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This paper describes the results of a three year study on multidimensional
upwind fluctuation-splitting schemes for the Euler equations. It discusses
successively: (1) a multidimensional wave model allowing the decoupling of
the system in a number of scalar wave contributions suitable for applica-
tion of the scalar advection schemes; (2) a multidimensional conservative
Roe-linearization for the system of Euler equations in two space dimen-
sions; (3) multidimensional monotonic and high-resolution scalar advection
schemes on triangles; (4) optimal multi-stage schemes for the multidimen-
sional scalar advection operators; (5) a multigrid solver for the Euler system
on structured quadrilateral meshes, based on the optimal explicit smoothing
operators.

1 INTRODUCTION

The equations for inviscid non-heat-conducting flow, known as the Euler equa-
tions, form a hyperbolic system of conservation laws for mass, momentum and
energy, in which information travels along particular directions called char-
acteristics. It is well known, for instance, that in one-dimensional unsteady
subsonic flows, disturbances travel both upstream and downstream, whereas
they travel only downstream in supersonic flows. Recognizing the wave-like
nature of compressible flows was crucial to the development of the first suc-
cessful method for computing transonic flows [1]. Since then, the development
of numerical methods for solving the multidimensional Euler equations with
improved shock-capturing properties has been a very important research topic
in CFD. Two general methodologies have competed in the last decades, the
first one based on central differencing and artificial dissipation, the second one
relying on the concept of upwinding. This second method is favored by the au-
thors for its capability of somehow mimicking the physics of wave propagation
phenomena. Indeed, for the one-dimensional case, upwind methods based on
the solution of Riemann problems have reached a remarkable level of accuracy,
at a reasonable computational cost.



Extension to more than one dimension has been based mostly on directional
splitting, thereby misinterpreting the multidimensional physics of the flow. To
overcome this difficulty, truly multidimensional upwind methods have been
investigated.

A first approach, in the framework of Finite Volume methods, is based on
the concept of “rotated” Riemann solvers [2], for which informations are no
longer constrained to propagate in grid-normal directions, but in more physical
directions (flow, pressure gradient, etc.)

A second more general approach, followed in this work, is based on the con-
cept of “fluctuation-splitting”, and finds its natural application on cell-vertex
grids: the cell residuals are decomposed in a set of scalar waves, propagating in
solution-dependent directions, and each wave contribution is then distributed
to the cell vertices using newly-developed high-resolution advection schemes.

During the three-year research, the method has strongly improved in all spe-
cific areas relating to the basic methodology: new, more robust wave-models,
which allow the residual decomposition, have been devised; a conservative lin-
earization has been developed; new genuinely multidimensional schemes for
scalar advection equations have been discovered, which are both accurate and
monotonic; finally, optimally smoothing multi-stage schemes combined with
efficient multigrid procedures have been developed and implemented for scalar
advection equations and generalized to the Euler equations. This paper pro-
vides a global description of this research.

2 GOVERNING EQUATIONS

The 2D Euler equations in integral and divergence forms are given respectively
as:
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where U is the vector of conserved variables, F = F1, + GTy the flux vector

and ds an elementary normal along the contour 91, orientated towards the
exterior of the domain (2.
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p is the density of the gas, v and v are the z and y components of the velocity
vector 4, p is the static pressure, E the specific total energy and H = E+% the
specific total enthalpy. The system is closed by the Equation of State which in
the case of a perfect gas may be written:

p= (1= 1p( B - 5(u +0%))



v is the ratio of specific heats, ¢ = /vp/p is the speed of sound. Useful
expressions for the previous quantities are:
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Applying Gauss’s theorem to (2.1) and assuming (2 fixed in space, one obtains:
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from which the divergence form of the Euler equations is obtained:
U +F,+G, =0. (2.2)

Important properties characterizing the hyperbolic nature of the Euler system
can be derived from its quasi-linear form. In conservative variables, one has

OF oG
U, + <ﬁ> U, + <ﬁ> U, = 0. (2.3)

It is often easier to work with the so-called primitive variables. Defining V =

aU

u, v 7 as the vector of primitive variables, and P = %45 as the Jacobian
pa Y ’ p p ) BV
of the transformation, one obtains:

V:+ AV, +BV, =0, (2.4)
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where A =P 5U Pand B=P U P.

