Application of a solution-adaptive multigrid
method to the Euler equations

H.T.M. van der Maarel, P.W. Hemker, B. Koren!
CWI, P.O. Box 4079,
1009 AB Amsterdam, The Netherlands

J.A. Michelsen
Technical University of Denmark
Department of Fluid Mechanics

Bygning 404, 2800 Lyngby, Denmark

A locally refined multigrid method for solving the steady Euler equations of
gas dynamics is presented. The method makes use of grids in a locally nested
sequence. It is briefly described and next applied to some steady Euler flow
problems. The method appears to be more accurate and more efficient than
the corresponding multigrid method that applies global refinements only.

1 INTRODUCTION

In this paper the adaptive multigrid method as developed at CWI during the
first phase of the BRITE/EURAM Area 5 project (contract no. AERO-0003-
C), is applied to the Euler equations of gas dynamics. The discretisations on
the various levels of refinement introduce a set of nonlinear algebraic equations.
The method to solve the set of nonlinear algebraic equations is an application
of the nonlinear multigrid scheme, called full approzimation storage (FAS),
possibly embedded in the full multigrid (FMQG) algorithm or an iterative defect
correction (IDeC) process. First, these algorithms are described for their use in
the present context of locally refined grids. After that, a strategy to introduce
local refinements is described. In the experiments to follow, this strategy is used
in the grid-refinement cycles. Next, some aspects of the implementation of a
local refinement, multigrid method in a computer code are discussed. Finally,
a number of examples are presented. The problems chosen for the experiments
give an example of the possible range of application, where this method may be
used as a tool for analysis of fluid dynamics problems. The problems considered
are:

1 mmmmmmmmnnenrnrnrnrnrnn

49

e shock reflection on a flat surface;
e transonic flow around an airfoil;
e spurious entropy in the subsonic flow along a compression corner.

First we consider two standard test cases from numerical fluid dynamics to
validate the method and to get an idea of possible gain in efficiency of the
local grid refinement method with respect to the uniform grid cases. Then, a
problem is considered where the method is used to locally introduce a singular
grid, in order to approximately solve a problem which has a singular solution,
with sufficient accuracy.

In this chapter we also give CPU execution times for the specific implemen-
tation of the solution-adaptive, local grid refinement code, run on a typical
present-day workstation. We compare these execution times with the execu-
tion times for an implementation for uniform grids only, that uses the same
multigrid and defect correction algorithms as the adaptive code (cf. Section 5).

Refinement criteria used in all of these experiments are solely based on re-
quirements for the grid in order to provide ‘sufficient’ resolution for the solution.
However, sufficient resolution for the solution does not necessarily imply suffi-
ciently small errors for the discrete approximation of the equations. If one is
only interested in the components of the solution itself of some problem and
not in any of its derivatives, then sufficient resolution depends solely on first-
order derivatives of solution components. Apart from first-order derivatives,
the local discretisation error usually also depends on higher-order derivatives.
Therefore, using only gradients of solution components in the refinement crite-
rion may not be sufficient. The subject of local discretisation errors and their
a-posteriori estimation are considered in Chapter 4 of [26].

2 MULTIGRID AND DEFECT CORRECTION
2.1 Introductory remarks

The set of algebraic equations obtained by the discretisation introduced in
Chapter 2 of [26], is solved by point Gauss-Seidel relaxation, with multigrid
convergence acceleration. This particular multigrid procedure is an applica-
tion of the nonlinear multigrid scheme, called full approximation storage [3].
For the second-order discretisation this process is embedded in an iterative de-
fect correction process [1], [7]. The implementation of the multigrid scheme is
directly based on the methods described in [11], [12], [21], [22] and [23], exten-
sively applied in [23], [14] and [16]. Iterative defect correction is described in [1]
and [7] and applied in [9], [22], [23], [14] and [16]. The basic method inside the
iterative defect correction method, which is used to (approximately) invert the
inaccurate discrete operator, is the nonlinear multigrid method.

In this section we give a brief description of the methods, and the slight mod-
ifications to our application. The description is a summary of the description
presented in [25].

50

2.2 A locally nested sequence of discretisations
In order to use multigrid we have to specify grid transfer operators. The restric-

tion operators E;H and R§+1 and the prolongation operator Pll+1 are defined
such that (¢) a sequence of locally nested discretisations on the sequence of lo-
cally refined grids is obtained and such that (ii) the coarse-grid equations (see
Chapter 2 of [26]) are satisfied implicitly. A locally nested sequence of discreti-
sations {Nl}l:(),___yL of the differential operator NV is obtained, by definition, if
a coarse-grid discrete operator N!, restricted to the refined cells, is a Galerkin
approximation of the fine-grid discretisation. By definition, the restriction
RHHINY as an approximation to N'T1, is called a Galerkin approximation if

_ l l ..
{N'(d5d"™ N}, = AR N (P DY, Y65 € I

—I
The restriction operator for the solution, R, : X'* Q') — Xl(ﬂlf), is
defined by the operator which approximately takes the integral mean value.

