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In this expository paper� we discuss some recent results in the theory of

adjoint semigroups�

Introduction
A C��semigroup of linear operators on a Banach space X is a family T �
fT �t�gt�� of bounded linear operators on X which satis�es

��S��� T �	� � I 


��S��� T �s�T �t� � T �s� t� for all s� t � 	�

��S�� lim
t��

kT �t�x� xk � 	 for all x � X�

The generator of T is the linear operator A with domain D�A� de�ned by

D�A� �� fx � X � lim
t��

�
t

�
T �t�x� x

�
existsg


Ax �� lim
t��

�
t

�
T �t�x� x

�
� x � D�A��

One of the motivations to study C��semigroups stems from the theory of �par�
tial� di�erential equations� The reason is not hard to see� for x � D�A�� the
map u�t� � T �t�x is the unique C��solution of the initial value problem

du

dt
�t� � Au�t�� t � 	�

u�	� � x�

�	���

By a C��solution we mean a continuously di�erentiable map u � �	��� � X
satisfying equation �	���
 di�erentiation is with respect to the norm of X � In
fact� generators of C��semigroups are characterized by this property as follows�
Let A be a densely de�ned linear operator on a Banach space X and assume

��



that the resolvent set of A is not empty� Then the problem �	��� has a unique
C��solution for every x � D�A� if and only if A is the generator of a C��
semigroup� In that case� the solution is given by u�t� � T �t�x�
For example� if A � Mn�C

n� is an n � n matrix� then the solution to the
initial value problem

du

dt
�t� � Au�t�� t � 	�

u�	� � x�

where x � Cn� is given by u�t� � etAx� Clearly� T �t� � etA is a C��semigroup
with generator A on the Banach space X � Cn�
As a second example� let X � C��IR�� the Banach space of complex�valued

continuous functions on IR with the sup�norm� and consider the family T de�
�ned by

T �t�f�s� � f�s� t�� f � C��IR�� s � IR� t � 	�

One easily veri�es that T is a C��semigroup on C��IR�� the so�called translation
semigroup� Its generator A is given by

D�A� � ff � C��IR� � C
��IR� � f � � C��IR�g


Af � f �� f � D�A��

In this example� for initial values f � D�A�� the semigroup T is related to the
solutions u of the partial di�erential equation

�u

�t
�t� s� �

�u

�s
�t� s�� s � IR� t � 	�

u�	� 	� � f�

�	���

by the relation u�t� 	� � T �t�f � By writing it in the form �	���� equation �	���
can be regarded as an equation on the Banach space X � C��IR��
As a third example� we mention the fact that the Laplacian � generates a

C��semigroup on X � C��IR�� In a similar way it corresponds to the solutions
of the heat�equation

�u

�t
�t� s� � �u�t� s�� s � IR� t � 	�

u�	� 	� � f

and again� this equation can be regarded as a special case of �	����

Let T be a C��semigroup on X � The adjoint semigroup is the family T� �
fT ��t�gt�� of operators on the dual space X� de�ned by T ��t� �� �T �t����
t � 	� The abstract properties of the adjoint semigroup were �rst studied by
Phillips���� and De Leeuw���� Only in recent years� the interest for adjoint
semigroups became more widespread� after useful applications were found in
several �elds� For example� Amann used adjoint semigroup techniques to prove
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that certain second order elliptic operators generate analytic semigroups in
L����� Also� adjoint semigroups proved to be a useful tool in studying certain
delay equations and approximation problems� Through the work of Cl�ement�
Diekmann� Heijmans� Gyllenberg and Thieme �� it was realized that
certain perturbation problems arising in population dynamics have a natural
functional analytic setting in terms of adjoint semigroups�
As the latter work is the main motivation for the recent interest in adjoint

semigroups� let us describe its heuristics in more detail� Consider a population
whose individuals are parametrized by their age� More precisely� for each time
t� we have a function n�t� 	� � L��	� amax� describing the age�distribution of the
population
 here amax is the maximal age the individuals can attain� Thus� at
time t� the number of individuals whose age is between a� and a� � � is given
by Z a���

a�

n�t� a� da�

The fact that the state space is L��	� amax� re�ects the assumption that the
total population size is �nite at each time� If no new births occur and no
individuals die before the age amax� the function n satis�es the relation

n�t� �� a� �

�
n�t� a� ��� a� � � 	�

	� a� � � 	�

Let n� � n�	� 	� � L��	� amax� be the age�distribution at time t � 	� De�ning
T by

