two different wires must stay apart. We will discuss these issues in more detail
in Section 2. It turns out that the routing problem is enourmously complicated.
At least at present, it seems impossible to solve it in one step for realistic
problem instances. In practice, the routing problem is usually decomposed
into two subproblems. In a first step, one determines how the wires of each
net maneuver around the obstacles in the routing area (global routing). Here,
the design rules are taken into account only to some extent. The second phase
(detailed routing) consists in finding the detailed routes for each net that comply
with the global routes and that obey the design rules exactly.

Many routing problems that arise in this decomposition can be formulated
using graph theory. One way of introducing a graph G = (V, E) is to define
nodes for subareas of the whole routing area, and to link nodes that represent
adjacent subareas by an edge. In addition, we assign capacities to the edges or
nodes, respectively. The nets are represented in this graph by subsets of the
node set. In graph-theoretic terms each route of a net is called a Steiner tree.
The problem of routing N nets reduces to the problem of finding (packing) N
Steiner trees in G that meet the capacity constraints. We call this problem
the Steiner tree packing problem. We will discuss various types of Steiner tree
packing problems that arise in VLSI- design in Section 3.

Our approach to the Steiner tree packing problem is to consider it from a
polyhedral point of view and to use linear programming techniques. We define
a polyhedron P whose vertices correspond uniquely to the solutions (Steiner
tree packings) in the graph. In Section 4 we discuss several ways to define an
appropriate polyhedron P and weigh the pros and cons. What we need for the
application of linear programming techniques is a complete or at least “good”
description of the polyhedron P by means of inequalities. We will demonstrate
the inherent complexity of this task on some small examples. The inequalities
we found form the basis for the development of a cutting plane algorithm. We
have implemented a cutting plane algorithm for special instances of the routing

186

problem, so-called switchbox routing problems, and achieved quite good results
for many benchmark examples discussed in the literature.

2. THE LAYOUT OF ELECTRONIC CIRCUITS

The design of electronic circuits is typically a two-phase process. At the begin-
ning, a description of a task the circuit to be designed must perform is given.
Such a task is a complex logical function which consists of many elementary
logic operations (for example, the logic “and”-operation). Usually several of
these elementary logic operations are combined into a logical unit (for example
an adder). In the logical design phase it is specified which of these predefined
logical units are to be used, and it is determined which of the chosen logical
units must be connected by wires so that the chip performs in the way it should.
The logical units are also called cells. Each cell is characterized by its width,
its height, its contact points (so-called terminals) and its electric properties.
A net is a set of terminals that must be connected by a wire (as specified in
the logical design phase). The list of cells and the list of nets are the input
of the second phase, the physical design. Here, the task is to assign the cells
to a certain rectangular area (silicon) and connect (route) the nets by wires.
The rectangular area is usually subdivided into an inner part (called master)
and an outer part. The set of cells consists of logic cells and input/output cells.
Logic cells must be assigned to locations on the master, whereas input/output
cells are to be placed on the outer part. In fact, the physical design problem
is more complicated, since certain design rules have to be taken into account
and an objective function is to be minimized. The design rules strongly depend
on the given layout style and specify, for instance, the distance two nets must
stay apart, whether certain cells are preassigned to certain locations and so
on. This applies especially to the objective function. In practice, the following
layout styles are of particular interest.

1. General cells
In this layout style the cells are of arbitrary rectangular shape with a
few exceptions such as L-shapes. A cell can be placed anywhere on the
master (see Figure 1). The goal here is to place the cells and route the
nets such that the resulting area is minimized.

2. Standard cells
Here, the master is subdivided into a placement and routing area. The
placement area consists of a set of (parallel) rows of equal height. The
cells are rectangular of identical height, but they may differ in their width
(see Figure 2). The cells must be assigned to the rows such that the
longest row is minimized or the overall length of the wires is minimized.
The nets are routed in the channels lying between the rows.

3. Gate arrays
In contrast to the above layout styles the size of the master is fixed.
Again, a subdivision into a placement and routing area is given a priori.

187

FIGURE 1.

FIGURE 2.

The placement area consists of so-called base cells arranged in form of a
matrix. The cells are rectangular and the width (height) of a cell is a
multiple of the width (height) of a base cell. The routing takes place on
the routing area which is given in advance (see Figure 3).

4. Sea-of-cells
The only difference to the gate array layout style is that the master does
not contain a subdivision into a placement and routing area. The whole
master is subdivided into base cells in form of a matrix (see Figure 4).
The routing area is composed of those base cells that are not occupied
by the placed cells.