—l L 1 .
{Rl+1ql+1}” =1 2 ¢t v(i,5,0) € If.

meK (i,5)
This restriction is second-order accurate. For the right-hand side a restriction
operator, R}, ; : YIH(Q’H) — ?l(ﬂlf), is defined by
SR ! - 1
{Ri 7 +1}i’j = Z riet, (i, 4,1) € If. (2.1)
meK (i,5)

The operator for the prolongation of a correction for the solution, PllJrl

YI(QZ) N YH_I(QHl), is defined by
{leqz}:l —q.;, VmeK(i,j)and ¥(i,j) € I.. (2.2)

As shown in [23], [14] and [16], these restrictions and prolongation appear to
give very good multigrid performance (together with the point Guass-Seidel
relaxation). The prolongation (2.2) and restriction (2.1) satisfy the multigrid
rule (cf. [7], [10], [32])

mp + my > 2m,

where my, is the order of accuracy of the interpolation used in the prolongation,
(for P! this is O(hy)), m, the order of accuracy the restriction (for R}, this

is O(h}), taking into account that Rj,, is a restriction in ?l) and 2m the
order of the differential equation (2m = 1 for the Euler equations). For the
given definitions of restrictions and prolongation, the set of first-order accurate
discrete equations, exclusive the equations involving a green boundary, form
a locally nested sequence of discretisations, (i.e., the coarse-grid discretisation
is a Galerkin approximation of the fine-grid discretisation). The first-order
accurate reconstruction which uses first-order accurate computation of virtual
states (hence first-order weak consistency, cf. Chapter 2 of [26]), yields a locally
nested sequence.

o1

2.3 The FAS and FMG scheme

In the nonlinear multigrid algorithm FAS the equations for the first-order accu-
rate discretisation are solved. We identify the discrete operator with first-order
accuracy by Ni, and with second-order accuracy by NIII' The set of equations
to be solved is then given by

Ni(g¢' ") =, (2.3a)

where the right-hand side s' is given by

rﬁ’j, (¢,5,1) € I, l
o= {NI’(Eéﬂql;qH)}m (2.3b)
_ {R;H (NII+1(ql+1;q’) _ sl+1) }ij . G40 €Iy,
and where Tﬁ,j is defined by
' = R's. (2.4)

Upon convergence of the nonlinear multigrid scheme, the solution of (2.3) sat-
isfies

S FLldhd st =, (2.5)
keD

with appropriate definition of the numerical flux Fil’j,l and it satisfies

=l ..
qé,j = {Rl+1ql+1}£,j7 V(i, j,1) € If. (2.6)

The collective, symmetric point Gauss-Seidel relaxation on each level of re-
finement acts as a smoother in the FAS scheme. For each cell Qé,j visited, the

state qij is updated, by iterating (through exact Newton iteration) on the local

system {NII(ql; ¢ é,j = rﬁ,j, solving for qﬁ,j. The residual tolerance for the
Newton iteration is taken such that in all but exceptional cases only one or
two iterations are performed. The cells on each level are visited in an order
which is equivalent to the usual lexicographical order. After a first relaxation
sweep has been done, another sweep is done in the reversed direction. This
smoother is shown to be very efficient [11], in both subsonic and supersonic
Euler flow computations. A FAS cycle, where all ¢/, I =0, ..., L are improved,

is a recursive algorithm defined by the following steps:

1. improve the solution ¢! by applying p pre-relaxations to (2.3a) for level
I, resulting in the approximate solution (q')o;

2. compute the right-hand side s'~!, determined by (2.3b) for level ;
3. improve the solution ¢/~! by applying o FAS cycles to the equations (2.3a)

for level | — 1;

52

4. compute the correction of the solution, given by the difference of the
present coarse-grid solution and the coarse-grid restriction, d'~! = ¢'~! —
—i-1
Ry (4o

5. improve the solution ¢' by adding the prolongation of the coarse grid
correction, ¢' = (¢')o + P} ,d'1;

6. improve the solution ¢' by applying g post-relaxation sweeps to the sys-
tem (2.3a) for level .

The steps (2)—(5) together are called the coarse grid correction. These steps
are skipped for level 0.
The initial solution on the finest level is obtained by application of nested

iteration (FMG) [2], [3], [7]. For a level I > 0, a cycle of the FMG scheme is

recursively defined as follows:

1. if | = O initialise the solution gy with some ‘arbitrarily’ chosen solution;

—l
if I > 0 initialise the solution on level [with a prolongation P, ,q¢'"!;

2. improve the solution on level [by application of v FAS cycles with level
l as highest level,

3. if level [is not the highest level, then apply the FMG iteration cycle with
a finest level 1 + 1;

Throughout the experiments presented in this chapter we use o = 1 (V-cycles),
p = q = 1 (a single pre-relaxation and a single post-relaxation) and v =1 (a
single V-cycle, before starting on a higher level). The prolongation ﬁi“ used
in the FMG algorithm is bilinear interpolation.

2.4 Defect correction

The set of equations for second-order accuracy is solved, using iterative defect
correction [7], [1]. The set of higher-order discretised equations on a level I, are
given by
L1, I— 1
Nii(q'sq H=r" (2.7)
The IDeC algorithm solves these equations, by iteratively solving
Ni(¢'5d' ™) = ¢,

applying the FAS scheme, with a modification to the right-hand side s for the
equations for a cell of the composite grid, i.e. step (2) of the FAS algorithm.
An initial solution for the IDeC process is obtained by application of the FAS
algorithm to (2.3). In the IDeC iteration the right-hand side s! depends on the
defect of the higher-order accurate equations through

93

Sé,j = {Nf(ﬁl+1ql+1§ql71)},] (2.8)

,J

_ {Rg-l-l (]\]Il+1(ql7 ql-l-l) _ Sl+1) }i] , (7:7]', l) c If
In step (2) of the FAS algorithm the right-hand side is computed by (2.8).
Upon convergence of the IDeC scheme (2.7), is satisfied.

In [14] it is shown that one nonlinear multigrid cycle per defect correction
cycle is sufficient and most efficient. In all our experiments we do the same and
use a single nonlinear multigrid cycle per defect correction cycle.

Before any local grid refinement is introduced, the solution on a basic level [,
is approximately computed. This is done by application of the nested iteration
FMG, one or two FAS cycles to approximately solve the first-order accurate
discretisation and then a sufficient number of IDeC cycles, for second-order
accuracy.

