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�� Menger�s theorem

In ����� the topologist Karl Menger published an article called Zur allgemeinen
Kurventheorie �On the general theory of curves�� in which he stated a remark	
able result� now one of the most fundamental results in graph theory


Satz �� Ist K ein kompakter regul�ar eindimensionaler Raum� welcher zwi�

schen den beiden endlichen Mengen P und Q n�punktig zusammenh�angend

ist� dann enth�alt K n paarweise fremde B�ogen� von denen jeder einen

Punkt von P und einen Punkt von Q verbindet��

P

Q

The result can be formulated as a maximum	minimum theorem in terms of
graphs� as follows
 Menger�s theorem� Let G � �V�E� be an undirected

�Theorem �� If K is a compact regular one�dimensional space which is n�point connected

between the two �nite sets P and Q� then K contains n pairwise disjoint curves� each of

which connects a point in P and a point in Q�

���



graph and let P�Q � V � Then the maximum number of pairwise disjoint P �Q
paths is equal to the minimum cardinality n of any set of vertices that intersects
each P �Q path�

Here V denotes the vertex set of G and E the edge set
 A P � Q path is a
path starting in P and ending in Q
 Two paths are disjoint if they do not
have any vertex or edge in common
 The result became also known as the n	
chain theorem or the n	arc theorem
 Knaster ���� observed that �by an easy
construction� Menger�s theorem is equivalent to


Menger�s theorem �variant�
 Let G � �V�E� be an undirected graph and let
s� t � V with st �� E� Then the maximum number of pairwise internally disjoint
s� t paths is equal to the minimum cardinality of any subset of V n fs� tg that
intersects each s� t path�

�This theorem was proved by Rutt ���� for plane curves� on a suggestion of
J
R
 Kline
�
Here an s � t path is a path starting in s and ending in t
 Two paths are

internally disjoint if they do not have a vertex or edge in common� except for
the end vertices

Why was Menger interested in this question� In his article he investigates

a certain class of topological spaces called �curves�
 a curve is a connected
compact topological space X with the property that for each x � X and each
neighbourhood N of x there exists a neighbourhood N � � N of x such that
jbd�N ��j is totally disconnected
 Here bd stands for �boundary�� a space is
totally disconnected if each point forms an open set
 Notice that each graph�
considered as a topological space� is a curve

In particular� Menger was motivated by characterizing a certain furcation

number of curves
 To this end� a curve X is called regular if for each x � X

and each neighbourhoodN of x there exists a neighbourhood N � � N of x such
that jbd�N ��j is �nite
 The order of a point x � X is equal to the minimum
natural number n such that for each neighbourhood N of x there exists a
neighbourhood N � � N of x satisfying jbd�N ��j � n

According to Menger


Eines der wichtigsten Probleme der Kurventheorie ist die Frage nach
die Beziehungen zwischen der Ordnungszahl eines Punktes der regul�aren
KurveK und der Anzahl der im betre�enden Punkt zusammenstossenden
und sonst fremden Teilb�ogen von K��

In fact� Menger used �Satz �� to show that if a point in a regular curve K has
order n� then there exists a topological n	leg with p as top� that is� K contains
n arcs P�� � � � � Pn such that Pi � Pj � fpg for all i� j with i �� j


�One of the most important problems of the theory of curves is the question of the relations
between the order of a point of a regular curve K and the number of subarcs of K meeting
in that point and else disjoint�

���



The proof idea is as follows
 There exists a series N� � N� � � � � of open
neighbourhoods of p such that N� � N� � � � � � fpg and jbd�Ni�j � n for all
i � �� �� � � � and such that

jbd�N�j 	 n for each neighbourhood N � N�
���

This follows quite directly from the de�nition of order

Now Menger showed that we may assume that the space Gi 
� Ni n Ni��

is a �topological� graph
 For each i let Qi 
� bd�Ni�
 Then ��� gives with
Menger�s theorem that there exist n pairwise disjoint paths Pi��� � � � � Pi�n in G

such that each Pi�j runs from Qi to Qi��
 Properly connecting these paths for
i � �� �� � � � we obtain n arcs forming the required n	leg