The Euler equations are hyperbolic so that the matrix C,,, = A cosf+B sin
has real eigenvalues for all values of 6, namely:

AL — i NA =it mte

where 7 = cos#1, + sin #T,. The corresponding right (column) and left (row)
eigenvectors, representing respectively an entropy wave, a shear wave, a “fast”
acoustic wave and a “slow” acoustic wave, are given by:
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The right eigenvectors in conservative variables are obtained from the trans-
formation [R] = P|r]:
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A simple wave solution of (2.4) is a solution of the form V. = V(W), where
W =W (z,y,t) is a scalar. For such a solution, one has:
dv oV dV oW
V=— — =
v dWVW’ ot  dW Ot

These, combined with (2.4), and defining 77 as the unit vector in the direction
of VW, VW =| VW | i, provide

ow dv
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which admits non-trivial solutions only if % is a right eigenvector of C,,, and

— WIW‘ % the corresponding eigenvalue, namely:
av 1 oW
=7 —_— =\ 2.6
aw ~ " VW | ot (26)
The last equation can be rewritten as a scalar advection equation:
ow
ot + Am - VW =0, (2.7)

where Xm, called the frontal speed, is defined as Xm = Am m. Equation (2.7)
has solutions of the form

W(z,y,t) =W(q), gq=azmg+ymy— Ant. (2.8)
Equation (2.6) can thus be rewritten as:
VV =rVW =ar m,
dW
dgq

where a = 27— represents the strength of the wave.

3 MULTIDIMENSIONAL UPWIND SCHEMES
3.1 Wave models

The first step in the construction of multidimensional upwind schemes is the
development of a wave model, which generalizes to 2D the eigenvector decom-
position used in all upwind methods for the 1D Euler equations. This idea
is explained in more detail in [3, 4, 5]. Multidimensional wave models have



already been proposed in 1986 following two independent approaches, one by
ROE [6] based on simple waves, and one by DECONINCK ET AL. [7] based on
characteristic theory. These models have been further refined. For lack of
space, only the simple wave approach is considered here.

As shown by ROE [6], a finite number of the above simple wave solutions
modeling elementary flow patterns, can be combined to match any variation
of the data. For example, in the case of a 6-wave model, one has in primitive
variables,

6
VV = Zakrkﬁik, (31)
k=1

and in conservative variables,

6
VU = ZakRk T_ﬁk (32)
k=1

Thus, the flux divergence can be decomposed as:

6
V-F=> aphRy. (3.3)
k=1

Notice that, contrary to the 1D case, this decomposition is not unique so that
different wave models can be chosen. The first two proposed by ROE [6] (models
A and B) consisted of a set of four acoustic waves, propagating normal to each
other, an entropy wave propagating in the direction of the entropy gradient,
and a measure of vorticity (model A) or shear, perpendicular to the velocity
(model B), to take care of rotational effects. During the first year of this project,
no satisfactory results were obtained using either model A or B. Therefore,
a variant (model C) was constructed [8], with the shear wave propagating
in the direction of the pressure gradient. In this model, the 6 waves chosen
are: 4 acoustic waves, with strengths aj, as, az, ay, propagating in directions
0,0+ 5,0+m,0+ 377“; 1 entropy wave, with strength as; = 8, propagating in the
direction ¢; 1 shear wave, with strength ag = o, propagating in the direction
of Vp. The expressions for the wave strengths and angles are:
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This model, as will be shown, allows good capturing of discontinuities, although
convergence down to machine zero is not achieved in most cases. To remedy the
problem, it was proposed to send the shear wave in the direction of the velocity
vector 4. This model, called here model E, was used in the first-order multigrid
computations [9], with convergence to machine zero in all cases. The reason is
that the direction of the shear wave does not depend on gradients, which are
much more sensitive to noise than the velocity direction and are ill-defined in
regions of uniform flows.

In the meantime, a new model (model D) was developed by ROE [10], for
which the shear wave is sent at 45° to the acoustic wave. Consequently, for an
isolated shock wave, the acoustic waves are found to propagate in the direc-
tions normal and parallel to the discontinuity and for an isolated shear layer,
the shear wave propagates in the direction normal to the discontinuity. Such a
model appears to be the most consistent with the multidimensional wave prop-
agation phenomena associated with the Euler equations and will be studied
further in the future. Some preliminary results are included in this paper.