3 REFINEMENT CYCLES

Solution-adaptive grid refinement involves the grid to be refined at some stage
in the solution process. Based on an a-posteriori estimation of relevant quan-
tities appearing in the refinement criterion, the grid is refined where these
quantities exceed a pre-set or solution-dependent threshold value, (cf. [4], [20],
19)).

A computation with use of local grid refinement starts with applying the
FMG algorithm and possibly subsequent iterative defect correction, so that
an approximate solution is obtained for the uniform grid on some basic level
lp. Introduction of local grid refinements is accomplished by the following
refinement algorithm, for [the highest level present:

1. determine which cells on level | should be refined, or may be deleted
from the system, based on the refinement criterion and an a-posteriori
estimation of the relevant quantities used in the refinement criterion and
based on the requirement that a virtual state vﬁ,j only depends on ¢' and
¢

2. decide whether a grid on level [4+ 1 should be created, call the (new)
highest level, level L;

3. refine the grid and delete obsolete cells on all levels, from I, up to and
including level L — 1;

4. initialise the approximate solution of the newly created refinements by
application of the prolongation P+l for m = I,..., L — 1 (similar to

the FMG algorithm);

o4

5. improve the solution on all levels by application of p FAS (first-order dis-
cretisation) or IDeC (second-order discretisation) iterations on the com-
posite grid;

6. either apply a refinement cycle on the new system, or solve the present
system of equations by a sufficient number of iterations;

The decision in step (2) of the refinement algorithm may be determined by the
answer to the question whether the grids on all currently present levels have
sufficiently converged, or whether the highest level allowed has already been
reached. Notice that for newly created cells, the refinement cycle actually is an
application of the nested iteration algorithm FMG, introduced in the previous
section. For the prolongation Pll+1 a bilinear interpolation is used for all newly
created cells. In second-order computations, after initialisation of the solution
for newly created cells, defect correction is continued, without applying the
nonlinear multigrid scheme to the first-order accurate system (2.3) first. The
number of iterations p before a new refinement cycle is started, step (5) of the
refinement algorithm, determines to a large extent the efficiency of the adaptive
grid refinement method. However, using an insufficient number of iterations
in step (5) may yield a grid too much distorted by the insufficiently converged
numerical solution, as compared with the grid that would be obtained with a
converged solution. In practice, p = 1 or p = 2 for a first-order discretisation
appears to yield a grid virtually the same as the grid obtained by using a
fully converged solution. For a second-order discretisation p = 4 or p = 5 is
sufficient.

4 SOME ASPECTS OF IMPLEMENTATION

In order to perform multigrid accelerated Euler flow computations with solution-
dependent local grid refinement, a computer code has been developed in portable
FORTRAN 77. This code consists of two modules. One module is called BA-
SIS, and is entirely devoted to set up and do maintenance on the data structure.
It is described in [13]. The second part, called EULER, consists of all routines
related to the adaptive multigrid Euler flow computations. This module is
described in [27]. Recently some work has been done on vectorisation of this
code for a CRAY Y-MP. This resulted in an additional module, called EUVEL,
which is presented in [18].

The data structure reflects the quad-tree relations of the cells in the geometric
structure. The grid, made up by the geometric structure, is composed of so-
called patches. A patch consists of a corner point, and possibly a horizontal
wall, a vertical wall and a cell. If a patch contains a cell, sufficient neighbour
patches exist to provide the necessary edges and vertices. On the other hand,
each corner point, each edge and each cell of the geometric structure belongs
to some patch. All data in the structure are stored and referenced through
these patches. The patches in the data structure are also related in a quad-
tree structure. As a matter of fact, the tree of cells is a subtree of the tree of
patches.

95

In the linked list that implements the quad-tree structure, nine pointers are
used for each patch. One pointer to the parent of a patch, four pointers to the
kid patches and four pointers to the neighbours of a patch. In the FORTRAN
implementation the use of pointers in the linked list is emulated by a large,
two dimensional array of type integer. Each patch has a unique number. For
each patch the patch numbers of its parent, its possible kids and its possible
neighbours are stored in a row of the integer array. Furthermore, for each patch
a set of properties is kept, which identify the type of the patch: whether the
patch contains a cell, whether the horizontal wall or vertical wall is part of
the green boundary or the boundary of the domain, whether the cell contained
in the patch may be refined upon the earliest possible occasion, etc.. These
properties are stored in a two dimensional array of type logical, the column
identified by the unique number of a patch and the row identified by a specific
property. Finally, all real data for the numerical problem are kept in another
two dimensional array of type real. These data are also addressed through the
unique patch number. For each patch a total of 18 real numbers are stored.
The data structure handled by BASIS has a much wider range of applications
than Euler flow computations and than cell-centred discretisation schemes.

All actions on the data in the data structure are performed through a depth-
first traversal of the tree. The subroutines performing the necessary numerical
actions work by application of this tree traversal algorithm.

For each patch visited through this algorithm, a subroutine is called to per-
form some action on the data in the data structure. The quad-tree structure
and the use of such a traversal algorithm to perform any task, is very well
suited for the implementation of a multigrid algorithm with adaptive mesh re-
finement. However, as noted in [18], automatic vectorisation (i.e., vectorisation
by the compiler) of a code of this nature does not gain any performance. There-
fore, in the vector extension library presented in [18], subroutines are provided
that collect pointers to patches containing the geometric structure of a single
level of refinement, and place them in an appropriate order in a separate array
of pointers. The order of pointers in this array makes the smoothing suited for
vectorised processing. Furthermore, in the vectorisable extension the original
subroutines that are called for each single patch to perform some numerical
action on the data, have been modified so they work on multiple patches. If
instead of Osher’s numerical flux, Van Leer’s numerical flux function is used,
(in both the vectorised and non-vectorised code) an overall speed-up of approx-
imately four is obtained.