For the first two layout styles the primary goal is to minimize the whole area
of the master, whereas for the other two styles the routability, i.e., the problem
of placing the cells such that there exists a feasible solution to the routing
problem, is the center of interest. However, routability can hardly be measured
and expressed in form of an objective function. Thus, minimizing the total
length of all routes is very often used instead. Another heuristic reason for
minimizing the routing length (also in case of the first two layout styles) is

188

s
N 2

FIGURE 3.

HE

FIGURE 4.

that an electronic circuit with small routing length usually needs little area on
the whole. Thus, minimizing the overall area is (somehow) implicitly taken
into account by minimizing the routing length.

Any reasonably precise version of the physical design problem is A/P-hard, even
very simple ones. Moreover, most real world problem instances involve several
thousands of cells and nets, so that today’s algorithmic knowledge makes it very
improbable that they can be solved to optimality. Therefore, usually heuristic
decomposition into subproblems is applied. The first subproblem consists of
finding appropriate locations for the cells (placement problem). Subsequently,
the nets must be realized by wiring the appropriate terminals (routing problem)
and finally, a compaction step is performed if required. This process is iterated
with different parameters if the final result is not satisfactory.

For the remainder of this paper we will focus on the routing problem in more
detail.

189

3. THE ROUTING PROBLEM

There is given a list of nets. Each net consists of a set of terminals. The
terminals specify the points at which wires have to contact the cells. The
routing problem is to connect the nets by wires on the routing area subject
to technical side constraints which depend on the given layout style. Most
frequently, the objective is to minimize the overall wiring length or to minimize
the length of the longest wire.

We say a net is routed if its terminals are connected by (electric) wires. We
speak of a k-terminal net, if k is the number of terminals of the net. If & > 2,
the term multiterminal netis often used. In the following we will not distinguish
between a net and the route of a net, if this does not lead to confusions.

The routing itself takes place on so-called layers. If some net changes a layer,
a hole, called via, must be drilled. Usually, each layer is subdivided into hori-
zontal and vertical lines, so-called tracks to which the wires of the nets must be
assigned. If there does not exist such a division into tracks we speak of a free or
grid- free routing. Further side constraints include, for instance, the distance
to nets must stay apart from each other, how long two different nets may run
on top of each other on two different layers or that some wires must not exceed
a certain length.

In practice, the routing problem itself is decomposed because of its inherent
complexity and large scale. In the global routing phase the homotopy of the
nets is determined, i.e., it is determined how the wires “maneuver around the
cells”. Thereafter, in the detailed routing phase the wires are assigned to the
layers and tracks according to the homotopy specified in the global routing
step. We consider both routing phases in more detail now. Before doing so, let
us fix some graph-theoretic notation.

We denote graphs by G = (V, E), where V is the node set and E the edge
set. All graphs we consider are undirected and finite. For a given edge set
F C E, we denote by V(F') all nodes that are incident to an edge in F. We call
a sequence of nodes and edges K = (vg,e1,v1,€2,...,0i-1,€;,v;), where each
edge e; is incident with the nodes v;_; and v; for ¢ = 1,...,[, and where the
edges are pairwise disjoint and the nodes distinct (except possibly vy and v;),
a path from vy to vy, if vy # vy, and a cycle, if vg = v; and I > 2. We call a
graph G a complete rectangular h x b grid graph, if it can be embedded in the
plane by h horizontal lines and b vertical lines such that the nodes of V' are
represented by the intersections of the lines and the edges are represented by
the connections of the intersections. A grid graph is a graph that is obtained
from a complete rectangular grid graph by deleting some edges and removing
isolated nodes (i.e. nodes that are not incident to any edge).

Let G = (V, E) be a graph and T' C V a node set of G. An edge set S is called
a Steiner tree for T in G, if the subgraph (V(S), S) contains a path from s to ¢
for all pairs of nodes s,t € T, s # t. Following the notation in VLSI-design we
call T' a terminal set or a net and each t € T a terminal. “Routing some net T'
in a graph G” means in graph-theoretic terms, “finding a Steiner tree for 7" in

190

G”. We will use both manners of speaking in the following.

3.1. Global routing

The global routing problem is usually modelled as a graph- theoretic problem.
Hereto, the routing area is subdivided into subareas and these are represented
by nodes or edges in a graph. Of course, there are many ways to do this. One
possible way of subdividing the routing area is illustrated in Figure 5. The
enclosing rectangle represents the given area. The rectangular units with a
diagonal between their lower left and upper right corner denote the cells. The
routing area is subdivided into rectangular subareas (by means of the additional
dotted lines in Figure 5). This subdivision of the routing area is represented by
a graph as follows. We define a node for each subarea and introduce an edge
between two nodes, if the corresponding subareas are adjacent. Let G = (V, E)
denote the resulting graph. Additionally, a capacity c,, € IN is assigned to an
edge uv € E limiting the number of nets that may run between the subareas
associated with the two nodes u and v. The weight of an edge w,, corresponds
to the distance between the two midpoints of the according subareas. Every
terminal of a net is assigned to that node, whose corresponding subarea contains
the terminal or is as close as possible to the position of the terminal. The global
routing problem consists in routing all nets in G (or in graph-theoretic terms,
finding a Steiner tree for each terminal set) such that the capacity constraints
are satisfied and the total wiring length (that is the sum of the weights of the
Steiner trees) is as small as possible.

