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A locally re�ned multigrid method for solving the steady Euler equations of

gas dynamics is presented� The method makes use of grids in a locally nested

sequence� It is brie�y described and next applied to some steady Euler �ow

problems� The method appears to be more accurate and more e�cient than

the corresponding multigrid method that applies global re�nements only�

� Introduction

In this paper the adaptive multigrid method as developed at CWI during the
�rst phase of the BRITE�EURAM Area � project �contract no� AERO����	�
C
� is applied to the Euler equations of gas dynamics� The discretisations on
the various levels of re�nement introduce a set of nonlinear algebraic equations�
The method to solve the set of nonlinear algebraic equations is an application
of the nonlinear multigrid scheme� called full approximation storage �FAS
�
possibly embedded in the full multigrid �FMG
 algorithm or an iterative defect
correction �IDeC
 process� First� these algorithms are described for their use in
the present context of locally re�ned grids� After that� a strategy to introduce
local re�nements is described� In the experiments to follow� this strategy is used
in the grid�re�nement cycles� Next� some aspects of the implementation of a
local re�nement� multigrid method in a computer code are discussed� Finally�
a number of examples are presented� The problems chosen for the experiments
give an example of the possible range of application� where this method may be
used as a tool for analysis of �uid dynamics problems� The problems considered
are
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� shock re�ection on a �at surface�

� transonic �ow around an airfoil�

� spurious entropy in the subsonic �ow along a compression corner�

First we consider two standard test cases from numerical �uid dynamics to
validate the method and to get an idea of possible gain in e�ciency of the
local grid re�nement method with respect to the uniform grid cases� Then� a
problem is considered where the method is used to locally introduce a singular
grid� in order to approximately solve a problem which has a singular solution�
with su�cient accuracy�
In this chapter we also give CPU execution times for the speci�c implemen�

tation of the solution�adaptive� local grid re�nement code� run on a typical
present�day workstation� We compare these execution times with the execu�
tion times for an implementation for uniform grids only� that uses the same
multigrid and defect correction algorithms as the adaptive code �cf� Section �
�
Re�nement criteria used in all of these experiments are solely based on re�

quirements for the grid in order to provide �su�cient� resolution for the solution�
However� su�cient resolution for the solution does not necessarily imply su��
ciently small errors for the discrete approximation of the equations� If one is
only interested in the components of the solution itself of some problem and
not in any of its derivatives� then su�cient resolution depends solely on �rst�
order derivatives of solution components� Apart from �rst�order derivatives�
the local discretisation error usually also depends on higher�order derivatives�
Therefore� using only gradients of solution components in the re�nement crite�
rion may not be su�cient� The subject of local discretisation errors and their
a�posteriori estimation are considered in Chapter � of �����

� Multigrid and defect correction

��� Introductory remarks

The set of algebraic equations obtained by the discretisation introduced in
Chapter � of ����� is solved by point Gauss�Seidel relaxation� with multigrid
convergence acceleration� This particular multigrid procedure is an applica�
tion of the nonlinear multigrid scheme� called full approximation storage �	��
For the second�order discretisation this process is embedded in an iterative de�
fect correction process ���� ���� The implementation of the multigrid scheme is
directly based on the methods described in ����� ����� ����� ���� and ��	�� exten�
sively applied in ��	�� ���� and ����� Iterative defect correction is described in ���
and ��� and applied in ���� ����� ��	�� ���� and ����� The basic method inside the
iterative defect correction method� which is used to �approximately
 invert the
inaccurate discrete operator� is the nonlinear multigrid method�
In this section we give a brief description of the methods� and the slight mod�

i�cations to our application� The description is a summary of the description
presented in �����
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��� A locally nested sequence of discretisations

In order to use multigrid we have to specify grid transfer operators� The restric�

tion operators R
l
l�� and R

l
l�� and the prolongation operator P

l��
l are de�ned

such that �i
 a sequence of locally nested discretisations on the sequence of lo�
cally re�ned grids is obtained and such that �ii
 the coarse�grid equations �see
Chapter � of ����
 are satis�ed implicitly� A locally nested sequence of discreti�
sations fN lgl�������L of the di�erential operator N is obtained� by de�nition� if
a coarse�grid discrete operator N l� restricted to the re�ned cells� is a Galerkin
approximation of the �ne�grid discretisation� By de�nition� the restriction
Rl�l��N l� as an approximation to N l��� is called a Galerkin approximation if�

N l�ql� ql��

�l
i�j
�
�
Rl
l��N

l���P l��
l ql� ql


�l
i�j
� ��i� j� l
 � If �

The restriction operator for the solution� R
l

l�� 
 X
l����l��
 � X l��lf 
� is

de�ned by the operator which approximately takes the integral mean value�n
R
l

l��q
l��
ol
i�j
�
�

�

X
m�K�i�j�

ql��
m � ��i� j� l
 � If �

This restriction is second�order accurate� For the right�hand side a restriction

operator� Rl
l�� 
 Y

l��
��l��
� Y

l
��lf 
� is de�ned by�

Rl
l��r

l��
�l
i�j
�

X
m�K�i�j�

rl��
m � ��i� j� l
 � I lf � ����


The operator for the prolongation of a correction for the solution� P l��
l 


X
l
��l
� X

l��
��l��
� is de�ned by�

P l��
l ql

�l��

m
� qli�j � �m � K�i� j
 and ��i� j
 � I lf � ����


As shown in ��	�� ���� and ����� these restrictions and prolongation appear to
give very good multigrid performance �together with the point Guass�Seidel
relaxation
� The prolongation ����
 and restriction ����
 satisfy the multigrid
rule �cf� ���� ����� �	��


mp �mr � �m�

where mp is the order of accuracy of the interpolation used in the prolongation�
�for P l��

l this is O�hl

� mr the order of accuracy the restriction �for R
l
l�� this

is O�h�l 
� taking into account that R
l
l�� is a restriction in Y

l

 and �m the

order of the di�erential equation ��m � � for the Euler equations
� For the
given de�nitions of restrictions and prolongation� the set of �rst�order accurate
discrete equations� exclusive the equations involving a green boundary� form
a locally nested sequence of discretisations� �i�e�� the coarse�grid discretisation
is a Galerkin approximation of the �ne�grid discretisation
� The �rst�order
accurate reconstruction which uses �rst�order accurate computation of virtual
states �hence �rst�order weak consistency� cf� Chapter � of ����
� yields a locally
nested sequence�
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��� The FAS and FMG scheme

In the nonlinear multigrid algorithm FAS the equations for the �rst�order accu�
rate discretisation are solved� We identify the discrete operator with �rst�order
accuracy by N l

I� and with second�order accuracy by N
l
II� The set of equations

to be solved is then given by

N l
I�q

l� ql��
 � sl� ���	a


where the right�hand side sl is given by

sli�j �

�����
����

rli�j � �i� j� l
 � Ic�n
N l
I�R

l
l��q

l� ql��

ol
i�j

�
n
Rl
l��

�
N l��

I �ql��� ql
� sl��
�ol

i�j
� �i� j� l
 � If �

���	b


and where rli�j is de�ned by

rl � Rls� ����


Upon convergence of the nonlinear multigrid scheme� the solution of ���	
 sat�
is�es X

k�D

F l
i�j�k�q

l� ql��� � � � � qlb
sli�j�k � rli�j � ����


with appropriate de�nition of the numerical �ux F l
i�j�l and it satis�es

qli�j � fR
l

l��q
l��gli�j � ��i� j� l
 � If � ����


The collective� symmetric point Gauss�Seidel relaxation on each level of re�
�nement acts as a smoother in the FAS scheme� For each cell �li�j visited� the

state qli�j is updated� by iterating �through exact Newton iteration
 on the local

system fN l
I�q

l� ql��
gli�j � rli�j � solving for q
l
i�j � The residual tolerance for the

Newton iteration is taken such that in all but exceptional cases only one or
two iterations are performed� The cells on each level are visited in an order
which is equivalent to the usual lexicographical order� After a �rst relaxation
sweep has been done� another sweep is done in the reversed direction� This
smoother is shown to be very e�cient ����� in both subsonic and supersonic
Euler �ow computations� A FAS cycle� where all ql� l � �� � � � � L are improved�
is a recursive algorithm de�ned by the following steps


�� improve the solution ql by applying p pre�relaxations to ���	a
 for level
l� resulting in the approximate solution �ql
��

�� compute the right�hand side sl��� determined by ���	b
 for level l�

	� improve the solution ql�� by applying � FAS cycles to the equations ���	a

for level l � ��
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�� compute the correction of the solution� given by the di�erence of the
present coarse�grid solution and the coarse�grid restriction� dl�� � ql���

R
l��
l �ql
��

�� improve the solution ql by adding the prolongation of the coarse grid
correction� ql � �ql
� � P l

l��d
l���

�� improve the solution ql by applying q post�relaxation sweeps to the sys�
tem ���	a
 for level l�

The steps ��
���
 together are called the coarse grid correction� These steps
are skipped for level ��
The initial solution on the �nest level is obtained by application of nested

iteration �FMG
 ���� �	�� ���� For a level l � �� a cycle of the FMG scheme is
recursively de�ned as follows


�� if l � � initialise the solution q� with some �arbitrarily� chosen solution�

if l � � initialise the solution on level l with a prolongation P
l
l��q

l���

�� improve the solution on level l by application of � FAS cycles with level
l as highest level�

	� if level l is not the highest level� then apply the FMG iteration cycle with
a �nest level l � ��

Throughout the experiments presented in this chapter we use � � � �V �cycles
�
p � q � � �a single pre�relaxation and a single post�relaxation
 and � � � �a

single V�cycle� before starting on a higher level
� The prolongation P
l��

l used
in the FMG algorithm is bilinear interpolation�

��� Defect correction

The set of equations for second�order accuracy is solved� using iterative defect
correction ���� ���� The set of higher�order discretised equations on a level l� are
given by