5 SHOCK REFLECTION
5.1 The problem

In this section we consider a shock reflection problem. This is a gas dynamics
problem of a supersonic flow along a flat solid surface. The domain of definition
is @ ={(z,y) |0 <z <4,0 <y < 1}, and the flat surface is located at y = 0.
A shock is impinging from the point (0, 1), at an angle of 29° with the positive

56

direction. The boundary conditions for this solution are, at the inflow boundary
z = 0 given by

uly,
v

M
p

= 209,

Y

Y

oS O O O
R R =

(
(
(
(-

)

At the inflow boundary y = 1, the flow perpendicular to the horizontal bound-
ary is subsonic, and we impose three conditions. These are approximately given

by

w(z,1) = 0.90322141,
v(z,1) = —0.17459319,
M(z,1) = 2.37807192.

The boundary y = 0 is the solid wall, and we impose impermeability, given by
(w-n)l,_o =0,

where n is a normal on the boundary 95 and w = (u,v)? the velocity vector.
The shock is reflected at the solid wall, at an angle of about 23.279°. The exact
solution is known from simple gas dynamics shock relations. It is a piecewise
constant function. The impinging and reflected shocks form the discontinuities
of this function.

5.2 Refinement

The domain €2 is rectangular. The coarsest grid used, level zero, is a 6 X 2
grid. The basic level is I, = 1. Since away from the shock, the exact solution
is a constant function, for both, a first-order discretisation and a second-order
discretisation, the local discretisation error is zero, away from the shock. For an
adaptive computation, it is sufficient for this problem to use only the variation
of the solution as the refinement criterion. Hence, grids are refined based on
the first undivided difference of a component of the solution. According to
research on the use of undivided differences as a general refinement criterion,
it is found that of any component of the solution, the first undivided difference
of density gives best results ([4], [5]).

5.8 Results

For this problem, away from the shock, the discretisation yields equations with
local discretisation error equal to zero. The accuracy of the results will be
determined to a large extent by the resolution provided by the grid used.

57

5.3.1 First-order discretisation

The equations resulting from the first-order discretisation, are solved on an
adaptively refined grid. For the highest level L we take L =4, L =5 and L =6
respectively, to study the convergence behaviour. The number of multigrid FAS
iterations (V-cycles) for each refinement cycle is two. A cell is refined if the
absolute value of the first undivided difference in either z direction or y direction
exceeds 0.05. We consider refinements to have become obsolete if the absolute
value of the first undivided difference of density drops under 0.025. In Table. 5.1
the number of cells used are given for both the locally refined and the uniform

TABLE 5.1. Final number of cells used for shock reflection problem; first-order
discretisation.

locally refined uniform
composite | total | composite | total
1533 2040 3072 4092

3582 4772 12288 16380
7797 10392 49152 65532

o Ut |

grids with a highest level L = 45,6 respectively. Notice that the number
of cells approximately doubles, going from finest level L = L* to finest level
L = L* + 1. Figure 5.1 shows for L = 5 the grid obtained by local refinement

FIGURE 5.1. Grids and iso-lines of the Mach number for the shock reflection
problem on a locally refined and a uniform grid; first-order discretisation; L =

5.

o8

and the corresponding uniform grid, with iso-plots of the Mach number on both
the adaptive and non-adaptive grid respectively. In Figure 5.2 the convergence
histories of both the adaptive method and the method using uniform grids are
given. These figures show the logarithm of the mean of the four discrete L,
norms of the residual of the first-order discretisation, on the components of
X (), for all (4,4,1) € I. defined by (Aéyj)_l{NIl(ql; ¢ —rt é’j, versus the
logarithm of number of Newton iteration steps performed (i.e., the iteration
used in the point relaxation to relax the nonlinear system for each cell). Each
of the four norms is the discrete L; norm of a residual of the discretisation of
one of the conservation laws. For L = 6 the number of Newton iteration steps
to convergence up to machine precision for the adaptive method is about nine
times less than the number of iterations needed when a uniform grid is used,
while virtually the same solution is obtained (cf. Figure 5.1 and Figure 5.2).
For L = 5 the number of iterations for the adaptive method is about five times
less and for L = 3 this is about 2.5 times less.

5.8.2 Second-order discretisation

We use the second-order discretisation NIZI’ with the Van Albada limiter (cf. [24]),
and third-order accurate virtual states as defined in Chapter 2 of [26]. The re-
finement decision is the same as for the first-order discretisation. The number of
defect correction iterations in each refinement cycle is five. It appears that after
five defect correction cycles possible wiggles in the ‘initial’ solution have van-
ished. The final locally refined grid and iso-lines of Mach number for L = 5 are
shown in Figure 5.3 The number of cells for local refinement with this second-
order discretisation is given in Table 5.2. Notice that the number of cells for

TABLE 5.2. Final number of cells used for shock reflection problem; second-
order discretisation.

locally refined uniform
L | composite | total | composite | total
4 924 1228 3072 4092
5 2004 2668 12288 16380
6 4707 6272 49152 65532

all levels L = 4,5,6 is much smaller for the adaptive computation with the
second-order discretisation than for the computation with the first-order dis-
cretisation. For the second-order discretisation some extra refinements may be
introduced, apart from the refinements introduced by the refinement criterion
itself. These are introduced in order to let virtual states for the discretisation
on level [, depend only on the solution on levels [and [— 1.

Convergence histories for locally refined and uniform grids are given in Fig-
ure 5.4. This figure shows the logarithm of the mean of the four discrete L;
norms of the second-order discretisation on X.(Q), vs. the logarithm of the

59

FIGURE 5.2. Residual vs. amount of work: convergence histories for adaptively
refined and uniform grids; first-order discretisation; ¢: L =4; +: L = 5; 0: L =
6; : locally refined; — —: uniform.