It was however noticed by K�onig ���� that Menger gave a lacunary proof

of �Satz ��
 Menger applies induction on jEj� where E is the edge set of the
graph G
 Menger �rst claims that one easily shows that jEj 	 n� and that if
jEj � n then G consists of n disjoint arcs connecting P and Q
 He states that
if jEj � n then there is a vertex s �� P 
 Q� or in his words �where the �Grad�
denotes jEj�


Wir nehmen also an� der irreduzibel n�punktig zusammenh�angende Raum
K� besitze den Grad g�� n�� O�enbar enth�alt dannK� ein punktf�ormiges
St�uck s� welches in der Menge P 	Q nicht enthalten ist��

Indeed if such a vertex s exists one is done
 If s is not contained in any set
W intersecting each P �Q path such that jW j � n� then we can delete s and
the edges incident with s without decreasing the minimum in the theorem
 If
s is contained in a set W intersecting each P � Q path such that jW j � n�
then we can split G into two subgraphs G� and G� that intersect in W in such
a way that P � G� and Q � G�
 By the induction hypothesis� there exist n
pairwise disjoint P �W paths in G� and n pairwise disjoint W � Q paths in
G�
 By pairwise sticking these paths together we obtain paths as required

However� such a vertex s need not exist
 It might be that V is the disjoint

union of P and Q in such a way that each edge connects P and Q
 In that
case� G is a bipartite graph� and what should be shown is that G contains a
matching of size n
 This is a nontrivial basis of the proof

It is unclear when Menger became aware of the hole
 In his reminiscences

on the origin of the n	arc theorem Menger ���� writes


In the spring of 
��
� I came through Budapest and met there a galaxy of
Hungarian mathematicians� In particular� I enjoyed making the acquain�
tance of D�enes K�onig� for I greatly admired the work on set theory of
his father� the late Julius K�onig�to this day one of the most signi�cant
contributions to the continuum problem�and I had read with interest
some of D�enes papers� K�onig told me that he was about to �nish a book
that would include all that was known about graphs� I assured him that

�Thus we assume that the irreducibly n�point�connected space K� has degree g�� n��
Obviously� in that case K� contains a point�shaped piece s� that is not contained in the set
P �Q�

���



such a book would �ll a great need� and I brought up my n�Arc Theorem
which� having been published as a lemma in a curve�theoretical paper�
had not yet come to his attention� K�onig was greatly interested� but did
not believe that the theorem was correct� �This evening�� he said to me
in parting� �I won�t go to sleep before having constructed a counterex�
ample�� When we met the next day he greeted me with the words� �A
sleepless night�� and asked me to sketch my proof for him� He then said
that he would add to his book a �nal section devoted to my theorem�
This he did� and it is largely thanks to K�onig�s valuable book that the
n�Arc Theorem has become widely known among graph theorists�

D�enes K�onig was a pioneer in graph theory and in applying graphs to other
areas like set theory� matrix theory� and topology
 He had published in the
����s theorems on perfect matchings and factorizations of regular bipartite
graphs in relation to the study of determinants by Frobenius

At the meeting of �� March ���� of the E�otv�os Lor�and Matematikai �es

Fizikai T�arsulat �Lor�and E�otv�os Mathematical and Physical Society� in Bu	
dapest K�onig ���� presented a new result that formed in fact the induction
basis for Menger�s theorem


P�aros k�or�ulj�ar�as�u graphban az �eleket kimerit�o sz�ogpontok minim�alis sz�ama
megegyezik a p�aronk�ent k�oz�os v�egpontot nem tartalmaz�o �elek maxim�alis
sz�am�aval��

In other words


K�onig�s theorem� In a bipartite graph G � �V�E�� the maximum size of a
matching is equal to the minimum number of vertices needed to cover all edges�

�The result can also be derived by some direct construction from the theorem
of Frobenius ���� that a bipartite graph with colour classes each of size n has
a perfect matching if and only if one cannot select a set of n� � vertices that
intersects each edge
�
K�onig did not mention in his paper that this result provided the missing link

in Menger�s proof� although he �nishes with


Megeml��tj�uk v�eg�ul� hogy eredm�enyeink szorosan �osszef�uggnek Frobenius�
nak determin�ansokra �esMengernek graphokre vonatkoz�o n�emely vizsg�alat�a�
val� E kapcsolatokra m�asutt fogunk kiterjeszkedni��

�M�asutt� �elsewhere� came in ���� ����
 In this paper� K�onig gives again a
proof of K�onig�s theorem� and he also gives a full proof of Menger�s theorem

At this point� he adds the following footnote


�In an even circuit graph� the minimal number of vertices that exhaust the edges agrees
with the maximal number of edges that pairwise do not a contain common end point�

�We �nally mention that our results are closely connected to some investigations of Frobe�
nius on determinants and of Menger on graphs� We will enlarge on these connections
elsewehere�

���



Der Beweis von Menger enth�alt eine L�ucke� da es vorausgesetzt wird
�S� 

�� Zeile ���� da� �K� ein punktf�ormiges St�uck s enth�alt� welches
in der Menge P 	Q nicht enthalten ist�� w�ahrend es recht wohl m�oglich
ist� da� �mit der hier gew�ahlten Bezeichnungsweise ausgedr�uckt�jeder
Knotenpunkt von G zu H�	H� geh�ort� Dieser�keineswegs einfacher�
Fall wurde in unserer Darstellung durch den Beweis des Satzes 
� erledigt�
Die weiteren�hier folgenden��Uberlegungen� die uns zum Mengerschen
Satz f�uhren werden� stimmen inWesentlichen mit dem�sehr kurz gefa�ten�
Beweis von Menger �uberein� In Anbetracht der Allgemeinheit und
Wichtigkeit des Mengerschen Satzes wird im Folgenden auch dieser Teil
ganz ausf�uhrlich und den Forderungen der rein�kombinatorischen Graphen�
theorie entsprechend dargestellt�

�Zusatz bei der Korrektur� 

�V�
���� HerrMenger hat die Freundlichkeit
gehabt�nachdem ich ihm die Korrektur meiner vorliegenden Arbeit zuge�
schickt habe�mir mitzuteilen� da� ihm die oben beanstandete L�ucke
seines Beweises schon bekannt war� da� jedoch sein vor Kurzem er�
schienenes BuchKurventheorie �Leipzig� 
���� einen vollkommen l�uckenlosen
und rein kombinatorischen Beweis des Mengerschen Satzes �des �n�Ketten�
satzes�� enth�alt� Mir blieb dieser Beweis bis jetzt unbekannt��

This book of Menger ���� was published in ����� and contains a complete
proof of Menger�s theorem
 Menger did not refer to any hole in his proof� but
remarked


�Uber den n�Kettensatz f�ur Graphen und die im vorangehenden zum Be�
weise verwendete Methode vgl� Menger �Fund� Math� 

� 
���� S� 



f��� Die obige detaillierte Ausarbeitung und Darstellung stammt von
N�obeling��

In his book Theorie der endlichen und unendlichen Graphen �Theory of �	
nite and in�nite graphs�� published in ����� K�onig ���� calls his theorem ein
wichtiger Satz �an important theorem�� and he emphasizes the chronological
order of the proofs of Menger�s theorem and of K�onig�s theorem that follows
from Menger�s theorem


�The proof of Menger contains a hole� as it is assumed �page 	
�� line �
�� that �K�

contains a point�shaped piece s that is not contained in the set P �Q�� while it is quite well
possible that�expressed in the notation chosen here�every node of G belongs to H� �H��
This�by no means simple�case is settled in our presentation by the proof of Theorem
	�� The further arguments following here that will lead us to Menger�s theorem� agree
essentially with the�very brie�y couched�proof of Menger� In view of the generality
and the importance of Menger�s theorem� also this part is exhibited in the following very
extensively and answering to the progress of the purely combinatorial graph theory�
�Added in proof� May 	
� 	���� Mr� Menger has had the kindness�after I have sent him

the galley proofs of my present work�to inform me that the hole in his proof objected above�
was known to him already� but that his recently appeared book Curve Theory �Leipzig� 	����
contains a completely holeless and purely combinatorial proof of the Menger theorem �the
�n�chain theorem��� As yet this proof remained unknown to me�

�On the n�chain theorem for graphs and the method used in the foregoing for the proof�
cf� Menger �Fund� Math� 	
� 	���� p� 	
	 ���� The detailed elaboration and explanation
above originates from N�obeling�

���



Ich habe diesen Satz 
��
 ausgesprochen und bewiesen� s� K�onig �� und


�� 
��� erschien dann der erste l�uckenlose Beweis des Mengerschen
Graphensatzes� von dem in x� die Rede sein wird und welcher als eine
Verallgemeinerung dieses Satzes 
� �falls dieser nur f�ur endliche Graphen
formuliert wird� angesehen werden kann��

We �nally mention that a result related to Menger�s theorem was presented
by Whitney on �� February ���� to the American Mathematical Society ������

a graph is n	connected if and only if any two vertices are connected by n

internally disjoint paths
 While referring to the papers of Menger and Rutt�
Whitney also gave a direct proof

Other proofs of Menger�s theorem were given by N�obeling ���� and Haj�os

����


�� Flows in networks

In the beginning of the ����s� T
E
 Harris at the RAND Corporation �the think
tank of the U
S
 Air Force in Santa Monica� California� called attention for the
following problem


Consider a rail network connecting two cities by way of a number of
intermediate cities� where each link of the network has a number assigned
to it representing its capacity� Assuming a steady state condition� �nd a
maximal �ow from one given city to the other�

This question raised a stream of research at RAND
 The problem can be for	
malized as follows

Let be given a directed graphD � �V�A�� with two special vertices� a �source�

s and a �sink� or �terminal� t
 Then an s � t �ow is a function f 
 A �� R�

such that for each vertex v �� s� t the �ow conservation law holds� that is

X

a����v�

f�a� �
X

a����v�

f�a�����

Here ���v� denotes the set of arcs entering v and ���v� denotes the set of arcs
leaving v
 The value of f is equal to the net �ow leaving s� that is


value�f� 
�
X

a����s�

f�a��
X

a����s�

f�a�����

It is not di�cult to prove that this quantity should be equal to the net �ow
entering t

If moreover a �capacity� function c 
 A �� R� is given� one says that f is

subject to c if f�a� � c�a� for each arc a

Now the maximum flow problem can be formulated


�I have enunciated and proved this theorem in 	��	� see K�onig �� und 		�� Next in 	���
the �rst holeless proof of the Menger theorem appeared� of which will be spoken in x� and
which can be considered as a generalization of this Theorem 	� �in case this is formulated
only for �nite graphs��

���



given
 a directed graph D � �V�A�� vertices s� t � V � and a �capac	
ity� function c 
 A �� R� �

�nd
 a �ow f subject to c maximizing value�f�


���

In their basic paper �Maximal �ow through a network �published as a
RAND Report of �� November ������ Ford and Fulkerson ��� observed
that this is just a linear programming problem� and hence can be solved with
Dantzig�s simplex method
 Indeed� it is a problem that is very close to the
transportation and the transshipment problems studied in the ���� by Kan	
torovich� Hitchcock� and Koopmans� which by themselves formed an important
motivation for studying linear programming

Main result of Ford and Fulkerson�s paper is the famous max��ow min�cut

theorem
 To this end� the concept of a cut is de�ned

Let U is any set with s � U and t �� U 
 Then ��U� �the set of all edges with

one end in U and the other in V n U� is an s� t cut
 The capacity of the cut
is the sum of all c�e� for e � ��U�

It is clear that the capacity of any cut is an upper bound on the maximal

value of s� t cuts
 What Ford and Fulkerson ��� showed is


Max�flow min�cut theorem� The maximal value of the s� t �ows is equal
to the minimal capacity of the s� t cuts�

In this paper� Ford and Fulkerson also gave a simple algorithm for the maximal
�ow problem in case the graph� added with an extra edge connecting s and t�
is planar

In a report of � January ����� Dantzig and Fulkerson ��� showed that

the max	�ow min	cut theorem can also be deduced from the duality theorem
of linear programming and in a report of � April ���� ���� they gave a simple
computational method for the maximum �ow problem based on the simplex
method

In the �rst report it was also observed that Menger�s theorem follows as a

consequence
 It follows from the method of Dantzig ��� that if the capacity
function is integer	valued� then there exists a maximum �ow that is also integer	
valued

Indeed� by taking capacities � on the edges and � in the vertices� and by

observing that any integer �ow can be decomposed into pairwise disjoint paths�
we obtain Menger�s theorem
 It also yields a new variant of Menger�s theorem