N l
II�q

l� ql��
 � rl� ����


The IDeC algorithm solves these equations� by iteratively solving

N l
I�q

l� ql��
 � sl�

applying the FAS scheme� with a modi�cation to the right�hand side sl for the
equations for a cell of the composite grid� i�e� step ��
 of the FAS algorithm�
An initial solution for the IDeC process is obtained by application of the FAS
algorithm to ���	
� In the IDeC iteration the right�hand side sl depends on the
defect of the higher�order accurate equations through

�	
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In step ��
 of the FAS algorithm the right�hand side is computed by ����
�
Upon convergence of the IDeC scheme ����
� is satis�ed�
In ���� it is shown that one nonlinear multigrid cycle per defect correction

cycle is su�cient and most e�cient� In all our experiments we do the same and
use a single nonlinear multigrid cycle per defect correction cycle�
Before any local grid re�nement is introduced� the solution on a basic level lb

is approximately computed� This is done by application of the nested iteration
FMG� one or two FAS cycles to approximately solve the �rst�order accurate
discretisation and then a su�cient number of IDeC cycles� for second�order
accuracy�

� Refinement cycles

Solution�adaptive grid re�nement involves the grid to be re�ned at some stage
in the solution process� Based on an a�posteriori estimation of relevant quan�
tities appearing in the re�nement criterion� the grid is re�ned where these
quantities exceed a pre�set or solution�dependent threshold value� �cf� ���� �����
����
�
A computation with use of local grid re�nement starts with applying the

FMG algorithm and possibly subsequent iterative defect correction� so that
an approximate solution is obtained for the uniform grid on some basic level
lb� Introduction of local grid re�nements is accomplished by the following
re�nement algorithm� for l the highest level present


�� determine which cells on level l should be re�ned� or may be deleted
from the system� based on the re�nement criterion and an a�posteriori
estimation of the relevant quantities used in the re�nement criterion and
based on the requirement that a virtual state vli�j only depends on q

l and

ql���

�� decide whether a grid on level l � � should be created� call the �new

highest level� level L�

	� re�ne the grid and delete obsolete cells on all levels� from lb up to and
including level L� ��

�� initialise the approximate solution of the newly created re�nements by
application of the prolongation bPm��

m � for m � lb� � � � � L � � �similar to
the FMG algorithm
�
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�� improve the solution on all levels by application of � FAS ��rst�order dis�
cretisation
 or IDeC �second�order discretisation
 iterations on the com�
posite grid�

�� either apply a re�nement cycle on the new system� or solve the present
system of equations by a su�cient number of iterations�

The decision in step ��
 of the re�nement algorithm may be determined by the
answer to the question whether the grids on all currently present levels have
su�ciently converged� or whether the highest level allowed has already been
reached� Notice that for newly created cells� the re�nement cycle actually is an
application of the nested iteration algorithm FMG� introduced in the previous
section� For the prolongation eP l��

l a bilinear interpolation is used for all newly
created cells� In second�order computations� after initialisation of the solution
for newly created cells� defect correction is continued� without applying the
nonlinear multigrid scheme to the �rst�order accurate system ���	
 �rst� The
number of iterations � before a new re�nement cycle is started� step ��
 of the
re�nement algorithm� determines to a large extent the e�ciency of the adaptive
grid re�nement method� However� using an insu�cient number of iterations
in step ��
 may yield a grid too much distorted by the insu�ciently converged
numerical solution� as compared with the grid that would be obtained with a
converged solution� In practice� � � � or � � � for a �rst�order discretisation
appears to yield a grid virtually the same as the grid obtained by using a
fully converged solution� For a second�order discretisation � � � or � � � is
su�cient�

� Some aspects of implementation

In order to performmultigrid accelerated Euler �ow computations with solution�
dependent local grid re�nement� a computer code has been developed in portable
FORTRAN ��� This code consists of two modules� One module is called BA�
SIS� and is entirely devoted to set up and do maintenance on the data structure�
It is described in ��	�� The second part� called EULER� consists of all routines
related to the adaptive multigrid Euler �ow computations� This module is
described in ����� Recently some work has been done on vectorisation of this
code for a CRAY Y�MP� This resulted in an additional module� called EUVEL�
which is presented in �����
The data structure re�ects the quad�tree relations of the cells in the geometric