60

FIGURE 5.3. Grid and iso-lines of the Mach number for the shock reflection
problem on a locally refined grid; second-order discretisation; L = 5.

FIGURE 5.4. Residual vs. amount of work: convergence histories for defect
correction and second-order discretisation on uniform and locally refined grids;
o:L=4; +: L =5; 0 L =6; : locally refined; — —: uniform.

61

TABLE 5.3. CPU-time required per Newton iteration step for the shock reflec-
tion problem.

adaptive-grid code uniform-grid

locally refined uniform code
FAS 0.96 ms/iter. | 0.93 ms/iter. | 0.84 ms/iter.
IDeC/FAS | 1.14 ms/iter. | 1.03 ms/iter. | 0.84 ms/iter.

number of Newton iteration steps. We did not consider L = 6 and a uniform
grid. This problem is so large that it causes the computer to start swapping
pieces of memory to disk, resulting in a very large processing time. Apparently,
the defect correction process does not converge for uniform grids. The reason
for this is possibly the following. On a uniform grid, with finest level L, many
more Fourier modes can be represented than on the refined grid with finest
level L. Especially low-frequency modes can be represented very well on the
uniform grid, better than on the locally refined grid. In [6] an amplification
factor g = 1 for low-frequency Fourier modes is found, in case of the linear con-
vection problem in two space dimensions. However, it should be stressed that
for this linear convection problem this high amplification factor corresponds to
functions that are constant in the characteristic direction of the problem.

The defect correction algorithm for the locally refined grids does converge.
For the second-order discretisation and defect correction, the discretisation on
a locally refined grid yields a more robust algorithm for this problem.

5.4 FExecution time

In order to get some idea of execution time, for this problem we give CPU-times
of our FORTRAN research code on an SGI IRIS INDIGO XS workstation. All
optimisation was done by the compiler. We give the average CPU-time it takes
for all operations of the local refinement computation, per Newton iteration
step. Note that the Newton iterations referenced here are local Newton itera-
tions, used in the point relaxations. The results are given in Table 5.3. This
table also shows the average CPU-time for another multigrid code, developed
to work with uniform grids only. This particular code, called EULERY, imple-
ments the same multigrid and defect correction algorithms as used in the code
for adaptive computations (cf. [14]). The FAS algorithm on a locally refined
grid appears to be only three percent more expensive per Newton iteration step
than on a uniform grid with the adaptive code. The iterative defect correction
for a locally refined grid appears to be about 18% more expensive per Newton
iteration step than iterative defect correction on a uniform grid. For the FAS
algorithm, the adaptive code with local grid refinement, appears to be about
14% more expensive per Newton iteration step, than the non-adaptive code
EULERY. For iterative defect correction, the adaptive-grid code is about 34%
more expensive per Newton iteration step than EULERT.

62

6 AIRFOIL FLOW

In this section we consider the transonic flow around the NACAQ012-airfoil.
The flow conditions at the far-field boundary are: My, = 0.8, angle of attack
a=1.25° ps = 1 and (u? +v%)s = 1. The computational domain extends to
about 100 chords to all sides.

As the second-order operator NIII’ we use the Van Albada limiter scheme [24],
[21] and, again, third-order accurate computation of virtual states (cf. Chapter
2 of [26] for details). The limiter scheme is used, since spurious wiggles in the
solution are expected if a second-order non-limiter scheme is used.

In the refinement criterion we use first undivided differences of the density, in
both streamwise direction and perpendicular to the stream line direction. Two
thresholds are used, one for each direction. This prevents the algorithm from
refining in the neighbourhood of a shock only. It allows the algorithm also to
find the contact discontinuity, and to resolve the expansion region. Then, we
not only get a good resolution of the shock, but also a good resolution of the
expansion, and this in turn is important for the accurate computation of the
lift and drag coefficients. The use of only one threshold value (i.e., the same
threshold for both criteria) would be inefficient for a small threshold value (too
many refinements) On the other hand, a larger threshold value only refines at
strong discontinuities.

The grid used is an O-type grid. The coarsest grid is a 5 x 8 grid. The
highest level is L = 5. The uniform grid for level [= 1 is shown in full and in
detail in Figure 6.1. A cell is refined if the first undivided difference of density

FIGURE 6.1. Uniform grid of level [= 1, around NACAO0012 airfoil.

in flow direction is larger than 0.02, or when this difference in the direction

63

perpendicular to the flow is larger than 0.004. The final adaptively refined
grid, with L = 5, is shown in Figure 6.2. In Figure 6.3 the Mach number

FIGURE 6.2. Locally refined grid with L = 5, around NACAQ012 airfoil.

FIGURE 6.3. Iso-line plots of the Mach number for the transonic flow around a
NACAOQ0012 airfoil; o = 1.25°; My, = 0.8; locally refined grid: L = 5; uniform
grid: L = 4.

64

FIGURE 6.4. Pressure distribution for adaptively refined and uniform grids for
transonic flow around a NACAO0012 airfoil; o = 1.25°; My, = 0.8; : lo-
cally refined grid, L = 5; — —: uniform grid, L = 4.

distributions are shown both for an adaptively refined and for a uniform grid.
The pressure distribution for the uniform grid and for the locally refined grid
are shown in Figure 6.4. For the lift and drag coefficient on the adaptively
generated composite grid we find ¢; = 0.3480, ¢4 = 0.0235. On the non-
adaptive grid we find ¢; = 0.3512 and ¢4 = 0.0235. The difference between
these values is less than 10% of the scatter found between different reference
results listed in [31]. This reference gives ¢; = 0.3632 and c¢q = 0.0230 obtained
on a grid of 20480 cells, by SCHMIDT and JAMESON [31]. The number of cells
on the adaptively generated composite grid is 7876 and a total number of 10488
cells was used in the computation. The non-adaptive grid uses 10240 cells on
the finest grid and a total number of cells of 13640. The convergence histories of
both the adaptive and non-adaptive case are shown in Figure 6.5. The adaptive
computation takes about three times less work than the computation on the
non-adaptive grid.