After having solved the global routing problem every subarea that corresponds

rﬂl
.

[e

FIGURE 5.

191

to a node in the global routing graph must now be routed in detail. This is the
topic of the next subsection.

3.2. Detailed routing

The number of different detailed routing models which are studied in the lit-
erature or which are used in practice is tremendous. Usually, the problems
coming up are formulated in a grid graph. We restrict ourselves to this case,
too. The reader interested in grid-free routing models is refered to [11] where
an excellent overview on all different kinds of models is given.

The detailed routing problems can be classified according to two criteria which
are independent from each other. We introduce these classifications now with-
out claiming to be complete. Again, for more details we refer to [11].

1. The detailed routing problems are distinguished according to the shape
of the routing area and the locations of the terminals. As mentioned
before the nodes in the global routing graph represent subareas of the
whole routing area. Depending on the subdivision different shapes of de-
tailed routing areas arise. At the end of the global routing phase it is
known which nets go across which subareas. Suppose, some net crosses
the border of two adjacent subareas (depicted by dotted lines in Figure
5). Of course, from the information of the global routing solution it is
not clear at which point the net meets the border. Each such crossing
point is interpreted as a “pseudo”-terminal. In order to solve the rout-
ing problems for each of these subareas independently locations for the
pseudo-terminals must be determined. This usually is done by applying
heuristics. Concerning the shape of the routing area and the locations
of the terminals the following detailed routing models are of particular
interest in practice.

(a) (Channel routing) Here, we are given a complete rectangular grid
graph. The terminals of the nets are exclusively located on the lower
and upper border (see Figure 6). It is possible to vary the height (=
number of horizontal tracks) of the channel. Hence, the size of the
routing area is not fixed in advance.

(b) (Switchbox routing) Again, we are given a complete rectangular grid
graph. The terminals may be located on all four sides of the grid
graph (see Figure 7). Thus, the size of the routing area is fixed.

(¢) (General routing) In this case, an arbitrary grid graph is considered.
The terminals are located at any hole of the grid (see Figure 8). In
contrast to the first two models, the homotopy of the nets is no
longer trivial and has to be taken into account.

2. The detailed routing problems are distinguished to which extent the layers
are taken into account when the wires of the nets are assigned to the
tracks.

192

1 10 2 4 127 6 9 5 8 13 15 14 15 13 17 2 1 3 16 1 18

2 17 16 4 7 6 5 9 8 3 9 12 15 2 15 10 1 11 17 14 18 10

FIGURE 6.

15 4 12 7 3 15 14 15 21 20 9 8 15
3
14 19
13 24
11
24 20
1 18
9 20
2 11
17 21
12 18
16 23
4 2
10 22
324 17 16 4 7 6 5 9 8 9 12 15 24 15 10 23 1 22 18 18
FIGURE 7.

(a) (Multiple layer model) Given a k-dimensional grid graph (that is a

graph obtained by stacking k copies of a grid graph on top of each
other and connecting related nodes by perpendicular lines), where k
denotes the number of layers. The nets have to be routed in a node
disjoint fashion. The multiple layer model is well suited to reflect
reality. The disadvantage is that in general the resulting graphs are
very large.

(Planar model) This is a special case of the multiple layer model
where k = 1, that is we are given a (planar) grid graph and we
are looking for node disjoint connections of the nets. This model
is very restrictive, since only one layer is available. Thus, only few
practically relevant routing problems can be modelled this way.

(Manhattan model) Given some (planar) grid graph. The nets must
be routed in an edge disjoint fashion with the additional restriction
that nets that meet at some node are not allowed to bend at this
node, i.e., so-called knock-knees (cf. Figure 9) are not allowed. This
restriction guarantees that the resulting routing can be laid out on

193

2 4 127 6 9 8 15 14 15 21 20 1 2 18 15

14 19

13 s > % 24 1

24 20

17 3 21 T

16 —— 23

10

‘ ‘ 22

FIGURE 8.

two layers at the possible expense of causing long detours.

FIGURE 9.

(d) (Knock-knee model) Again, some (planar) grid graph is given and
the task is to find an edge disjoint routing of the nets. In this model
knock-knees are possible. Very frequently, the wiring length of a
solution in this case is smaller than in the Manhattan model. The
main drawback is that the assignment to layers is neglected. BRADY
and BROWN [1] have designed an algorithm that guarantees that any
solution in this model can be routed on four layers. It was shown in
[12] that it is A/P-complete to decide whether a realization on three
layers is possible.