structure� The grid� made up by the geometric structure� is composed of so�
called patches � A patch consists of a corner point� and possibly a horizontal
wall� a vertical wall and a cell� If a patch contains a cell� su�cient neighbour
patches exist to provide the necessary edges and vertices� On the other hand�
each corner point� each edge and each cell of the geometric structure belongs
to some patch� All data in the structure are stored and referenced through
these patches� The patches in the data structure are also related in a quad�
tree structure� As a matter of fact� the tree of cells is a subtree of the tree of
patches�
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In the linked list that implements the quad�tree structure� nine pointers are
used for each patch� One pointer to the parent of a patch� four pointers to the
kid patches and four pointers to the neighbours of a patch� In the FORTRAN
implementation the use of pointers in the linked list is emulated by a large�
two dimensional array of type integer � Each patch has a unique number� For
each patch the patch numbers of its parent� its possible kids and its possible
neighbours are stored in a row of the integer array� Furthermore� for each patch
a set of properties is kept� which identify the type of the patch
 whether the
patch contains a cell� whether the horizontal wall or vertical wall is part of
the green boundary or the boundary of the domain� whether the cell contained
in the patch may be re�ned upon the earliest possible occasion� etc�� These
properties are stored in a two dimensional array of type logical � the column
identi�ed by the unique number of a patch and the row identi�ed by a speci�c
property� Finally� all real data for the numerical problem are kept in another
two dimensional array of type real � These data are also addressed through the
unique patch number� For each patch a total of �� real numbers are stored�
The data structure handled by BASIS has a much wider range of applications
than Euler �ow computations and than cell�centred discretisation schemes�
All actions on the data in the data structure are performed through a depth�

�rst traversal of the tree� The subroutines performing the necessary numerical
actions work by application of this tree traversal algorithm�
For each patch visited through this algorithm� a subroutine is called to per�

form some action on the data in the data structure� The quad�tree structure
and the use of such a traversal algorithm to perform any task� is very well
suited for the implementation of a multigrid algorithm with adaptive mesh re�
�nement� However� as noted in ����� automatic vectorisation �i�e�� vectorisation
by the compiler
 of a code of this nature does not gain any performance� There�
fore� in the vector extension library presented in ����� subroutines are provided
that collect pointers to patches containing the geometric structure of a single
level of re�nement� and place them in an appropriate order in a separate array
of pointers� The order of pointers in this array makes the smoothing suited for
vectorised processing� Furthermore� in the vectorisable extension the original
subroutines that are called for each single patch to perform some numerical
action on the data� have been modi�ed so they work on multiple patches� If
instead of Osher�s numerical �ux� Van Leer�s numerical �ux function is used�
�in both the vectorised and non�vectorised code
 an overall speed�up of approx�
imately four is obtained�

� Shock reflection

��� The problem

In this section we consider a shock re�ection problem� This is a gas dynamics
problem of a supersonic �ow along a �at solid surface� The domain of de�nition
is � � f�x� y
 j � � x � �� � � y � �g� and the �at surface is located at y � ��
A shock is impinging from the point ��� �
� at an angle of ��� with the positive x
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direction� The boundary conditions for this solution are� at the in�ow boundary
x � � given by

u��� y
 � ��

v��� y
 � ��

M��� y
 � ����

���� y
 � ��

At the in�ow boundary y � �� the �ow perpendicular to the horizontal bound�
ary is subsonic� and we impose three conditions� These are approximately given
by

u�x� �
 � ����	������

v�x� �
 � ��������	���

M�x� �
 � ��	��������

The boundary y � � is the solid wall� and we impose impermeability� given by

�w � n
jy�� � ��

where n is a normal on the boundary 	� and w � �u� v
T the velocity vector�
The shock is re�ected at the solid wall� at an angle of about �	������ The exact
solution is known from simple gas dynamics shock relations� It is a piecewise
constant function� The impinging and re�ected shocks form the discontinuities
of this function�

��� Re�nement

The domain � is rectangular� The coarsest grid used� level zero� is a � � �
grid� The basic level is lb � �� Since away from the shock� the exact solution
is a constant function� for both� a �rst�order discretisation and a second�order
discretisation� the local discretisation error is zero� away from the shock� For an
adaptive computation� it is su�cient for this problem to use only the variation
of the solution as the re�nement criterion� Hence� grids are re�ned based on
the �rst undivided di�erence of a component of the solution� According to
research on the use of undivided di�erences as a general re�nement criterion�
it is found that of any component of the solution� the �rst undivided di�erence
of density gives best results ����� ���
�

��� Results

For this problem� away from the shock� the discretisation yields equations with
local discretisation error equal to zero� The accuracy of the results will be
determined to a large extent by the resolution provided by the grid used�
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����� First	order discretisation

The equations resulting from the �rst�order discretisation� are solved on an
adaptively re�ned grid� For the highest level L we take L � �� L � � and L � �
respectively� to study the convergence behaviour� The number of multigrid FAS
iterations �V�cycles
 for each re�nement cycle is two� A cell is re�ned if the
absolute value of the �rst undivided di�erence in either x direction or y direction
exceeds ����� We consider re�nements to have become obsolete if the absolute
value of the �rst undivided di�erence of density drops under ������ In Table� ���
the number of cells used are given for both the locally re�ned and the uniform