�T �t�n���a� � n�t� a�� �	��

one easily veri�es that T is a C��semigroup in L��	� amax� with generator A
given by

D�A� � ff � AC�	� amax� � f�	� � 	g

and Af � �f �� Note that the derivative exists a�e� and de�nes an L��function�
f being absolutely continuous� This semigroup corresponds to the partial dif�
ferential equation

�n

�t
�t� a� � �

�n

�a
�t� a�� a � �	� amax�� t � 	�

n�t� 	� � 	� t � 	�

n�	� 	� � n��

If we now assume that the individuals reproduce at an age�dependent rate
��	� � L��	� amax�� the equation governing the population becomes

�n

�t
�t� a� � �

�n

�a
�t� a��

n�t� 	� �

Z amax

�

��a�n�t� a� da�

n�	� 	� � n��

�	���

���



Thus� one can think of the births as a perturbation of the boundary condition
at a � 	�
If we try to rewrite equation �	��� as an ordinary di�erential equation in the

Banach spaceX � L��	� amax�� we run into the di�culty of how to deal with the
boundary condition� as ordinary di�erential equations do not have boundary
conditions� But thinking of L��functions as �absolutely continuous� measures�
we can identify n�t� 	� � L��	� amax� with the measure N�t� �M �	� amax� whose
density is n�t� 	�� Then� at least formally� we can rewrite �	��� as

dN

dt
�t� � A�

�
N�t�

�
�
�Z amax

�

��a� d
�
N�t�

�
�a�
�
	��

N�	� � N��

�	���

where the derivative is� e�g�� the weak��derivative of the measure�valued func�
tion N�	�� A� is the Radon�Nikodym derivative� and 	� is the Dirac mea�
sure concentrated at a � 	� In this way we can interpret equation �	��� as
an equation in the Banach space M �	� amax� of bounded Borel measures on
�	� amax�� The perturbation caused by birth becomes an additive perturbation
by a bounded linear operator B� � L

��	� amax��M �	� amax�� given by

B�f �
�Z amax

�

��a�f�a� da
�
	��

In order to deal with equation �	��� in a rigorous setting of semigroups T on
some Banach space X � one needs a perturbation theory in which perturbations
are allowed to be of the form B � X � Y � where Y is some �larger� Banach space
containing X as a subspace� Precisely this can be done by means of adjoint
semigroup theory� It turns out that a perturbation theory can be constructed
for the case Y � X��� This is a space that can be canonically constructed by
means of duality from the pair �X�T�
 the precise de�nition is given in Section
�� For the above semigroup on X � L��	� amax� we have X�� � M �	� amax��
so this example indeed �ts into that theory�
The relation to adjoint semigroup theory becomes even more apparent if one

considers the equation dual to �	���� which is

�m

�t
�t� a� �

�m

�a
�t� a� � ��a�m�t� 	��

m�t� amax� � 	�

m�	� 	� � m��

�	���

The perturbation by births now appears as a �genuine� additive perturbation�
The proper state space for this problem is C��	� amax�� the space of continuous
functions on �	� amax� vanishing at a � amax �the deeper reason for this is that
this space is the 
�dual X� of X � L��	� amax�� The C��semigroup associated
to equation �	��� is T�� the 
�adjoint of T
 cf� Section ��� The boundary
conditionm�t� amax� � 	 is then built into the state space� Analogously to what
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we did in �	���� we now think of C��	� amax� as embedded in the larger space
L��	� amax�� and regard the birth perturbation as an additive perturbation by
the bounded linear operator