The models coming out of these two kinds of classifications can be combined in
all possible ways. For example, combining 1 (b) and 2 (d) we obtain a switchbox
routing problem in the knock-knee model, or in graph-theoretic terms, the
problem of finding edge disjoint Steiner trees in a complete rectangular grid
graph, where all terminals are located on the outer face. Moreover, depending
on the model different objective functions are considered. Possible objective
functions are

e minimizing the routing area,

194

e minimizing the routing length,
e minimizing the number of vias.

Minimizing the routing area is typically the objective in channel routing prob-
lems, whereas the routing length is usually minimized, if the routing area is
fixed in advance. Optimizing the number of vias is rarely considered in detailed
routing algorithms, but most frequently addressed in a postprocessing step.

It is not surprising that most of these routing problems are A’P-hard. Even the
problem of finding a (with respect to some weighting of the edges) minimum
Steiner tree in a graph G for some terminal set 7" is NP-hard (see [8, 3]). These
tremendous difficulties lead to further specializations of the routing problem.
For example, routing problems are frequently studied with the additional re-
striction that all terminal sets have cardinality two, i.e., multiterminal nets are
not allowed. In graph-theoretic terms, this means we are looking for disjoint
paths in a graph (possibly of minimal length). Though the problem remains
NP-hard in general, it is — at least in some special cases — tractable more eas-
ily. Investigations for the disjoint path problem have an impact on the solution
of practically relevant cases, because most of the nets (about up to 60%) are
2-terminal nets in real world applications.

Summing up, our attention in this section was to give an impression on the huge
variety of routing problems that are worth being studied. We have indicated
that, at least at the present state of knowledge, it seems impossible to handle
the whole routing problem in one step. In the next section we present a model
that is applicable to the global routing problem and the switchbox routing
problem in the knock-knee model and attack it from a polyhedral point of
view.

4. A POLYHEDRAL APPROACH

We are given an undirected graph G = (V, E) with edge capacities ¢, € IN
for all e € E and a net list N = {T4,...,Tn}, N € IN. The Steiner tree
packing problem consists in finding Steiner trees Sy for Ty, k =1,..., N, such
that each edge e € F is contained in at most c, of the edge sets Sy,...,Sn.
Every collection of Steiner trees Si,..., Sy with this property is called a Stei-
ner tree packing. If a weighting of the edges is given in addition and a (with
respect to this weighting) minimal Steiner tree packing must be found, we call
this the weighted Steiner tree packing problem. We refer to an instance of the
Steiner tree packing problem by the tripel (G, N, c). The idea of a polyhedral

approach for the (weighted) Steiner tree packing problem is the following. We
define a polyhedron P; whose vertices are in one-to-one correspondence to
the Steiner tree packings in the graph. In order to apply linear programming
techniques we need a description of this polyhedron by means of equations and
inequalities. The number of such inequalities is usually exponential in the size
of the input. A general approach to overcome this difficulty is to apply a cutting
plane algorithm: Start with a small set of valid inequalities. These inequalities

195

define a polyhedron P’ that contains P;. Optimize the linear objective function
over P' and let y be an optimal solution. Obviously, y yields a lower bound
for the optimum value of the weighted Steiner tree packing problem. If y is
also feasible, y is an optimal solution for the weighted Steiner tree packing
problem. Otherwise, there exists a valid inequality for P; that is violated by y.
Thus, we must solve the separation problem, i.e., find a valid inequality that
is violated by y. If such an inequality is found we add it to the linear program
and solve it again. The procedure of iteratively solving linear programs and
adding violated constraints is commonly called a cutting plane algorithm.

A cutting plane algorithm ends with an optimal solution or at least with a
lower bound for the weighted Steiner tree packing problem. The latter case
is not avoidable in general, since we do not know a complete description of
Pr and exact separation routines are not always available. If we intend to
find an optimal solution of the problem we must embed the procedure into an
enumeration scheme. This whole method is commonly known as a branch and
cut algorithm. In this section we want to define an appropriate polyhedron for

developing a polyhedral approach to the (weighted) Steiner tree packing prob-
lem. Indeed, there are many possible ways to define such a polyhedron. Here,
we will present three of these possiblities and discuss some of their properties.
Before going into detail, let us briefly introduce some notation that will be
used throughout this section. We denote by RY the vector space where the

components of each vector are indexed by the elements of E, i.e., ¢ = (@¢)cck
for # € R¥. For an edge set F C E, we define the incidence vector x¥ € R” by
setting xI' := 1, if e € F, and xI" := 0, otherwise. Furthermore, we abbreviate
Y ecr Te by z(F) for an edge set F' and a vector x € R”. We denote by RV*¥
the N - |E| — dimensional vector space R x ... x R¥. The components of a
vector z € RV *¥ are indexed by ¥ for k € {1,...,N}, e € E. For a vector
ze RV*F and k e {1,...,N} we denote by z* € R” the vector (z*)ccp. If it
is clear from the context we will abbreviate a vector z = ((z)7,..., (™)T)T
by (z',...,2"). By the incidence vector of a Steiner tree packing Si,...,Sn
we mean the vector (x51,..., x V).