Table ���� Final number of cells used for shock re�ection problem� �rst�order
discretisation�

locally re�ned uniform
L composite total composite total
� ��		 ���� 	��� ����
� 	��� ���� ����� ��	��
� ���� ��	�� ����� ���	�

grids with a highest level L � �� �� � respectively� Notice that the number
of cells approximately doubles� going from �nest level L � L� to �nest level
L � L� � �� Figure ��� shows for L � � the grid obtained by local re�nement

Figure ���� Grids and iso�lines of the Mach number for the shock re�ection
problem on a locally re�ned and a uniform grid� �rst�order discretisation� L �
��
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and the corresponding uniform grid� with iso�plots of the Mach number on both
the adaptive and non�adaptive grid respectively� In Figure ��� the convergence
histories of both the adaptive method and the method using uniform grids are
given� These �gures show the logarithm of the mean of the four discrete L�

norms of the residual of the �rst�order discretisation� on the components of
Xc��c
� for all �i� j� l
 � Ic de�ned by �A

l
i�j


��fN l
I�q

l� ql��
� rlgli�j � versus the

logarithm of number of Newton iteration steps performed �i�e�� the iteration
used in the point relaxation to relax the nonlinear system for each cell
� Each
of the four norms is the discrete L� norm of a residual of the discretisation of
one of the conservation laws� For L � � the number of Newton iteration steps
to convergence up to machine precision for the adaptive method is about nine
times less than the number of iterations needed when a uniform grid is used�
while virtually the same solution is obtained �cf� Figure ��� and Figure ���
�
For L � � the number of iterations for the adaptive method is about �ve times
less and for L � 	 this is about ��� times less�

����� Second	order discretisation

We use the second�order discretisationN l
II� with the Van Albada limiter �cf� ����
�

and third�order accurate virtual states as de�ned in Chapter � of ����� The re�
�nement decision is the same as for the �rst�order discretisation� The number of
defect correction iterations in each re�nement cycle is �ve� It appears that after
�ve defect correction cycles possible wiggles in the �initial� solution have van�
ished� The �nal locally re�ned grid and iso�lines of Mach number for L � � are
shown in Figure ��	 The number of cells for local re�nement with this second�
order discretisation is given in Table ���� Notice that the number of cells for

Table ���� Final number of cells used for shock re�ection problem� second�
order discretisation�

locally re�ned uniform
L composite total composite total
� ��� ���� 	��� ����
� ���� ���� ����� ��	��
� ���� ���� ����� ���	�

all levels L � �� �� � is much smaller for the adaptive computation with the
second�order discretisation than for the computation with the �rst�order dis�
cretisation� For the second�order discretisation some extra re�nements may be
introduced� apart from the re�nements introduced by the re�nement criterion
itself� These are introduced in order to let virtual states for the discretisation
on level l� depend only on the solution on levels l and l � ��
Convergence histories for locally re�ned and uniform grids are given in Fig�

ure ���� This �gure shows the logarithm of the mean of the four discrete L�

norms of the second�order discretisation on Xc��c
� vs� the logarithm of the
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Figure ���� Residual vs� amount of work
 convergence histories for adaptively
re�ned and uniform grids� �rst�order discretisation� 	
 L � �� �
 L � �� �
 L �
�� 
 locally re�ned� 
 uniform�
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Figure ���� Grid and iso�lines of the Mach number for the shock re�ection
problem on a locally re�ned grid� second�order discretisation� L � ��

Figure ���� Residual vs� amount of work
 convergence histories for defect
correction and second�order discretisation on uniform and locally re�ned grids�
	
 L � �� �
 L � �� �
 L � �� 
 locally re�ned� 
 uniform�
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Table ���� CPU�time required per Newton iteration step for the shock re�ec�
tion problem�

adaptive�grid code uniform�grid
locally re�ned uniform code

FAS ���� ms�iter� ���	 ms�iter� ���� ms�iter�
IDeC�FAS ���� ms�iter� ���	 ms�iter� ���� ms�iter�

number of Newton iteration steps� We did not consider L � � and a uniform
grid� This problem is so large that it causes the computer to start swapping
pieces of memory to disk� resulting in a very large processing time� Apparently�
the defect correction process does not converge for uniform grids� The reason
for this is possibly the following� On a uniform grid� with �nest level L� many
more Fourier modes can be represented than on the re�ned grid with �nest
level L� Especially low�frequency modes can be represented very well on the
uniform grid� better than on the locally re�ned grid� In ��� an ampli�cation
factor g 
 � for low�frequency Fourier modes is found� in case of the linear con�
vection problem in two space dimensions� However� it should be stressed that
for this linear convection problem this high ampli�cation factor corresponds to
functions that are constant in the characteristic direction of the problem�
The defect correction algorithm for the locally re�ned grids does converge�

For the second�order discretisation and defect correction� the discretisation on
a locally re�ned grid yields a more robust algorithm for this problem�

��� Execution time

In order to get some idea of execution time� for this problem we give CPU�times
of our FORTRAN research code on an SGI IRIS INDIGO XS workstation� All
optimisation was done by the compiler� We give the average CPU�time it takes
for all operations of the local re�nement computation� per Newton iteration
step� Note that the Newton iterations referenced here are local Newton itera�
tions� used in the point relaxations� The results are given in Table ��	� This
table also shows the average CPU�time for another multigrid code� developed
to work with uniform grids only� This particular code� called EULER�� imple�
ments the same multigrid and defect correction algorithms as used in the code
for adaptive computations �cf� ����
� The FAS algorithm on a locally re�ned
grid appears to be only three percent more expensive per Newton iteration step
than on a uniform grid with the adaptive code� The iterative defect correction
for a locally re�ned grid appears to be about �� more expensive per Newton
iteration step than iterative defect correction on a uniform grid� For the FAS
algorithm� the adaptive code with local grid re�nement� appears to be about
�� more expensive per Newton iteration step� than the non�adaptive code
EULER�� For iterative defect correction� the adaptive�grid code is about 	� 
more expensive per Newton iteration step than EULER��

��



� Airfoil flow

In this section we consider the transonic �ow around the NACA�����airfoil�
The �ow conditions at the far��eld boundary are
 M� � ���� angle of attack

 � ������ �� � � and �u

�� v�
� � �� The computational domain extends to
about ��� chords to all sides�
As the second�order operatorN l

II� we use the Van Albada limiter scheme �����

���� and� again� third�order accurate computation of virtual states �cf� Chapter
� of ���� for details
� The limiter scheme is used� since spurious wiggles in the
solution are expected if a second�order non�limiter scheme is used�
In the re�nement criterion we use �rst undivided di�erences of the density� in

both streamwise direction and perpendicular to the stream line direction� Two
thresholds are used� one for each direction� This prevents the algorithm from
re�ning in the neighbourhood of a shock only� It allows the algorithm also to
�nd the contact discontinuity� and to resolve the expansion region� Then� we
not only get a good resolution of the shock� but also a good resolution of the
expansion� and this in turn is important for the accurate computation of the
lift and drag coe�cients� The use of only one threshold value �i�e�� the same
threshold for both criteria
 would be ine�cient for a small threshold value �too
many re�nements
 On the other hand� a larger threshold value only re�nes at
strong discontinuities�
The grid used is an O�type grid� The coarsest grid is a � � � grid� The

highest level is L � �� The uniform grid for level l � � is shown in full and in
detail in Figure ���� A cell is re�ned if the �rst undivided di�erence of density

Figure ���� Uniform grid of level l � �� around NACA���� airfoil�

in �ow direction is larger than ����� or when this di�erence in the direction

�	



perpendicular to the �ow is larger than ������ The �nal adaptively re�ned
grid� with L � �� is shown in Figure ���� In Figure ��	 the Mach number

Figure ���� Locally re�ned grid with L � �� around NACA���� airfoil�

Figure ���� Iso�line plots of the Mach number for the transonic �ow around a
NACA���� airfoil� 
 � ������ M� � ���� locally re�ned grid
 L � �� uniform
grid
 L � ��

��



Figure ���� Pressure distribution for adaptively re�ned and uniform grids for
transonic �ow around a NACA���� airfoil� 
 � ������ M� � ���� 
 lo�
cally re�ned grid� L � �� 
 uniform grid� L � ��

distributions are shown both for an adaptively re�ned and for a uniform grid�
The pressure distribution for the uniform grid and for the locally re�ned grid
are shown in Figure ���� For the lift and drag coe�cient on the adaptively
generated composite grid we �nd cl � ��	���� cd � ����	�� On the non�
adaptive grid we �nd cl � ��	��� and cd � ����	�� The di�erence between
these values is less than �� of the scatter found between di�erent reference
results listed in �	��� This reference gives cl � ��	�	� and cd � ����	� obtained
on a grid of ����� cells� by Schmidt and Jameson �	��� The number of cells
on the adaptively generated composite grid is ���� and a total number of �����
cells was used in the computation� The non�adaptive grid uses ����� cells on
the �nest grid and a total number of cells of �	���� The convergence histories of
both the adaptive and non�adaptive case are shown in Figure ���� The adaptive
computation takes about three times less work than the computation on the
non�adaptive grid�

� Spurious entropy generation for subsonic flow past a compres	
sion corner


�� Introduction

In this section we study the numerical entropy generation for the steady� two di�
mensional Euler equations and a perfect gas� Numerical approximations of the
subsonic Euler �ow along a compression corner show spurious entropy genera�
tion� which is virtually independent of the mesh size of the computational grid�
Sometimes� simple incompressible �ow models are used to describe the �ow in