7 SPURIOUS ENTROPY GENERATION FOR SUBSONIC FLOW PAST A COMPRES-
SION CORNER

7.1 Introduction

In this section we study the numerical entropy generation for the steady, two di-

mensional Euler equations and a perfect gas. Numerical approximations of the

subsonic Euler flow along a compression corner show spurious entropy genera-

tion, which is virtually independent of the mesh size of the computational grid.

Sometimes, simple incompressible flow models are used to describe the flow in

65

FIGURE 6.5. Residual vs. amount of work: convergence histories of defect cor-
rection and second-order discretisation for NACAQ0012 airfoil flow; o = 1.25°;
Mo, = 0.8; locally refined grid: L = 5; uniform grid: L = 4.

the vicinity of geometric singularities, such as the compression corner shown in
Figure 7.1. The presumption that the velocity near the corner is small, is then
used to justify incompressible wedge flow as a model. The compressibility effect
is often accounted for by a correction, such as the Prandtl-Glauert rule. How-
ever, in [30] it is found analytically, using the hodograph transformation, that
even in a subsonic case the flow does not have to stagnate in the corner. Hence,
the use of an incompressible model to approximate the subsonic compressible
flow along a compression corner may be unrealistic, since for incompressible
models the corner is a stagnation point. Furthermore, the singularity in the
solution at the corner for compressible flow appears to be considerably more
complex than that for incompressible flow. Trying to remove the singularity
by postulating the same singularity as for incompressible potential flow (i.e.,
an inverse power of the distance to the corner) in the Euler model, has proved
to be unsuccessful (cf. [29] and [28]).

In a numerical method, discrete convergence of the solution may be obtained
by considering the compression corner as the limit of a smooth surface, which
is parametrised by the mesh width of the grid. However, convergence is slow.
This problem shows a way to use a local grid refinement technique as a tool to
approximate a singular solution. For the approximation of a singular solution,
the grid becomes singular too, for mesh width h; — 0. We use the solution-
adaptive grid refinement method to obtain reasonable discrete convergence,
without excessive computational cost.

66

FIGURE 7.1. Subsonic flow along a kinked wall.

7.2 The problem

A typical layout of the geometry of the problem at hand is shown in Figure 7.1,
and the corner with angle 6. We consider a flow problem which is known to
be ezxactly homentropic. As is well-known, in steady subsonic flow, the en-
tropy along a stream line is constant. Hence, a first requirement for obtaining
a homentropic flow is to impose a constant entropy at inflow in the domain.
Furthermore, at the inflow boundary the velocity vector is imposed. This veloc-
ity corresponds with that of an incompressible potential flow (i.e. irrotational)
along the surface, which is analytically known by conformal mapping. At out-
flow the corresponding pressure is imposed.

Boundary conditions are incorporated into the discretisation scheme in a way
which is consistent with the discretisation in the interior of the computational
domain (cf. [12]). In subsonic flows, this requires three boundary conditions
at inflow and one boundary condition at outflow. Notice that by just obeying
these numbers in subsonic flow computations, mathematical well-posedness is
not yet guaranteed. For a study of the mathematical well-posedness of some
typical subsonic outflow boundary conditions, we refer to [15].

The domain of definition is the area covered by the grid in Figure 7.2. With
the grid shown in Figure 7.2 and similar 16 x16 and 8 x8 grids, a straightforward
application of the discretisation gives for the entropy a result as shown in
Figure 7.3. This clearly shows that the entropy error is virtually independent
of the refinement of the grid.

7.8 Nature of the error

In [28] a number of possible causes for this behaviour are considered, in order
to make the nature of the zeroth-order error plausible.

First the local discretisation error is studied. In the discretisation an incon-
sistency is encountered, which is due to the kink in a grid as in Figure 7.2.
This inconsistency in the discretisation appears in equations derived for the
cells directly bordering the grid line emerging from the corner. It appears
from numerical experiments with the kinked grid and a smooth flow, that this
inconsistency has no adverse effect on the entropy error.

67

FIGURE 7.2. The uniform grid along a compression corner; 32 x 32.

FIGURE 7.3. The entropy error for the computation of the flow past a com-
pression corner; § = 10°; ¢: 8 x 8; o: 16 x 16; +: 32 x 32.

68

Secondly, the discretisation of the solid-wall boundary conditions are stud-
ied, again by numerical experiment. For this purpose, the wedge-shaped wall
is replaced by a continuously curved wall. The boundary conditions are discre-
tised identically as in the case of the wedge shaped wall. It appears that the
discretisation of the solid wall boundary conditions also has no adverse effect
on the entropy error.

From the experiments it becomes plausible that the singularity in the exact
solution itself causes the bad convergence behaviour.

7.4 Parametrised smooth wall

In this section we study the entropy error in the flow along a continuously
curved wall. The shape of the wall that we use, is given by

0, x < —%l,
yw(x) = ((’ﬂlz/zl)s - %(1#3/21)4) tans, —3l<az <1l (7.1)
x tan é, ll<a.

2

Here, [is the length of the curved part of the wall and ¢ the angle between the
positive & direction and the uncurved part of the wall at > 15l. The geometry
is shown in Figure 7.4. The wall is defined in such a way that y,, € C?[—1, cos §].

FIGURE 7.4. The flow along a continuously curved wall.