R=

3.2 Conservative linearization, fluctuations and speeds
3.2.1 Conservative linearization

The multidimensional generalization of Roe’s original 1D Flux Difference Split-
ter [11] is an essential feature of the overall method, insofar as it allows the
use of quasi-linear forms while guaranteeing conservation. It was discovered
independently by Roe and members of the present team [3, 12, 13]. The main
ideas are summarized here.

A fundamental assumption is that of piecewise linear data. In 2D, linear ele-
ments are triangles. We thus consider triangular (unstructured or not) meshes,
with unknowns stored at the vertices, just as in linear Finite Elements. The
parameter vector Z = (\/p, /pu, /pv, \/pH )7 is assumed to vary linearly

over each triangle. Since o7 o7 and S are linear functions of Z, their in

tegrals over a triangle are easily obtained in terms of the average state Z over
the cell, Z = %[Zl + Zy + Zs], where indices 1,2, 3 denote the vertices of that
cell. One can define average gradients such as:

ST T ST T ST T



As a consequence of the previous assumption,
~ OF ~ oG
F. —Z, dQ = Z,, G, =|=— Z,,
ST // <8Z> Y < oZ > 7z
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From the equations above, one obtains:
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The linearization is conservative, namely:
Qouter

@) F.+G,- K%)ZUm ¥ <%>Zuy} .

The first statement characterizes the “telescopic property” of the residuals: the
only terms left after summation involve the outer boundaries of the domain.
The second statement shows that for each triangle the quasilinear form of the
flux divergence is an exact expression for the flux divergence.

For linearly varying Z the gradients of the primitive variables, needed to
compute the wave strengths and angles, see (3.1), can be computed exactly as:

=V (23;?(\@([ )
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L VRIHY (/p) — @V ((/pu) — 3V (y/pv) + V(/pH)]

The wave decomposition of the gradient of U at the average state Z,

v,
(ié) (56), %]
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combined with the conservative property stated above, gives an exact expres-
sion for the flux divergence:



bp=—¢ F-ds=-Sry ap\,Rip=) &k (3.4)
or k=1 k=1

3.2.2  Fluctuations and speeds

The residual in cell T has been split into 6 wave contributions. Each wave
is associated to an advection equation in a pseudo-characteristic variable ¥,
given by eq.(2.7) :

oWk =k _
+ A VIWFE =0,
ot m

where Wk(z,y,t) = ap(& - mg — Ak t) and VWF = agmiy. For each wave, one
can define the scalar fluctuation and the residual in conservative variables as:

ok —//T Xk LW O, (3.5)
®; = ¢ Ry (36)

-k
For the case of supersonic flow, the frontal speed A, may project the fluctuation
outside the domain of dependence, see Figure 3.1. This unphysical “behaviour”

can be cured by using the ray speeds Xk, given by:

Xe =, Xs =1, Ng=ii+cib. (3.7)

FIGURE 3.1. Acoustic ray and frontal speeds (soundspeed ¢ and Mach angle )

This is allowed thanks to the important property that the fluctuation is invari-

=

ant for any choice of A such that X, = (X - 1y )g:



k 3 ok T ok 3k Tk 3k =
¢ = —=S7A,, VW = =S X .-VW"* = —SpA, | VA’ %4 |: —STA},a.(3.8)

Therefore, for each wave, the fluctuation will be convected according to the
advection equation:
oWk
ot

-k _
+A -VIWF =o. (3.9)

Finally, the expression for the scalar fluctuation ¢% given by (3.8) can be
rewritten, using Gauss’ theorem, as:

3
R // X TWE a0 = 3 kv (3.10)
r i=1
where
1=k
ki= oA il (3.11)

and 7i; are the inward normals of the triangle T', scaled with the lengths of the
sides, as shown in Figure 3.2.

FIGURE 3.2. Generic triangle

3.8 Scalar advection schemes

For each wave, the residual ®% = ¢ARj, is split between the three nodes of
the triangle in an upwind manner: only the downstream node(s) receive(s) a
contribution. Note that from now onward, the average sign will be omitted for
convenience.