��



Figure ���� Residual vs� amount of work
 convergence histories of defect cor�
rection and second�order discretisation for NACA���� airfoil �ow� 
 � ������
M� � ���� locally re�ned grid
 L � �� uniform grid
 L � ��

the vicinity of geometric singularities� such as the compression corner shown in
Figure ���� The presumption that the velocity near the corner is small� is then
used to justify incompressible wedge �ow as a model� The compressibility e�ect
is often accounted for by a correction� such as the Prandtl�Glauert rule� How�
ever� in �	�� it is found analytically� using the hodograph transformation� that
even in a subsonic case the �ow does not have to stagnate in the corner� Hence�
the use of an incompressible model to approximate the subsonic compressible
�ow along a compression corner may be unrealistic� since for incompressible
models the corner is a stagnation point� Furthermore� the singularity in the
solution at the corner for compressible �ow appears to be considerably more
complex than that for incompressible �ow� Trying to remove the singularity
by postulating the same singularity as for incompressible potential �ow �i�e��
an inverse power of the distance to the corner
 in the Euler model� has proved
to be unsuccessful �cf� ���� and ����
�
In a numerical method� discrete convergence of the solution may be obtained

by considering the compression corner as the limit of a smooth surface� which
is parametrised by the mesh width of the grid� However� convergence is slow�
This problem shows a way to use a local grid re�nement technique as a tool to
approximate a singular solution� For the approximation of a singular solution�
the grid becomes singular too� for mesh width hl � �� We use the solution�
adaptive grid re�nement method to obtain reasonable discrete convergence�
without excessive computational cost�

��



Figure ���� Subsonic �ow along a kinked wall�


�� The problem

A typical layout of the geometry of the problem at hand is shown in Figure ����
and the corner with angle �� We consider a �ow problem which is known to
be exactly homentropic� As is well�known� in steady subsonic �ow� the en�
tropy along a stream line is constant� Hence� a �rst requirement for obtaining
a homentropic �ow is to impose a constant entropy at in�ow in the domain�
Furthermore� at the in�ow boundary the velocity vector is imposed� This veloc�
ity corresponds with that of an incompressible potential �ow �i�e� irrotational

along the surface� which is analytically known by conformal mapping� At out�
�ow the corresponding pressure is imposed�
Boundary conditions are incorporated into the discretisation scheme in a way

which is consistent with the discretisation in the interior of the computational
domain �cf� ����
� In subsonic �ows� this requires three boundary conditions
at in�ow and one boundary condition at out�ow� Notice that by just obeying
these numbers in subsonic �ow computations� mathematical well�posedness is
not yet guaranteed� For a study of the mathematical well�posedness of some
typical subsonic out�ow boundary conditions� we refer to �����
The domain of de�nition is the area covered by the grid in Figure ���� With

the grid shown in Figure ��� and similar ����� and ��� grids� a straightforward
application of the discretisation gives for the entropy a result as shown in
Figure ��	� This clearly shows that the entropy error is virtually independent
of the re�nement of the grid�


�� Nature of the error

In ���� a number of possible causes for this behaviour are considered� in order
to make the nature of the zeroth�order error plausible�
First the local discretisation error is studied� In the discretisation an incon�

sistency is encountered� which is due to the kink in a grid as in Figure ����
This inconsistency in the discretisation appears in equations derived for the
cells directly bordering the grid line emerging from the corner� It appears
from numerical experiments with the kinked grid and a smooth �ow� that this
inconsistency has no adverse e�ect on the entropy error�

��



Figure ���� The uniform grid along a compression corner� 	�� 	��

Figure ���� The entropy error for the computation of the �ow past a com�
pression corner� � � ���� 	
 �� �� �
 ��� ��� �
 	�� 	��

��



Secondly� the discretisation of the solid�wall boundary conditions are stud�
ied� again by numerical experiment� For this purpose� the wedge�shaped wall
is replaced by a continuously curved wall� The boundary conditions are discre�
tised identically as in the case of the wedge shaped wall� It appears that the
discretisation of the solid wall boundary conditions also has no adverse e�ect
on the entropy error�
From the experiments it becomes plausible that the singularity in the exact

solution itself causes the bad convergence behaviour�


�� Parametrised smooth wall

In this section we study the entropy error in the �ow along a continuously
curved wall� The shape of the wall that we use� is given by

yw�x
 �

���
��
�� x � � �

� l��
�x����l�

�

l� � �
�
�x����l�

�

l�

�
tan �� � �

� l � x � �
� l�

x tan �� �
� l � x�

����


Here� l is the length of the curved part of the wall and � the angle between the
positive x direction and the uncurved part of the wall at x � ���l� The geometry
is shown in Figure ���� The wall is de�ned in such a way that yw � C����� cos ���

Figure ���� The �ow along a continuously curved wall�

The grid used is shown in Fig ���� In Figure ���� for � � ��� and l � � the
entropy error along the wall is shown for the 	�� 	�� ��� �� and �� � grid�
We �nd that the entropy error is �rst�order in mesh size as already mentioned
in Section ��	�
In these results the length l of the continuously curved wall segment is the

same for all grids considered� Now we re�compute the �ow along a continuously
curved wall ����
� but we let l depend on the mesh size� We use l � O�hp
�
p � �� where h is the mesh width in the direction of the x axis� If p ��� it is
clear that for h � � the curved wall degenerates into the wedge�shaped wall�
The results in Figure ��	 and in Figure ��� can be considered as those for the