A canonical formulation

A “natural” model for the (weighted) Steiner tree packing problem is obtained
by introducing a variable for every edge of the underlying graph and every
net. More precisely, we consider the N - |E| — dimensional vector space RV *F
and we introduce a variable z* for every e € F and k € {1,..., N} with the
interpretation

ok 1, if edge e is contained in the Steiner tree for T},
e] 0, otherwise.

The Steiner tree packing polyhedron STP (G,N,c) is the convex hull of all
incidence vectors of Steiner tree packings. It is easy to see that the following

holds.

196

STP (G, N, ¢) = conv {w € RV*¥ |

i) Y ab>1foralWCV, WnT, #0,
ecd(W)
(VAW)NT, #0, k=1,...,N;

N
(ii) Zw’éﬁce, for all e € E;

k
(i) 0<z*<1, forallee E, k=1,...,N;
(iv) =¥ € {0,1}, forallec E, k=1,...,N};

where §(1W) denotes the set of edges with exactly one endnode in W, for W C
V,0 # W # V. Clearly, every incidence vector of a Steiner tree packing
corresponds to a vertex of the polyhedron STP (G,N,c). Conversely, every
vertex of (4.1) is the incidence vector of a Steiner tree packing.

The weighted Steiner tree packing problem can be solved via the following

linear program
N
. k
min E E Wy,
TP
TES (G,N,c) b=l ech

where w, corresponds to the weight of edge e.

One “nice” property of this polyhedron is that under some mild assumptions ev-
ery facet-defining inequality of the polytope STP (G, {Tx},c) (k€ {1,...,N})
defines a facet of the polytope STP (G, N, ¢). This property was shown in [4]
and offers the opportunity to apply results for the Steiner tree polyhedron from
the literature.

For real world instances as they appear for the design of electronic circuits the
number of variables N - |E| used in Formulation (4.1) tends to several millions.
This disadvantage made us think about an alternative model which we will
discuss now.

4.1. A “packed” formulation
Instead of using the N -|E| variables introduced before, we associate with every
edge e of the graph just one variable z. which counts the number of Steiner
trees that use edge e. We set

STP,(G,N,c) := conv {z €R” |

N
(i) z.= fok, for all e € E;
k=1

(4.2) (il) Sk is a Steiner tree for T, in G
forall k =1,...,N;
(iii) 0 <z, <c., for all e € E;
(iv) z. € ZZ, for all e € E}.

197

Obviously, the vertices of (4.2) correspond to the feasible solutions of the Stei-
ner tree packing problem and vice versa. Hence, we can solve the weighted
Steiner tree packing problem via the following linear program

4.3 min Wek
(4.3) zGSTPp(G,N,c)(%}:E ere

where w, corresponds to the weight of edge e.

The problem with this model is that it is very indirect. The “packed” polytope
STP,(G,N,c¢) is defined via the “unpacked” model by simply aggregating the
incidence vectors. In fact, we do not know — at present — an integer program
that is equivalent to (4.3) and that does not use this aggregation trick. It
would be interesting to find an explicit IP formulation of (4.3) where only the
variables z. are used.

There is a further problem with the polytope STP,(G, N, c). Namely, suppose
we are given a vertex z* of this polytope. Then, by definition, there are Steiner
trees S1,...,SN such that z* = Zszl x* holds. How can we find such Steiner
trees in polynomial time? There are some subtilities involved in posing this
question correctly in the usual framework of complexity theory. But we do not
want to go into these details here.

A study of the relationship between the polytopes (4.1) and (4.2) was addressed
by MARTIN [14]. In particular, he showed that in case where the capacities on
the edges are neglected (¢ = 0o) a complete description of STP (G, A, o) is
given by the facets of the single Steiner tree polyhedra STP (G, {T}}, co) for
k=1,...,N. This situation does not hold for STP,(G, N, c0). Indeed, there
do exist facet-defining inequalities a’z > a for STP,(G, N, 00), but, for every
k=1,...,N, the inequality a’z > a is not even valid for STP,(G, {T}}, o).