The accuracy and quality of the solution depends on: (1) the advection scheme;
(2) the quality of the grid, in particular for structured grids, the choice of the
diagonal subdividing each quadrilateral cell into two triangles; and (3) the
wave-model. Considerable research has been devoted to the study of multi-
dimensional scalar advection schemes [14, 15, 16]. A number of schemes has
been devised and three important properties have been identified: positivity,



linearity-preservation and continuity. A scheme is said to be positive if it pre-
serves monotonicity, and linearity-preserving if it preserves piecewise linear
solutions. For linear schemes, i.e., of the form Wi"‘l'1 = > e W}, where ¢, are
independent of the data, this last property was shown in [15] to be equivalent
to second-order accuracy on orthogonal Cartesian grids, based on a method
developed in [17]. Finally, a desirable property of a scheme is continuity of the
distribution, for continuously varying advection speed and gradients. An im-
portant theorem, generalizing Godunov’s theorem, states that a linear scheme
cannot be both positive (P) and linearity preserving (LP). This is the main
reason for studying non-linear schemes. In this paper, we limit ourselves to a
discussion of three continuous schemes:

1. the N scheme: optimal linear P scheme
2. the Low Diffusion A (LDA) scheme: linear LP scheme
3. the PSI scheme: non-linear P and LP scheme

Other non-linear schemes have been proposed by ROE in [18]. All schemes can
be written in the following form: for a given triangle T" and wave k, the residual
at node ¢ receives a contribution

Res; — Res; + ﬂfk% = Res; + vgkRk,

where ﬂgk are weighting coefficients such that ), ﬂZT’k = 1 for conservation
(3=, represents the summation over the three nodes of the triangle) and the
'yiTk sum up to the scalar fluctuation for the cell, (;5%

8.3.1 N scheme

This scheme, proposed by ROE in [19], is the optimal linear positive scheme.
In the case of the one-inflow triangle shown in figure 3.3, the upwind strategy
suggests sending all of the fluctuation to the unique downstream node Nj:

Res; — Ress + ®%.. (3.12)

For the two-inflow triangle shown in Figure 3.4, with downstream nodes Ny
and N, the fluctuation is split according to the decomposition of the advection
speed A along the sides of the triangles:

X=X+ X
For each component X,-, the triangle is a one-inflow triangle and (3.12) can be
used. The contributions to each node are:

Re51 — Re51 — kl(Wl — W3)Rk, (313)
R652 — R652 — k2(W2 — W3)Rk, (314)

where (W; — W3), for example, can be computed as VIV - N37\71. This scheme
can be cast into the single formula [20],

10



3

T max(0, k;) .
Yik = =5 [min(0, k;)(W; — Wj;)]. (3.15)
23:1 max(0, k;) ;
FIGURE 3.3. One-inflow case FIGURE 3.4. Two-inflow case: N

3.8.2 LDA scheme
This scheme is linear and LP (hence non-positive). For the two-inflow triangle,

the advection vector X divides the triangle into two sub-triangles. The splitting
is then based on the ratios of the areas of these triangles to the area of the
original one, see Figure 3.5. The coefficients 517:2 are thus given by:

Areagqs k1

T
— e 3.16
ﬂl AT@CL123 kg7 ( )
Area k
T 314 2
— 0t 22 3.17
ﬂ2 A?"ea123 k37 ( )

which sum up to one since ) . k; = 0. Again, this scheme can be cast into a
concise formula:

max(0, k;)

Tep = = — % (3.18)
Ej:l max(0, k;)

3.3.8 PSI scheme

The Positive Streamwise Invariant (PSI) scheme is a non-linear P and LP
scheme, which fulfills solution invariance along streamlines. Again, for one-
inflow triangles, the entire residual is sent to the downstream node. For two-
inflow triangles, the strategy is the following;:

1. if (N3N -17) (N3 Ny 1) > 0, the line of constant W through the upstream
node is outside [Ny, Na|, then apply the N scheme;

2. else, the line of constant W goes through [Ny, N3] as shown in Figure 3.6
and positivity constraints lead to the following one-target distributions:

11



o if ak(Ng_Nl )k = (Nz_Nl - VW)@% > 0, send everything to Ny,
e else, send everything to Ns.
A general formula for the downstream nodes (i = 1,2) is given by:
max (0, k;) min [0, (W; — Ws)¢k]
Yo7y [max(0,k;) min (0, (W; — W)ek)]

O

T _
Yi,k =

FIGURE 3.5. Two-inflow case: LDA FIGURE 3.6. Two-inflow case: PSI

3.4 General scheme and time-marching

The explicit forward Euler time-stepping scheme is described here as the sim-
plest iterative technique to obtain steady state. The optimal multi-stage time-
integration scheme used in the multigrid computations will be described in
Section 4.