The grid used is shown in Fig 7.5. In Figure 7.6, for 6 = 10° and [= 1 the
entropy error along the wall is shown for the 32 x 32, 16 x 16 and 8 x 8 grid.
We find that the entropy error is first-order in mesh size as already mentioned
in Section 7.3.

In these results the length [of the continuously curved wall segment is the
same for all grids considered. Now we re-compute the flow along a continuously
curved wall (7.1), but we let [depend on the mesh size. We use | = O(hP),
p > 0, where h is the mesh width in the direction of the z axis. If p < o0, it is
clear that for h — 0 the curved wall degenerates into the wedge-shaped wall.
The results in Figure 7.3 and in Figure 7.6 can be considered as those for the

69

FIGURE 7.5. A grid along a continuously curved wall; 32 x 32

FIGURE 7.6. The entropy error for the computation of the flow past a contin-
uously curved wall; § = 10°; o: 8 x 8; o: 16 X 16; +: 32 x 32.

70

limit p = oo and p = 0, respectively. The number of cells N along the curved
part of the wall is

l

N = —.
h
Hence, with I = O(hP), we have
N = O(hP™1).

For p > 1 and in the limit h = 0, there would be only one grid line emerging
from the corner, and we arrive at a similar situation as for p = oo (i.e., zeroth-
order entropy error). Thus, looking for decreasing entropy errors for decreasing
mesh width, solving the problem of subsonic flow past a compression corner,
we must take 0 < p < 1. In Figure 7.7 the behaviour of the entropy error when

FIGURE 7.7. The order of discrete convergence; [= hP; § = 10°; ¢: computed
from 16 x 16 and 32 x 32 grids; o: computed from 32 x 32 and 64 x 64 grids.

l decreases as a function of h. Here, for | we take | = ¢; hP, with ¢; constant,
and for the entropy error we assume the form

S

= C2 hq,
Sref

_1‘

o0

¢y constant, and ||.||e a discrete supremum norm. From numerical experiments
with ¢; = 1, on a 16 x 16, a 32 x 32 and a 64 x 64 grid, g has been determined
as a function of p. As already shown, for p = 0 we find g approaches 1, as h
approaches 0.

We find that for a subsonic flow, the flow along a curved wall can be used to
successfully compute the flow along a compression corner. For p € (0,1), and

71

h — 0, the curved wall becomes kinked and the entropy error vanishes, because
for any p € (0,1) it appears that ||s/sref — 1||oc = O(R?), and ¢ > 0. If we
want to have the entropy error disappear at the same rate as [, then according
to Figure 7.7, we should take p = 0.4. In Figure 7.8 we give the entropy error

FIGURE 7.8. The entropy error for the computatrion of the flow past a contin-
uously curved wall; [= h%%; § = 10°; o: 16 x 16; 0: 32 x 32; +: 64 x 64.

distributions along the wall, as obtained for p = 0.4 on a 16 x 16, a 32 x 32
and a 64 x 64 grid. Given the rather low order of accuracy, ¢(p = 0.4) = 0.4,
reduction of the entropy error below some required tolerance level may become
expensive when applying uniform grid refinement. The remedy to this lies in
the application of local grid refinement. As an example, in Figure 7.9 we give
results obtained on a 32 x 32 grid and local refinements, with p = 0.4. The
entropy error is used in the refinement criterion. The criterion is based on
the discrete gradient of the entropy error in stream line direction (v - Vs)/|v|,
multiplied by the square root of the area of a cell, and with v the velocity
vector, s the entropy and V a discrete gradient operator. Figure 7.10 gives
the locally adapted grid for the result of Figure 7.9: the 32 x 32-grid with
four additional levels of local refinement is shown. Notice that for decreasing
mesh width, the refined regions get smaller and closer to the corner. Finally,
in Table 7.1, for the three grids considered in Figure 7.9 we give an impression
how the rounded corner converges to the kink for decreasing mesh width.

7.5 Concluding remarks

It is possible to remove the zeroth-order global discretisation error from the
numerical approximation of the subsonic Euler flow past a compression corner.

72

FIGURE 7.9. The entropy error for computation of flow past a continuously
curved wall with adaptively refined grids; [= h{*4; o: 32 x 32; 0: 32 x 32 with
two levels of refinement; +: 32 x 32 with four levels of refinement.

FIGURE 7.10. Adaptively refined grid; [= h{*; § = 10°; 32 x 32 grid, with
four levels of local refinement.

73

TABLE 7.1. Geometrical data for the adaptively refined grids, with [= k)4,
6 =10°.

grid l N
32 x 32 without local refinement 0.3299 5
32 x 32 with two levels of local refinement | 0.1895 12
32 x 32 with four levels of local refinement | 0.1088 28

Poor computational efficiency due to the rather low order of accuracy, may
be effectively circumvented by application of local, solution-adaptive grid re-
finement. Numerical results indicate that local refinement (combined with the
smooth discretisations of the kinked wall) is an alternative to reduce the error,
without increasing the computational effort excessively .

We found the paradoxical result that by making a sequence of geometrically
less accurate discretisations of the compression ramp, a numerical solution
of the flow with better error behaviour can be obtained. The less accurate
discretisations of the kinked wall employ discrete smooth versions of the exact
kinked wall. By making the discretisation of the geometry dependent on the
mesh size h, an O(h?), 0 < g < 1, entropy error can be obtained. For this
result, the grid has a singularity at the compression corner.

The solution-adaptive multigrid method appears to be a suitable tool for
detailed studies of other singular flow phenomena as well (cf. [17]).

REFERENCES

1. K. BOHMER, P.W. HEMKER, H.J. STETTER (1984). The defect correction
approach, Defect Correction Methods, Computing, Suppl. 5 (K. BOHMER
and H.J. STETTER, eds.), Springer Verlag, Wien, pp. 1-32.