��



Figure ���� A grid along a continuously curved wall� 	�� 	�

Figure ���� The entropy error for the computation of the �ow past a contin�
uously curved wall� � � ���� 	
 �� �� �
 ��� ��� �
 	�� 	��
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limit p � � and p � �� respectively� The number of cells N along the curved
part of the wall is

N �
l

h
�

Hence� with l � O�hp
� we have

N � O�hp��
�

For p � � and in the limit h � �� there would be only one grid line emerging
from the corner� and we arrive at a similar situation as for p �� �i�e�� zeroth�
order entropy error
� Thus� looking for decreasing entropy errors for decreasing
mesh width� solving the problem of subsonic �ow past a compression corner�
we must take � � p � �� In Figure ��� the behaviour of the entropy error when

Figure ���� The order of discrete convergence� l � hp� � � ���� 	
 computed
from ��� �� and 	�� 	� grids� �
 computed from 	�� 	� and ��� �� grids�

l decreases as a function of h� Here� for l we take l � c�h
p� with c� constant�

and for the entropy error we assume the form				 s

sref
� �

				
�

� c�h
q �

c� constant� and k�k� a discrete supremum norm� From numerical experiments
with c� � �� on a ��� ��� a 	�� 	� and a ��� �� grid� q has been determined
as a function of p� As already shown� for p � � we �nd q approaches �� as h
approaches ��
We �nd that for a subsonic �ow� the �ow along a curved wall can be used to

successfully compute the �ow along a compression corner� For p � ��� �
� and

��



h� �� the curved wall becomes kinked and the entropy error vanishes� because
for any p � ��� �
 it appears that ks�sref � �k� � O�hq
� and q � �� If we
want to have the entropy error disappear at the same rate as l� then according
to Figure ���� we should take p 
 ���� In Figure ��� we give the entropy error

Figure ��
� The entropy error for the computatrion of the �ow past a contin�
uously curved wall� l � h���� � � ���� 	
 ��� ��� �
 	�� 	�� �
 ��� ���

distributions along the wall� as obtained for p � ��� on a �� � ��� a 	� � 	�
and a ��� �� grid� Given the rather low order of accuracy� q�p � ���
 
 ����
reduction of the entropy error below some required tolerance level may become
expensive when applying uniform grid re�nement� The remedy to this lies in
the application of local grid re�nement� As an example� in Figure ��� we give
results obtained on a 	� � 	� grid and local re�nements� with p � ���� The
entropy error is used in the re�nement criterion� The criterion is based on
the discrete gradient of the entropy error in stream line direction �v � rs
�jvj�
multiplied by the square root of the area of a cell� and with v the velocity
vector� s the entropy and r a discrete gradient operator� Figure ���� gives
the locally adapted grid for the result of Figure ���
 the 	� � 	��grid with
four additional levels of local re�nement is shown� Notice that for decreasing
mesh width� the re�ned regions get smaller and closer to the corner� Finally�
in Table ���� for the three grids considered in Figure ��� we give an impression
how the rounded corner converges to the kink for decreasing mesh width�


�� Concluding remarks

It is possible to remove the zeroth�order global discretisation error from the
numerical approximation of the subsonic Euler �ow past a compression corner�

��



Figure ���� The entropy error for computation of �ow past a continuously
curved wall with adaptively re�ned grids� l � h���l � 	
 	�� 	�� �
 	�� 	� with
two levels of re�nement� �
 	�� 	� with four levels of re�nement�

Figure ����� Adaptively re�ned grid� l � h���l � � � ��
�� 	� � 	� grid� with

four levels of local re�nement�
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Table ���� Geometrical data for the adaptively re�ned grids� with l � h���l �
� � ����

grid l N
	�� 	� without local re�nement ��	��� �
	�� 	� with two levels of local re�nement ������ ��
	�� 	� with four levels of local re�nement ������ ��

Poor computational e�ciency due to the rather low order of accuracy� may
be e�ectively circumvented by application of local� solution�adaptive grid re�
�nement� Numerical results indicate that local re�nement �combined with the
smooth discretisations of the kinked wall
 is an alternative to reduce the error�
without increasing the computational e�ort excessively �
We found the paradoxical result that by making a sequence of geometrically

less accurate discretisations of the compression ramp� a numerical solution
of the �ow with better error behaviour can be obtained� The less accurate
discretisations of the kinked wall employ discrete smooth versions of the exact
kinked wall� By making the discretisation of the geometry dependent on the
mesh size h� an O�hq
� � � q � �� entropy error can be obtained� For this
result� the grid has a singularity at the compression corner�
The solution�adaptive multigrid method appears to be a suitable tool for

detailed studies of other singular �ow phenomena as well �cf� ����
�
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