Taking all these observations into account, we expect nearly unsurmountable
difficulties, if we try to solve the weighted Steiner tree packing problem by first
solving the linear program min,estp, (N c) 2 ecr WeTe, and, subsequently,
unpack the optimal point z* of the linear program. A use of (4.2) seems to be
sensible only if, due to particular structures, unpacking is possible in polynomial
time.

An explicit formulation

A third possibility to define a polyhedron associated with the (weighted) Stei-
ner tree packing problem is based on the following ideas.

For every edge set that defines a Steiner tree for a set of terminals, we introduce
avariable. Fork=1,...,N,set S, := {S C E | S is a Steiner tree for T} in G}.

For ease of notation we number the elements of Sy, such that Sy = {S}, ..., S;*}
where s;, corresponds to the cardinality of Si. Every variable xy;, for k =
1,...,N,i=1,...,sg, is interpreted as follows:

)

1, if Steiner tree S,i is chosen,
Lk i = .
0, otherwise.

198

Under these assumptions, let us consider the following polyhedron.
N
STP.(G,N,c) := conv {z ER2ner |

Sk
(1) Zwk,izl,forallkzl,...,N;
(4.4) v
(ii) Z Z zp; < c., forall e € E;

k=1 {ilecSi}

(i) xp,; € {0,1},fori=1,...,s, k=1,...,N}.

Obviously, every vertex of STP.(G, N, ¢) corresponds to a Steiner tree packing
and vice versa. Hence, the weighted Steiner tree packing problem can be solved
via optimizing the linear objective function over the polyhedron (4.4).

The main drawback of this kind of formulation is — of course — the number of
variables involved. The numbers s; are in general exponential in the size of
the input (i.e. the encoding length of the graph, the netlist and the capacity
vector). Hence, even solving the linear relaxation will probably cause enormous
difficulties. In order to solve the linear relaxation column generation methods
must be applied. Here, the idea is to start with a small number of variables
(i.e. columns) and solve the corresponding linear program. Subsequently, a
pricing step is performed and based on the reduced costs columns are added.
This scheme is iterated until the optimal solution of the linear relaxation is
obtained.

Formulation (4.4) has been considered in several papers (see, for instance, [2,
13, 15]), but, to our knowledge, there have been no serious investigations of the
facial structure of this polytope.

Summing up our discussions, the canonical formulation seems — at least from
our point of view — best suited for applying a polyhedral approach, in order to
solve practical Steiner tree packing problems.

4.2. The Steiner tree packing polyhedron
For the remainder of this paper we will restrict our attention to STP (G, N, ¢)
and give a rough overview on inequalities that are valid for this polytope.

Desireable are inequalities that induce maximal faces of the polytope, i.e., facet-
defining inequalities. To decide, whether an inequality defines a facet, the
dimension of the polytope must be known. Unfortunately, the problem to
decide whether the Steiner tree packing polyhedron is empty or not is already
NP-complete (see, for instance, [9, 10, 16]). Hence, there is little hope to
study Steiner tree packing polyhedra for general instances (G, N, ¢). Figure 10
shows some examples and the corresponding dimensions. The affine hull of the
polytope of Figure 10 (b) is given by xi, = 0, 2%, = 1; that of the polytope
of Figure 10 (d) by z}, = 1, 22, = 0, 21, = 0, 22, = 1, for instance. The
dimension jumps appear rather erratic.

199

dim(STP) = 8
(b)

m
°
® n
dim(STP) = 2
(d)

Figures (a) to (d) show some examples and the dimension of the corresponding

polyhedron. The two terminal sets are drawn as rectangles or cycles respectively
(Th={1,2},T>={3,4} or T>={2,3} resp.) and STP abbreviates STP(G,N,I). The poly-
hedron in (a) is fulldimensional. Deleting edge {1,2} (Figure (b)) decreases the dimen-
sion by 4. If additionally edge {3,4} (Figure (c)) is deleted, there even does not exist
any feasible solution. Figure (d) shows an example in which the underlying graph is

complete but the corresponding polyhedron is not fulldimensional.

FiGURE 10.

We have decided to study the Steiner tree packing polyhedron for special prob-
lem instances for which the dimension can be determined easily and to look
for facet-defining inequalities for these special instances. Clearly, such an ap-
proach is only sensible if the results can be carried over (at least partially) to
practically interesting cases.

It has turned out that an instance (G, N, ¢), where the graph G is complete, the
net list N = {T7,...,Tn} is disjoint (i.e. T;NT; = Pforalli,j € {1,...,N}, i #
j) and the capacities are equal to one (¢ = 1), is an appropriate case. Under
these assumptions, the polytope STP (G, N, 1) is fulldimensional (see [4]).