2. A. BRANDT (1980). Multilevel adaptive computations in fluid dynamics,
ATAA J. 18 1165-1172.

3. (1982). Guide to multigrid development, Multigrid Methods, Lec-
ture Notes in Mathematics (W. HACKBUSCH and U. TROTTENBERG, eds.),
Springer-Verlag, pp. 220-312.

4. J.F. DANNENHOFFER (1987). III, Grid adaptation for complex two-
dimensional transonic flows, Ph.D. thesis, Massachusetts Institute of Tech-
nology.

(1989). Adaptive grid embedding for complex two-dimensional flows,
Adaptive Methods for Partial Differential Equations (Troy, 1988) (J.E.
FLAHERTY, P.J. PAsSLow, M.S. SHEPHARD, J.D. VASILAKIS, eds.), Rens-
selaer Polytechnique Institute, Society for Industrial and Applied Mathe-
matics, Philadelphia, pp. 68-82.

6. J.-A. DESIDERI (1990). Analysis of the convergence of iterative implicit and
defect-correction algorithms for hyperbolic problems, Report NM-R900/,
CWI.

74

7.

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

W. HACKBUSCH, (1985). Multi-Grid Methods and Applications, Springer
Series in Computational Mathematics, vol. 4, Springer-Verlag, Berlin.

W. HACKBUSCH, U. TROTTENBERG (eds.) (1986). Multigrid Methods
II, Proc. of the 2nd Furopean Conference on Multigrid Methods, held in
Cologne, 1985, Lecture Notes in Mathematics, vol. 1228, Cologne, 1985,
Springer-Verlag.

P.W. HEMKER (1986). Defect correction and higher order schemes for
the multi grid solution of the steady Euler equations, In HACKBUSCH and
TROTTENBERG [8], pp. 149-165.

(1990). On the order of prolongations and restrictions in multigrid
procedures, J. Comput. Appl. Math. 32, 423-429.

P.W. HEMKER, S.P. SPEKREIJSE (1985). Multigrid solutions of the steady
Euler equations, Advances in Multi-Grid Methods, Proc. conference held in
Oberwolfach, Notes on Numerical Fluid Mechanics, vol. 11 (Oberwolfach,
1984) (D. Braess, W. Hackbusch, and U. Trottenberg, eds.), Vieweg Braun-
schweig, pp. 33—44.

(1986) Multiple grid and Osher’s scheme for the efficient solution of
the steady Euler equations, Appl. Num. Math. 2, 475-493.

P.W. HEMKER, H.T.M. VAN DER MAAREL, C.T.H. EVERAARS (1990).
BASIS: A data structure for adaptive multigrid computations, Report NM-
R9014, CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands.

B. KOREN (1988). Defect correction and multigrid for the efficient and
accurate computation of airfoil flows, J. Comput. Phys. 77, 183—-206.
(1989). Euler flow solutions for transonic shock wave — boundary
layer interaction, Internat. J. Numer. Methods Fluids 9, 59-73.

(1990). Multigrid and Defect Correction for the Steady Navier-Stokes
Equations, Application to Aerodynamics, CWI, Amsterdam, CWI-tract 74.
B. KOREN H.T.M. VAN DER MAAREL (1992). On steady, inviscid shock
waves at continuously curved, convex surfaces, Report NM-R9202, CWI.
W.M. LIOEN M. LOUTER-NoOOL (1993). EUVEL: An EULER vector ex-
tension library, In preparation.

J.A. MICHELSEN (1991). Investigation of solution-derivative based adap-
tion criteria for inviscid supersonic flow over bump, Report Technical Uni-
versity of Denmark AFM Aero 0003-01-TUD.

K.G. PowELL, M.A. BEER, G.W. Law (1989). An adaptive embedded
mesh procedure for leading-edge vortex flows, ATAA Paper 89-0080.

S.P. SPEKREIJSE (1986). Multigrid solution of monotone second-order dis-
cretizations of hyperbolic conservation laws, Math. Comp. 49, 135-155.
(1986). Second order accurate upwind solutions of the 2D steady
Euler equations by the use of a defect correction method, In HACKBUSCH
and TROTTENBERG [8], pp. 285-300.

— (1988). Multigrid Solution of the Steady Euler Equations, CWI,
Amsterdam, CWI-tract 46.

G.D. vAN ALBADA, B. VAN LEER, W.W. ROBERTS (1982). A comparative
study of computational methods in cosmic gas dynamics, Astron. Astrophys.

75

25.

26.

27.

28.

29.
30.

31.

32.

108, 76-84.

H.T.M. VAN DER MAAREL (1992). Adaptive multigrid for the steady Euler
equations, Comm. Appl. Numer. Methods 8, 749-760.

— (1993). A local grid refinement method for the Euler equations,
Ph.D. thesis, University of Amsterdam.

H.T.M. vaAN DER MAAREL, P.W. HEMKER C.T.H. EVERAARS (1990).
EULER: An adaptive Euler code, CWI report NM-R9015.

H.T.M. vAN DER MAAREL, B. KOREN (1991). Spurious, zeroth-order en-
tropy generation along a kinked wall, Internat. J. Numer. Methods Fluids
13, 1113-1129.

A. VERHOFF (1991). Private communication.

A. VERHOFF, D. STOOKESBERRY, T. MICHAL (1991). Hodograph solution
for compressible flow past a corner and comparison with Euler numerical
predictions, Tech. Rep. MCAIR91-005, McDonnell Aircraft Company, Saint
Louis, MO.

H. VivianD (1985). Numerical solutions of two-dimensional reference test
cases, AGARD-AR-211, AGARD.

P. WESSELING (1991). An Introduction to Multigrid Methods, John Wiley
and Sons, Ltd., Chichester.

76