B� � C��	� amax�� L��	� amax�� B�f � f�	��

�recall our assumption � � L��	� amax���
The dual equation �ts into the 
��perturbation theory equally well� because

for the semigroup T
� on X� � C��	� amax� we have �X���� � L��	� amax�

�� X�� cf� Theorem ����
Thus� it was recognized that problems of the type discussed above can be

succesfully dealt with in an abstract framework of adjoint semigroup theory�
These applications also caused a renewed interest for the abstract functional
analysis of adjoint semigroups� Many new results were proved by� e�g�� De
Pagter� Grabosch and Nagel� Greiner� Schep and the author ��� �� ��
�	� ��� ��� It was found that adjoint semigroups are interesting objects in their
own right and that much can be said about them by using results and methods
from Banach space theory�
In this note� we will mainly deal with the abstract theory and highlight

some of its most interesting results� We return to the above example only in
Section �� For further details about the application of adjoint semigroups to
age�dependent populations we refer to ���
Most proofs of the results presented here and further results can be found

in ���� which is based on my Ph�D� thesis prepared at the CWI in Amsterdam�
I would like to thank my colleagues� especially Hans Heesterbeek and my su�
pervisor Odo Diekmann� for making it such a wonderful place to work� Also� I
would like to thank Ben de Pagter for his constant interest and encouragement�

�� Strong continuity of the adjoint semigroup
It is immediate to verify that the adjoint semigroup T� has properties �S�� and
�S��� Property �S�� strong continuity� need not hold� however�

Example ����

�i� Let T be the translation semigroup on X � C��IR� as de�ned in the
introduction� Its adjoint on X� � M�IR�� the space of bounded Borel
measures on IR� is given by �T ��t�
��F � � 
�F � t��

�ii� Let T be the semigroup on X � L��	� amax� de�ned in equation �	���
Then for f � X� � L��	� amax� one has

�T ��t�f��a� �

�
f�a� t�� a� t � amax


	� a� t � amax�

Consider the semigroup in Example ��� �i� and let 
 be a Dirac measure
	� Then it is clear that limt�� kT

��t�	 � 	k � �� Thus� T� fails to be strongly
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continuous� In fact� limt�� kT
��t�
 � 
k � 	 if and only if 
 is absolutely

continuous with respect to the Lebesgue measure�
We are led to the following de�nition�

X� �� fx� � X� � lim
t��

kT ��t�x� � x�k � 	g�

Thus� X� is precisely the subspace of X� on which the action of T� is strongly
continuous� It is easy to see that X� is a closed� T��invariant subspace� The
restricted semigroup T

� de�ned by T��t� �� T ��t�jX� is a C��semigroup on
X�� Starting from this semigroup� we can repeat this procedure and de�ne
X��� X��� andT�� andT��� The generators of T� and T�� will be denoted
by A� and A��� repectively�
The natural map j � X � X��� de�ned by

hjx� x�i �� hx�� xi� x� � X��

can be shown to be an embedding� Thus one can identify X isomorphically
with a closed subspace of X��� The map j need not be isometric
 cf� Example
��� below� If X � X��� then we say that X is 
�re�exive with respect to
T� Trivially� if X is re�exive� then it is 
�re�exive with respect to every C��
semigroup� The following characterization of 
�re�exivity is due to de Pagter
���� and improves an earlier result of Hille and Phillips�

Theorem ���� X is 
�re�exive with respect to T if and only if the resolvent
R���A� � ���A��� is weakly compact for some � � ��A��

Example ���� Here are some easy examples�

�i� Let X � C��IR� and T translation� Then X� consists of all �nite Borel
measures on IR which are absolutely continuous with the Lebesgue mea�
sure� Hence� by the Radon�Nikodym theorem� we can identify X� with
L��IR�� Furthermore� one hasX�� � BUC�IR�� the space of all bounded�
uniformly continuous functions on IR� Thus� X is not 
�re�exive with
respect to T�
Similarly� one can consider rotation on X � C���� � being the unit circle�
One has X� � L���� and� due to the compactness of �� X�� � C����
So in this case� X is 
�re�exive with respect to T� This can also be seen
directly from the fact that the resolvent ��� dd���� is compact for each
� � 	�

�ii� Let T be de�ned on X � L��	� amax� by equation �	��� Then X� �
C��	� amax� and X�� � X � L��	� amax�� Thus� X is 
�re�exive with
respect to T
 this depends on the fact that we assume amax ��� In the
case amax � �� the space L��	� amax� is not 
�re�exive with respect to
T�

�iii� Let X be a Banach space with a Schauder basis fxng
�
n�� and de�ne T

by T �t�xn � e�ntxn� Then T is a C��semigroup on X � Let fx�ng
�
n��

be the coordinate functionals corresponding to this basis� i�e�� x�n is the
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�bounded� functional de�ned by hx�n�
P�

k�� �kxki � �n� The space X
� is

precisely the closed linear span of fx�ng
�
n�� in X�� In particular� fx�ng

�
n��

is a Schauder basis for X� and we have T��t�x�n � e�ntx�n� Therefore�
X�� is precisely the closure of the coordinate functionals of this basis�
which are given by fxng

�
n��� It follows that X is 
�re�exive with respect

to T�
�iv� If X is 
�re�exive with respect to T� then X� is 
�re�exive with respect

to T��

Although T� need not be strongly continuous� the inequality

jhT ��t�x� � x�� xij � kx�k kT �t�x� xk

shows that T� is weak��continuous� Hence� if X is a re�exive Banach space�
then T is weakly continuous� By a standard theorem of semigroup theory�
weakly continuous semigroups are strongly continuous� and we obtain the fol�
lowing classical result due to Phillips �����

Theorem ���� If T is a C��semigroup on a re�exive Banach space� then
X� � X��

Another� more elementary proof of Theorem ��� is as follows� �rst one proves
thatX� � D�A��� where A� is the adjoint of the generatorA� Since A is always
densely de�ned and closed� D�A�� and hence also X� is weak��dense in X��
Thus� by re�exivity� X� is weakly dense� But X� is also norm�closed� hence
weakly closed� and therefore X� � X��
The converse of Theorem ��� is false� there are non�re�exive Banach spaces

on which the adjoint of every C��semigroup is strongly continuous� In fact�
there is a well�known theorem of Lotz �Lo� that every C��semigroup on L��	� ��
is uniformly continuous� i�e� limt�� kT �t��Ik � 	� Of course� the adjoint of such
a semigroup is uniformly continuous as well� and hence strongly continuous�
However� if X is a non�re�exive Banach space with a Schauder basis� then there
exists a C��semigroup on X whose adjoint fails to be strongly continuous� In
fact� X has a �probably di�erent� Schauder basis whose coordinate functionals
span a proper closed subspace ofX�� Thus� for a large class of spaces� re�exivity
is the only su�cient criterion that guarantees X� � X�� For special classes
of Banach spaces or semigroups sometimes more can be said� however� An
example is the following theorem about c�� the Banach space of all scalar
sequences which converge to 	 with the sup�norm�

Theorem ��	� Let T be a C��semigroup on c�� If there exist M � � and
� � IR such that kT �t�k �Me�t for all t � 	� then c�� � c���

It is an easy consequence of the uniform boundedness theorem and the semi�
group property �S�� that for every C��semigroup T there are constants M � �
and � � IR such that kT �t�k � Me�t for all t � 	� The point of the theorem
is that M should be less than �� The constant � is optimal� as is shown by the
following example� which is also useful for the discussion in the next section�
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Example ��
� Let xn be the nth unit vector of c� and put yn �
Pn

k�� xk �
The sequence fyng

�
n�� can be shown to be a Schauder basis for c�� The formula

T �t�yn � e�ntyn then de�nes a C��semigroup on c� satisfying kT �t�k � � for
all t� Moreover� c�� is the closed linear span of the coordinate functionals of
fyng

�
n��� which is a co�dimension one subspace of c���

This semigroup has the further pathological property that the natural map
j � c� � c��

� fails to be isometric� In general� it is an easy consequence of the
bipolar theorem that j � X � X�� is isometric if and only if the closed unit
ball BX of X is closed in the weak topology induced by X�� In the above

example� one can show directly that ��� 	� 	� 	� ����� � Bc�

��c��c
�

�
�
�

�� The co�dimension of X� in X�

Knowing that X� can be a proper subspace ofX�� the question arises what can
be said about its �relative size� in X�� We noted already in the introduction
that X� is weak��dense in X�� but with respect to the norm�topology the
situation is far more subtle� In that case� the natural object of study is the
size of the quotient space X�X�� We start with noting that there is a nice
description of the quotient norm of X�X�� Let q � X� � X�X� be the
quotient map�

Theorem ���� Let T be a C��semigroup on a Banach space X� Then

jjjqx�jjj � lim sup
t��

kT ��t�x� � x�k

de�nes an equivalent norm on X�X��

Example ��� seems to indicate that not very much can be said about the
size of X�X�� Indeed� for the semigroup there one has dim c��c

�
� � �� and

by taking direct sums it is possible to construct semigroups for which X�X�

can have any �nite dimension� Let us analyse this example more closely� The
adjoint semigroup is easily seen to be strongly continuous for t � 	� This is
equivalent to saying that T ��t�x� � c�� for every t � 	 and x� � l�� Letting
q � c�� � c��c

�
� be the quotient map� this is in turn equivalent to saying that

q�T ��t�x�� � 	 for all t � 	 and x� � l��
OnX�X�� there is a natural quotient semigroup Tq�t�� de�ned by Tq�t�qx

� �
q�T ��t�x��� Thus� in the above example� all orbits of Tq�t� are zero for t � 	�
This is a special case of the following result� We say that a Banach space valued
function is separably valued if its range is contained in some separable subspace�

Theorem ���� Let T be a C��semigroup on a Banach space X and let x� �
X�� If the orbit t �� Tq�t�qx

� is separably�valued� then Tq�t�qx
� � 	 for all

t � 	�

This theorem implies that non�zero orbits of the quotient semigroup cannot
be strongly continuous� An elementary proof of this is given in ��	��
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Corollary ���� If T extends to a C��group� then X�X� is either zero or
non�separable�

Indeed� if X�X� is separable� then T� is strongly continuous for t � 	 by
Theorem ���� and since T extends to a group� this implies that T� is strongly
continuous for all t� i�e� X� � X��
Let us make a few comments on the proof of Corollary �� �Theorem ��

can be proved in a similar way by re�ning the argument a little bit�� So let
us assume that X�X� is separable� It is a well�known fact that a strongly
measurable semigroup is strongly continuous for t � 	� Therefore the idea is to
try to use the Pettis measurability theorem� if ����� 
� is a ���nite measure
space and f � � � X is a weakly measurable� separably valued map into the
Banach space X � then f is strongly measurable� Now let us look at a quotient
orbit t �� Tq�t�qx

�� Since we assume that it is separably valued� the strategy is
to try to prove some kind of weak measurability property� By using the tool of
so�called Baire�� functionals� this can indeed be done after changing to a weaker
norm �in which the completion of X�X� is again separable�� Recall that a
functional x�� � X�� is called Baire�� if it is the weak��limit of a sequence of
elements in X � The idea is to construct su�ciently many Baire�� functionals
in the annihilator X�	 of X�� Identifying X�	 with �X�X���� the quotient
semigroup on X�X� is measurable with respect to any such functional� One
obtains that in the norm induced by these functionals� the quotient orbit is
weakly measurable� hence strongly measurable by Pettis�s theorem� and hence
strongly continuous for t � 	�
The second di�culty is to show that Tq�t�qx

� � 	 for t � 	� The idea is to
turn to the dual space of X�X� and to show that hT �q �t�x

�	� qx�i � 	 for

each of the Baire�� functionals x�	 discussed above� The proof of this is based
on the fact that there is a natural isomorphism

X��  X�� � �X�X����

where X�� is the space of strong continuity of the bi�adjoint semigroup fT ��

�t�gt�� on X�� and �X�X��� is the space of strong continuity of the adjoint
of the quotient semigroup�
In this way one is led to the question in how farX�� andX�� can di�er� The

point is that� a priori� the space �X�X��� could be zero� since the quotient
semigroup on X�X� is not a C��semigroup� There are indeed examples where
this happens
 for instance if T� is strongly continuous for t � 	� More generally�
one can prove that this happens if each of the orbits t �� T ��t�x� is locally Pettis
integrable� It is a result of this type that �nally leads to Theorem ����
By Theorem � below� an example of a semigroup for which X�� is a proper

subspace of X�� is the translation group on X � C��IR��

�� The adjoint of a positive semigroup
Many semigroups encountered in applications are positive� i�e� they map posi�
tive elements to positive elements� Throughout this section� we assume that T
is a positive C��semigroup on a Banach lattice E�

���



It is for this class of semigroups for which the most detailed abstract results
have been obtained� We refer the reader to ���� ���� ��	�� ���� and ��� for more
details� One of the interesting discoveries was that several results concerning
the behaviour of Borel measures on IR can be generalized to results about the
adjoints of positive C��semigroups on Banach lattices� We will deal with these
results below�
The �rst question we address is whether E� has some nice lattice properties

if T does� For example� one might hope that E� is a sublattice if T is positive�
This was an open problem for some time and was �nally solved to the negative
by Grabosch and Nagel ���� who constructed the following counterexample�

Example ���� Let E �� L��	� ���L��	� �� with norm k�f� g�k �� kfk� kgk�
Consider the operator

A �

�
ddx 	
	 ddx

�
with domain

D�A� �
n�

f
g

�
� E � f� g � AC�	� ���

�
f���
g���

�
� B

�
f�	�
g�	�

�o
�

Here AC�	� �� denotes the linear space of all absolutely continuous functions
on �	� ��� and B is a real � � � matrix� The operator A generates a positive
C��semigroup on E� One can show that

E� �
n�

�
�

�
� C�	� ��� C�	� �� �

�
��	�
��	�

�
� Bt

�
����
����

�o
�

It follows that E� is a sublattice of C�	� �� � C�	� ��� and hence of E�� if and
only if B is a lattice homomorphism on IR�� This is the case if and only if B
is a positive diagonal� or o��diagonal matrix� In fact� in this example� E� is a
Banach lattice with respect to its own ordering if and only it is a sublattice of
E�� so in general E� need not even be a Banach lattice in its own right�

On Banach lattices which are �su�ciently di�erent� from L��spaces� one has
the following positive result�

Theorem ���� Let T be a positive C��semigroup on a Banach lattice E� If
E� has order continuous norm� then E� is a projection band in E��

Examples of spaces whose duals have order continuous norm are the space
of continuous functions C�K� and C����� One can say more about adjoints of
positive semigroups on C�K��

Theorem ���� Let T be a positive C��semigroup on E � C�K�� K compact
Hausdor�� Then the following are equivalent�

	i
 t �� T ��t�x� is weakly Borel measurable for each x� � E��
	ii
 T� is strongly continuous for t � 	�
	iii
 E�� � E���

�� 



In particular� if T extends to a C��group� then T
� is weakly Borel measurable

if and only if T� is strongly continuous� Theorem � is non�trivial
 it depends
on a deep result result of Riddle� Saab and Uhl that a weakly Borel measurable
map taking values in the dual of a separable Banach space is Pettis integrable�
One might wonder whether weak �i�e� weak Lebesgue� measurability already
implies strong continuity for t � 	� Under certain set�theoretical assumptions�
this is true� but it is an open question whether this can be proved directly�
Also non�trivial is the following beautiful result of Talagrand ����� which is

an orbit�wise analogue of Theorem � for the case E � L�����

Theorem ���� Let T be the rotation group on L����� � the unit circle� If
for some f � L���� the orbit t �� T ��t�f is weakly measurable� then f is equal
a�e� to a Riemann measurable function�

Recall that an �everywhere de�ned� function is Riemann measurable if it
is continuous a�e� Assuming Martin�s Axiom �MA�� the following orbitwise
generalization of Theorem � can be proved �����

Theorem ��	 �MA� Let T be a positive C��semigroup on a Banach lattice E�
If� for some x� � X�� the map t �� T ��t�x� is weakly measurable� thenT ��t�x�

belongs to the band generated by E� for all t � 	� If T� is a lattice semigroup�
in particular if T extends to a positive group� then x� itself belongs to this band
as well�

We recall the fact that Martin�s Axiom is implied by �but does not imply�
the Continuum Hypothesis� Applied to the group of translations on C��IR��
Theorem �� implies that translation of a bounded Borel measure 
 on IR is
weakly measurable if and only if 
 is absolutely continuous with respect to the
Lebesgue measure �in which case translation of 
 is strongly continuous��
After these �weak implies strong� results� we turn to the lattice properties of

individual orbits of T�� The most interesting results are concerned with the
behaviour of elements in E� which are disjoint from E��

Theorem ��
� Let T be a positive C��semigroup on a Banach lattice E�
Suppose that either E has a quasi�interior point of E� has order continuous
norm� If x� � E�� then T ��t�x� � x� for almost all t � 	�

Recall that u � E is a quasi�interior point if the ideal generated by u is
norm dense in E� Every separable Banach lattice and every L��space have
quasi�interior points� In the special case where T is the translation group on
E � C��IR�� we have 
 � E� � L��IR� if and only if 
 is singular with
respect to the Lebesgue measure �Example ����� and the theorem reduces to
the classical theorem of Wiener and Young �WY� that a singular measure on
IR is disjoint to almost all of its translates�

Theorem ���� Let T be a positive C��semigroup on a Banach lattice E� If
x� � E�� then

lim sup
t��

kT ��t�x� � x�k � �kx�k�

���



In the case E � C�K�� this follows easily from Theorem ��� E� is a pro�
jection band in M�K�� hence lattice isometric to some L��space� If in an
L��space we have T ��t�x� � x�� then kT ��t�x��x�k � kT ��t�x�k�kT ��t�x�k�
and by weak��continuity it follows that lim supt�� kT

��t�x�k � kx�k� However�
arbitrary dual Banach lattices do not have additive norm and� what is more�
Theorem �� fails for arbitrary Banach lattices�
Our �nal result is concerned with multiplication semigroups� A C��semigroup

on a Banach lattice E is called a multiplication semigroup if each operator T
is a band preserving operator� The reason for this terminology is that in most
classical function spaces� an operator is band preserving if and only if it can be
represented as multiplication with some �continuous� measurable� function� If
T is a multiplication semigroup� then T is positive� E� is an ideal in E� and
T
� is strongly continuous for t � 	�
There are two trivial examples of
�re�exive multiplication semigroups� those

on re�exive Banach lattices E� and multiplication semigroups of the form
T �t�xn � e�kntxn� where fxng

�
n�� is an unconditional Schauder basis for E

and �kn� is a sequence of real numbers which is bounded from below� Note
that in both cases� E has order continuous norm� The following theorem states
that these are essentially the only examples�

Theorem ���� If E is 
�re�exive with respect to a multiplication semigroup
T� then E has order continuous norm� Furthermore� if E does not contain a
re�exive projection band� then E has an unconditional Schauder basis fxng

�
n��

and T is of the form T �t�xn � e�kntxn� where �kn� is a sequence of real
numbers which is bounded from below�

In general� if E is 
�re�exive with respect to a positive C��semigroupT� then
E need not have order continuous norm� even if T is disjointness preserving�
as is shown be the rotation group on C���� However� if a Banach space X is

�re�exive with respect to a C��semigroup T� then X does not contain a closed
subspace isomorphic to l�� Therefore� by the general theory of Banach lattices�
if a 
�re�exive E is ��Dedekind complete� it must have order continuous norm�

�� The space X��

In the introduction we were led to the study of initial value problems of the
type

du

dt
�t� � Au�Bu�

u�	� � x

�����

where A is the generator of a C��semigroup on a Banach space X and B � X �
Y is a perturbation taking its values in a Banach space Y containing X as a
closed subspace� In the particular case studied there we had X � L��	� amax�
and Y � M �	� amax�� For the dual equation� we had X � C��	� amax� and
Y � L��	� amax�� We already observed that� in both these cases� X is 
�
re�exive with respect to T and that the relation Y � X�� � X�� holds� In

��	



this section� we show how equation ����� can be given a precise meaning and
how it can be solved by means of abstract methods�
We start with the introduction of the canonical space X�� associated with

a C��semigroup� This space is a closed subspace between X and X��� we have
natural inclusions of closed subspaces X � X�� � X��� We de�ne X�� to
be the subspace of X�� which is mapped into X by the adjoint of the resolvent
of T��

X�� � fx�� � X�� � R���A���x�� � Xg�

The space X�� is a closed subspace of X��� It is an easy consequence of
the resolvent identity that X�� is independent of the choice of � � ��A��
Obviously� if X is 
�re�exive with respect to T� then X�� � X���

Theorem ���� Let T be a C��semigroup on X�

	i
 If B � X � X�� is a bounded operator� then the part of A�� � B in X
generates a C��semigroup U on X� Moreover� we have

kU�t�� T �t�k � O�t�� t � 	� �����

	ii
 Conversely� if U and T are two C��semigroups on X such that 	��

holds� then these semigroups have the same space X��� and there exists
a bounded operator B � X � X�� such that the generator AU is precisely

the part of A�
T

� �B in X�

Moreover� if A is a generator and B � X � X�� is bounded� then the part
of A�� �B generates a C��semigroup on X if and only if B takes its values in
X��� These results are essentially contained in �� Part I� and ����
Assertion �i� shows how equation ����� can be given a meaning� the �correct�

initial value problem is

du

dt
�t� � A��u�Bu�

u�	� � x�

����

A priori� this equation makes sense as an equation in the space X��� But
thanks to Theorem ���� the part of A�� � B in X is the generator of a C��
semigroup U on X � Thus� for x in the domain of this part� we can regard
equation ���� as an initial value problem onX � the solution of which is given by
u�t� � U�t�x� In the concrete example on X � L��	� amax� of the introduction�
we have A� � A�� and B� � X � X��� Hence� the part of the operator A��
B� in L

��	� amax� generates a C��semigroupU on L��	� amax�� For initial values
n�	� 	� in its domain� equation �	��� admits the solution u�t� � U�t�n�	� 	�� The
dual equation can be dealt with analogously�
We will now continue with some further properties of the space X��� all of

which show that it truly is an important intrinsic object associated to X and
T� rather than just some ad hoc object�

���



For the next result� we need the fact that there is a natural embedding
k � X�� � X��� given by

hkx��� x�i �� lim
�
�

hx��� �R���A��x�i�

The limit always exists� so this de�nition makes sense� By means of the map
k� each x�� � X�� acts as a bounded linear functional on X�� The following
example illustrates this in the case of the translation group�

Example ���� Let T be the translation group onX � C��IR�� We know that
X�� � BUC�IR�� One can verify by direct computation that for f � X��

and a �nite Borel measure 
 � X� we have

hkf� 
i �

Z
IR

f�t� d
�t��

where the integral is the abstract Lebesgue integral� Thus� we recover the
natural pairing of BUC�IR� with the space of �nite Borel measures M�IR��

The other way around� one can regard each x� � X� as a bounded functional
on X��� In doing so X� can be identi�ed with a closed subspace of X��� �
�X����� The following result tells us which subspace�

Theorem ���� Under the above identi�cations� X� � �X�����

Thus� the ���spaces occur �naturally�� Our �nal result gives one more strik�
ing example of a class of spaces which turn out to be ���spaces� To this end�
we brie�y recall some concepts from interpolation theory� For the details� we
refer to ���� Let T be a C��semigroup on X � For 	 � � � � we de�ne

X� �� fx � X � lim sup
t��

�
t�
kT �t�x� xk � 	g


X��� �� fx � X � lim sup
t��

�
t�
kT �t�x� xk ��g�

With respect to appropriately chosen norms� these spaces are Banach spaces�
which can be thought of as abstract little� and big H!older spaces of exponent
�� Clearly� X� is T�invariant
 the restriction of T de�nes a C��semigroup T�

on X�� For this semigroup we can prove�

Theorem ���� There exists a natural isomorphism X���  �X��
���

In fact� if we let A� denote the generator of T�� the isomorphism is given by
���A�R���A�� �

�j�X���� 
 this map does not depend on the choice of � � ��A��
For the specialists� this is why Theorem ��� works� one can show that X��� can
be identi�ed with the so�called Favard class of the extrapolation space �X����
of X�
 on the other hand� for every C��semigroup on a Banach space X one
has Fav�X� � D�A��� � X � so X�� is the inverse image under A�� of the
Favard class of X � and this implies that X�� can be identi�ed with the Favard
class of X���
IfX is
�re�exive with respect toT� then one can show thatX� is
�re�exive

with respect to T�� In that case� Theorem ��� gives a natural isomorphism
X���  �X��

��
 in other words� X��� is a dual space in a natural way�

���
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