To illustrate the rich variety of facet-defining inequalities, a complete descrip-
tion of the polytope associated with the example in Figure 10 (a) is shown in
Table 1. Many of the inequalities coming up in this example can be generalized
to other problem instances. These inequalities include, for instance, the Steiner
partition inequalities for single nets and the so-called alternating cycle inequal-

200

ities which involve two nets. The idea of the Steiner partition inequalities is
the following: Let a net T € N be given. We partition the node set of the
graph into p subsets V4,...,V,, p > 2, such that V;NT # f foralli =1,...,p.
Obviously, each Steiner tree for T' must contain at least p — 1 edges whose
endnodes are in different elements of the partition. This is expressed in the
Steiner partition inequality. In Table 1 the inequalities (11), (12), (15), (16),
(18), (22), (35) and (36) are Steiner partition inequalities. For the alternating
cycle inequality we are given the following situation. Let 17,7 € N be two
different nets with |T}| = |T>| = k. Moreover, we are given a cycle C' where
the terminals of the two nets appear in an alternating sequence on that cycle
(see Figure 11). One can convince oneself that any Steiner tree packing Sy, Sa
such that S; and Sy are edge-disjoint must use at least k — 1 edges that are not
contained in the cycle. In fact, this requirement can be strenghened and leads
to the alternating cycle inequalities. In Table 1 the inequalities (13) and (14)
are alternating cycle inequalities. Within the scope of this paper we refrain
from explaining the details, but refer the interested reader to [4, 6].

T, O
T, O
C -

FIGURE 11.

Moreover, we developed exact algorithms and/or heuristics for solving the sep-
aration problems for several classes of inequalities. The procedures were in-
tegrated into a branch and cut framework and succesfully applied to solve
switchbox routing problems discussed in the literature (see [5, 7]).

So far we just focused on the two (extreme) cases where ¢ = T or ¢ = co. In
order to give an impression what may happen if the capacities of the edges are
arbitrary integer numbers, consider the example depicted in Figure 12.

The instance is given by a complete graph on four nodes and consists of three
nets 71 = {1,4}, To = {2,4}, T3 = {2,3}. In case c12 = ¢13 = ¢14 = Co3 =
coq4 = c34 = 1, a complete discription of the polytope is given by the trivial,
the Steiner partition and the so-called critical cut inequalities (cf. [4]). Besides
the trivial inequalities =%, > 0, uw,v = 1,...,4, u # v, k = 1,2,3, the right
hand sides of the inequalities are always equal to one and the coefficients in the
inequalities are either zero or one. Finally, this polytope is the intersection of

25 half spaces.

If we now raise the capacity of the edge connecting nodes 2 and 4 from one to

201

(1) =}y +ajs +ayy +ais +a3y a3y 22
(2) =y +ely +a53 +23y +a33 tay, 22
(3) 2zjp+ajs +ayy +2z1, +ayy > 2
(4) 2zy+aiy +agy +2a5,+az, > 2
(5) 2@, +aly +a3 +2z7, +ayy > 2
(6) 2@, LESTRREDT +223, +ay, >2
(1) =}y +22i, +ais +ahy +225,> 2
(8) =y +2z1, +23y +a3s +203,> 2
(9) 112 +2:1:%3 +z?4 +af:53 +2:1:242 2
(10) z%2 +2z%4 +z%3 +z%4 +2z342 2
(11) 1%2 +af:%3 +z%4 .) >1
(12) = +z +z >1
(13) zﬁ 2 2 +z:134 +z§4 >1
(14) =1 +ai, tra, 21
(15) z%S +z%3 +z§4 >1
(16) 2y +edy ey >1
(17) ziz +z%3 -I—z%S L . +z§4 >1
(18) @y +ayg tro, togy =1
(19) =1, +xq3 +og, a2, >1
(20) 21y +ayg +agy +e =1
(21) =1y +wqs +og, +w3, >1
(22) =2y tayy g, +ag =1
(23) 21y +a], +oig +ai, 21
(24) =}, tayy gy +al, 21
(25) =@, +ayy toig +o3g 21
(26) @y +aqy +ay, +1§4 21
(27) zi2 +z%3 -I—a:%4)) +z%4 >1
(28) =y taay twyy trzy 21
(29) zls +ei; +ayy +1§4 =1
(30) aly +aly +eds tagy > 1
(31) 233 tely taig tagy 21
(32) w3y +ai, +ady tagy =1
(33) 234 +ei tayy tayy > 1
(34) o3y +23, +23, tagy >1
(35) aly +afs +edy ey >1
(36) oty +23, +23, tagy > 1
(37) ¢ls >0
(38) an >0
(39) z3s >0
(40) zly >0
(41) z3, \ >0
(42) z >0
(43) " e, >0
(44) z3, >0
(45) 233 >0
(46) €3, >0
(47) zl, 22, <1
(48) el +z3, <1
(49) zls +aly <1
(50) zl, +22, <1
(51) aly +aly <1
(52) =i, +22, <1