Menger�s theorem �variant�
 Let G � �V�E� be an undirected graph� and
let s� t � V � Then the maximum number of pairwise edge�disjoint s� t paths is
equal to the minimum cardinality of any s� t cut�

Here two paths are called edge�disjoint if they do not have any edge in common

This variant of Menger�s theorem can be derived by decomposing any integer
s� t �ow of value k as a sum of the incidence vectors of k s� t paths

There is also an easy reverse construction that gives the max	�ow min	cut

���



theorem as a consequence of Menger�s theorem
 So the two theorems are equiv	
alent

The max	�ow min	cut theorem being also a combinatorial result� one was

interested in obtaining combinatorial methods for �nding maximum �ows
 A
heuristic method for the maximum �ow problem� the �ooding technique� was
presented by Boldyreff ��� on � June ���� at the New York meeting of the
Operations Research Society of America �RAND Report of � August �����

The method was intuitive� and the author did not claim generality


It has been previously assumed that a highly complex railway transporta�
tion system� too complicated to be amenable to analysis� can be repre�
sented by a much simpler model� This was accomplished by representing
each complete railway operating division by a point� and by joining pairs
of such points by arcs �lines� with tra c carrying capacities equal to the
maximum possible volume of tra c �expressed in some convenient unit�
such as trains per day� between the corresponding operating divisions�

In this fashion� a network is obtained consisting of three sets of points �
points of origin� intermediate or junction points� and the terminal points
�or points of destination� � and a set of arcs of speci�ed tra c carrying
capacities� joining these points to each other�

Boldyre!�s arguments for designing a heuristic procedure are formulated as
follows


In the process of searching for the methods of solving this problem the
following objectives were used as a guide!

�� That the solution could be obtained quickly� even for complex net�
works�

�� That the method could be explained easily to personnel without
specialized technical training and used by them e�ectively�

�� That the validity of the solution be subject to easy� direct veri�cation�

�� That the method would not depend on the use of high�speed comput�
ing or other specialized equipment�

Boldyre!�s ��ooding technique� pushes a maximum amount of �ow greedily
through the network
 If at some vertex a �bottleneck� arises �i
e
� there are
more trains arriving than can be pushed further through the network�� it is
eliminated by returning the excess trains to the origin

It is empirical� not using backtracking� and not leading to a optimum solution

in all cases


Whenever arbitrary decisions have to be made� ordinary common sense
is used as a guide� At each step the guiding principle is to move forward
the maximum possible number of trains� and to maintain the greatest
�exibility for the remaining network�

Boldyre! speculates


���



In dealing with the usual railway networks a single �ooding� followed by
removal of bottlenecks� should lead to a maximal �ow�

Boldyre! gives the example of a complex network the model of a real� compre	
hensive� railway transportation system �� vertices and �� arcs


The total time of solving the problem is less than thirty minutes�

His closing remarks are


Finally there is the question of a systematic formal foundation� the com�
prehensive mathematical basis for empiricism and intuition� and the re�
lation of the present techniques to other processes� such as� for instance�
the multistage decision process �a suggestion of Bellman�s��

All this is reserved for the future�

Soon after� Ford and Fulkerson presented in a RAND Report of �� December
���� ��� their �very simple algorithm� for the maximum �ow problem� based
on �nding �augmenting paths�
 The algorithm �nds in a �nite number of steps
a maximum �ow� if all capacities have rational values
 After mentioning the
maximum �ow problem� they remark


This is of course a linear programming problem� and hence may be solved
by Dantzig�s simplex algorithm� In fact� the simplex computation for a
problem of this kind is particularly e cient� since it can be shown that
the sets of equations one solves in the process are always triangular ����
However� for the �ow problem� we shall describe what appears to be
a considerably more e cient algorithm� it is� moreover� readily learned
by a person with no special training� and may easily be mechanized for
handling large networks� We believe that problems involving more than
"

 nodes and ��


 arcs are within reach of present computing machines�

Referring to Boldyre!�s paper as by ����� Ford and Fulkerson opiniate in their
report


�It is the opinion of the authors that if the problem is given in matrix
form� no special attempts should be made to obtain a good starting
solution� If� on the other hand� the problem can be pictured readily as a
linear graph� a ��ooding� idea described in �
� might be used to obtain a
starting �ow� By following the approach suggested in �
�� which� however�
calls for the exercise of judgement� an initial �ow can be obtained that
often is optimal for simple networks� If not� it might be used as a good
starting point for initiating the procedure given in this paper��

�This paragraph as well as the reference to Boldyre!�s paper do not appear in
the �nal paper
�
In the paper it is also observed that the max	�ow min	cut theorem holds for

directed graphs as well
 We thus also obtain a directed version of Menger�s
theorem

Alternative proofs of the max	�owmin	cut theorem were given byRobacker

���� and by Elias	 Feinstein and Shannon ���
 In this last paper it is claimed
that the result was known by workers in communication theory


���



This theorem may appear almost obvious on physical grounds and ap�
pears to have been accepted without proof for some time by workers in
communication theory� However� while the fact that this �ow cannot be
exceeded is indeed almost trivial� the fact that it can actually be achieved
is by no means obvious� We understand that proofs of the theorem have
been given by Ford and Fulkerson and Fulkerson and Dantzig� The fol�
lowing proof is relatively simple� and we believe di�erent in principle�

An interesting equivalent form of the max	�ow min	cut was shown by Hoff�
man ����� now called Ho�man�s circulation theorem
 Let D � �V�A� be a di	
rected graph
 A function f 
 A �� R is called a circulation if in each vertex v
the �ow conservation law ��� holds
 Ho!man showed


Hoffman�s circulation theorem� Let D � �V�A� be a directed graph and
let d� c 
 A �� R� with d�a� � c�a� for each a � A� Then there exists a
circulation f 
 A �� R satisfying d�a� � f�a� � c�a� for each arc a� if and
only if

X

a����U�

d�a� �
X

a����U�

c�a����

for each subset U of V �

Let us �nally note that Ford and Fulkerson�s augmenting path algorithm for
the maximum	�ow problem has implementations that give a polynomial	time
algorithm
 This was shown by Dinits ��� and Edmonds and Karp ���



� Multicommodity flows and disjoint paths

Quite often in practice one is not purely interested in sending one type of
�ow through a network� but several types simultaneously
 For instance� in a
telephone network one wishes to transmit several phone calls simultaneously

In mathematical terms� it means sending �ows f�� � � � � fk simultaneously�

where fi runs from a given vertex si to another given ti and should have a
given value di �say�� such that the total amount of �ow through any arc does
not exceed the capacity of that arc

Thus we have the following multicommodity flow problem�

given
 a directed graphD � �V�A�� pairs s�� t�� � � � � sk� tk� �demands�
d��� � � �dk and a �capacity� function c 
 A �� R� �

�nd
 �ows f�� � � � � fk� where fi is an si � ti �ow of value di� such
that

kX

i��

fi�a� � c�a�

for each arc a


���

���



Again� this is is a special case of a linear programming problem
 There is
also an undirected variant where we require that the sum of the �ows in both
directions in any undirected arc does not exceed the capacity
 �In fact� there
is a straightforward reduction to the directed version
�
One of the �rst studies on multicommodity �ows was presented by Robacker

in a RAND Report of �� September ���� ����
 He in particular considered the
maximum multicommodity flow problem


given
 a directed graph D � �V�A�� pairs s�� t�� � � � � sk� tk
of vertices� and a capacity function c 
 A �� R� �

�nd
 �ows f�� � � � � fk� where fi is an si � ti �ow such thatPk

i�� fi�a� � c�a� for each a � A and such thatPk

i�� value�fi� is as large as possible


���

Robacker observed that the following �Decomposition theorem� applies
 The
maximum total value of �ow in a multicommodity network is equal to

max
c������ck

kX

i��

min
C�Ci

ci�C�����

Here the maximum ranges over all k	tupels of vectors c�� � � � � ck in RE� such that
c� " � � �" ck � c
 Moreover� Ci denotes all si � ti cuts and ci�C� denotes the
capacity of cut C with respect to the capacity function ci
 �In fact� Robacker
restricted himself to undirected graphs
�
So the theorem decomposes the maximum multicommodity �ow problem

into k maximum single	commodity �ow problems
 The problem is reduced to
�nding the optimum decomposition of the capacity function c into k functions
c�� � � � � ck

Robacker also notes


At present there are no computational techniques other than those of lin�
ear programming for determining maximal �ow through multicommod�
ity networks� It is hoped� however� that the decomposition theorem may
lead to new methods as did the minimum�cut� maximum��ow theorem
for single�commodity networks�

Kalaba and Juncasa ���� described in ���� applications of the multicom	
modity �ow problem to telecommunication networks
 In particular they men	
tion


In a system such as the Western Union System� which has some 
" re�
gional switching centers all connected to each other� an optimal routing
problem of this type would have about �"
 conditions and involve around
�


 variables� If solved using the simplex method in its most general
form� this would be at the threshold of the capacity of modern large�scale
computers and would require several hours for solution�

���



It turned out� however� that the combinatorial techniques that made the
single	commodity �ow problem so tractable� did not work for multicommodity
�ows
 Ford and Fulkerson ���� suggested a variant of the simplex method
based on a column	generation technique� where each simplex step consists of
determining a shortest path
 Although they did not carry out computations�
they expected that their method is more practicable than the direct simplex
method� at least in space required

Success was obtained in ���� by Hu ���� who extended Ford and Fulkerson�s

�	commodity �ow algorithm to two commodities
 He moreover described a
max�bi�ow min�cut theorem extending the max	�ow min	cut theorem
 With
respect to extending his method to more than two commodities� Hu remarked


Although the algorithm for constructing maximum bi��ow is very simple�
it is unlikely that similar techniques can be developed for constructing
multicommodity �ows� The linear programming approach used by Ford
and Fulkerson to construct maximummulticommodity �ows in a network
is the only tool now available�

This last remarks still applies today

Hu also showed that if all input data are integer and there exists a solution

for the �	commodity �ow problem� then there exists a half	integer solution

Later� this was extended by Rothschild and Whinston ���� to the existence
of an integer solution if the input data are integer and satisfy a certain parity
condition

It should be noted that generally even if all input data are integer� the

existence of a fractional solution to the multicommodity �ow problem does not
imply the existence of an integer solution
 Thus the question for integer	valued
multicommodity �ows is independent of the general� fractional multicommodity
�ow problem
 Linear programming does not automatically yield an integer
solution for the multicommodity �ow problem with integer input data

Neither does it give a solution for the following combinatorial version of the

problem� the disjoint paths problem


given
 a graph G � �V�E� and k pairs of vertices s�� t�� � � � � sk� tk�

�nd
 pairwise disjoint paths P�� � � � � Pk where Pi runs from si to ti
�i � �� � � � � k�


���

This covers four variants of the problem
 the graph can be directed or undi	
rected� and �disjoint� can mean
 vertex	disjoint or edge	disjoint

In ���� D�E� Knuth �see ����� showed that the integer multicommodity

�ow problem is NP	complete
 This destroys �for those believing NP ��co	NP or
NP ��P� the hope for nice theorems �like the max	�ow min	cut theorem� and
fast algorithms for the integer multicommodity �ow problem

In fact� Knuth showed that the integer multicommodity �ow problem is NP	

complete even if we restrict ourselves to problems in which all capacities are
equal to �
 That is� the edge	disjoint paths problem for undirected graphs is
NP	complete �hence also for directed graphs�
 In addition� Lynch ���� showed

���



in ���� that the vertex	disjoint paths problem is NP	complete even if we restrict
ourselves to planar undirected graphs
 So also for the disjoint paths problem
no Menger	type theorem may be expected

Moreover� Even	 Itai and Shamir ��� proved in ���� that the integer �	

commodity �ow problem is NP	complete
 And in ���� Fortune	 Hopcroft
andWyllie ���� showed the NP	completeness of the vertex	disjoint paths prob	
lem for directed graphs� even when restricted to the case k � �

We �nish with two positive results
 In ����� Khachiyan ���� showed that

linear programming problems can be solved in polynomial time
 This implies
that the �fractional� multicommodity �ow problem is solvable in polynomial
time
 �This result was sharpened by Tardos ���� to
 the multicommodity �ow
problem is solvable in strongly polynomial time� that is by a series arithmetic
operations the number of which is bounded by a polynomial in the size of the
graph
�
In ����� Robertson and Seymour ����� as a result of their Graph Minors

project� proved that for each �xed k� there exists a polynomial	time algorithm
for the disjoint paths problem for undirected graphs
 Their algorithm has
running time bounded by ckjV j

�� for some constant heavily depending on k
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