TABLE 1. A complete inequality description of the example in Figure 10 (a)

202

FIGURE 12.

two, the number of facet-defining inequalities increases from 25 to 548. More
drastically, in some of the facet-defining inequalities, whose coefficients are in
standard coprime form, the numbers 2, 3, 4, 5 or 6 appear and the right hand
sides are no longer restricted to be zero or one, but lie in the range between zero
and eleven. For instance, one such facet-defining inequality is the following:

6xt, + 2xhs + dat, + 327, + 327, + 5a2s + xd, + 223, + 625, + 225, > 11.

This small example shows that we are still far from understanding the fa-
cial structure of arbitrary Steiner tree packing polyhedra. Indeed, a series of
carefull investigations of such polyhedra is indespensable in order to apply a
polyhedral approach to VLSI routing problems that are not characterized by all
one-capacities. One such challenging example is and remains the global routing
problem where, for practically relevant examples, up to several thousands of
nets must be wired in a graph with arbitrary capacities.

REFERENCES

1. M. L. BraDY, D. J. BROWN (1984). VLSI routing: Four layers suffice, in:
F. P. PREPARATA (ed.): Advances in Computing Research Vol. 2: VLSI
theory, Jai Press, London, 245 — 258.

2. M. BURSTEIN, R. PELAVIN (1983). Hierarchical wire routing, IEEE Trans-
actions on Computer-Aided-Design CAD-2, 223 — 234.

3. M.R. GAREY, D.S. JOHNSON (1977). The rectilinear Steiner tree problem
is NP-complete, SIAM J. Appl. Math. 32 826 — 834.

4. M. GROTSCHEL, A. MARTIN, R. WEISMANTEL (1992). Packing Steiner
trees: polyhedral investigations, Konrad-Zuse-Zentrum fiir Informations-
technik Berlin, Preprint SC 92-8.

5. M. GROTSCHEL, A. MARTIN, R. WEISMANTEL (1992). Packing Steiner
trees: a cutting plane algorithm and computational results, Konrad-Zuse-
Zentrum fiir Informationstechnik Berlin, Preprint SC 92-9.

6. M. GROTSCHEL, A. MARTIN, R. WEISMANTEL (1993). Packing Steiner
trees: further facets, Konrad-Zuse-Zentrum fiir Informationstechnik
Berlin, Preprint SC 93-1.

203

7.

10.

11.

12.

13.

14.

15.

16.

M. GROTSCHEL, A. MARTIN, R. WEISMANTEL (1993). Packing Steiner
trees: separation algorithms, Konrad-Zuse-Zentrum fiir Informationstech-
nik Berlin, Preprint SC 93-2.

. R.M. Karp (1972). Reducibility among combinatorial problems, in: R.E.

MILLER, J.W. THATCHER (eds.), Complezity of Computer Computations,
Plenum Press, New York, 85 — 103.

M.R. KRAMER, J. VAN LEEUWEN (1984). The complexity of wire-routing
and finding minimum area layouts for arbitrary VLSI circuits, in: F.P.
PREPARATA (ed.), Advances in Computing Research, Vol. 2: VLSI theory,
Jai Press, London, 129 — 146.

B. KorTE, H.J. PROMEL, A. STEGER (1990). Steiner trees in VLSI-
Layout, in: B. KORTE, L. LovAsz, H.J. PROMEL, A. SCHRIJVER (eds.),
Paths, Flows, and VLSI-Layout, Springer-Verlag, Berlin Heidelberg, 185
- 214.

T. LENGAUER (1990). Combinatorial algorithms for integrated circuit lay-
out, Wiley, Chichester.

W. LipskI (1984). On the structure of three-layer wireable layouts, F. P.
PREPARATA (ed.): Advances in Computing Research, Vol. 2: VLSI theory,
Jai Press, London, 231 — 244.

T. LENGAUER, M. LUGERING (1991). Integer program formulations of
global routing and placement problems, Reihe Informatik Nr. 95, Univer-
sitat- Gesamthochschule-Paderborn, Paderborn.

A. MARTIN (1992). Packen von Steinerbiumen: Polyedrische Studien und
Anwendung, Ph.D. Thesis, Technische Universitat Berlin

A. P.-C. Ng, P. RacuavaN, C. D. THOMPSON (1987). Experimental
results for a linear program global router, Computers and Artificial Intel-
ligence 6 229 — 242,

M. SARRAFZADEH (1987). Channel-routing problem in the knock-knee
mode is NP-complete, IEEE Transactions on Computer-Aided-Design
CAD-6, 503 — 506.

204