The residual at each node is first computed by looping over all triangles. For
each triangle, the wave residuals are distributed according to the chosen scalar
advection scheme

Res; = Y > B, ®%, (3.19)
k

T

where ) refers to the summation over all triangles having 7 as common vertex.
The updating of the state vector U at node i is then given as:
At
Ut = U? — —Res;. (3.20)
Si
In this equation, S; is the area of the median dual cell around node i (equal
to one third of the area of all triangles having i as a vertex) and At the time-
step chosen with the following restriction, based on the worst case over all
waves [15]:

S

At < Atpax = —=————————.
- > max(0, kL)

(3.21)
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4  OPTIMAL EXPLICIT SMOOTHING FOR MULTIGRID ACCELERATION ON QUAD-
RILATERAL GRIDS

4.1  Motivation

The availability of vector and parallel processors and the use of local refinement
as a basic tool for obtaining high resolution results to complex flow problems
have increased the interest in using explicit schemes as smoothers in multi-
grid methods for the Euler equations, as an alternative to classical relaxation
schemes. Indeed, multigrid methods work also for hyperbolic problems for two
reasons: low frequency errors are convected out of the domain faster, thanks
to the increased numerical propagation speed resulting from the coarse grid
correction, and high frequency errors are eliminated by damping, thanks to the
dissipation always present in both central and upwind discretizations. There-
fore, it appears logical and worthwhile to extend the idea of optimizing the high
frequency damping properties of a multi-stage scheme [21] to the present frame-
work of genuinely multidimensional upwind schemes, as proposed in [22, 23, 24]
and brought to maturity in this paper.

4.2 Scalar advection
4.2.1 Space-time discretization

Consider the 2D linear advection equation

%:—)\-Vu:—a%—bg—zzfies(u), ﬁ ZAiy >0, a#0, (4.1)
defined in a bounded domain with prescribed initial conditions and Dirichlet
boundary conditions. The physical domain is divided (grid h) into m x n
rectangular cells AS;; with constant mesh-sizes Az and Ay and with the
unknowns located at each cell-vertex. Eq.(4.1) is firstly semi-discretized in
space, the associated semi-discrete equation being formally written as:

(3) =@, (42)

)

where L" is the spatial differencing operator defined on the grid h and applied at
point (7,7). As an example, consider the standard first-order-accurate upwind
(SU) scheme, in its finite difference formulation:

At @ = —KM [u(z,y,t)—u(m—Am,y,t)]—% [u(z,y,t)—u(z, y—Ay,t)].(4.3)
€ Yy

The time differencing operator in (4.2) is then analyzed by (Fourier) trans-
forming (4.3), as follows:

du vz
= z€C, V:max(l/m,uy):max<

aAt bAt (4.4)
- At ' '

Az’ Ay
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In (4.4), z = z(Bs,By, V) is proportional to the Fourier transform of L". 3,
and 3, are the spatial wave numbers in the two coordinate directions and o
is the convection angle, defined as ¥ = arctan(R) = arctan(v,/v,). For the
SU scheme, one has

z= (e_iﬂm - 1) +R (e_iﬂy - 1) . (4.5)
In the case of a general coordinate system (£,n), (4.1) is re-written as:

Ou - Ou - Ou

—=—A-VEO)—=—-(A-Vn)=— 4.6
and the definitions of v and R are generalized as:
v = max(vg,v,), R = min <ﬁ, V—") , Vg = X- VEAL, vy = X- VnAt. (4.7)
Vg Ve

The interest of the authors is focused in developing an efficient smoother for the
N scheme described previously in Section 3.3.1. When using a structured grid,
each quadrilateral cell has to be subdivided into two cells. Due to the degree of
freedom in the choice of the diagonal, different stencils can be obtained. It can
be shown that, for a linear equation on a uniform Cartesian grid, the N scheme
recovers the positive linear scheme with minimum cross-diffusion [17] if the
diagonal most aligned with the advection speed vector is used; alternatively,
the classical dimensionally-split SU scheme is obtained. Therefore, an optimal
diagonal choice can be performed in each cell, which allows in particular to
improve the resolution of discontinuities.

FIGURE 4.1. a) Equally-oriented grid; b) Isotropic grid

For the two configurations in Figure 4.1, the function z (8;, 8y, R) takes a differ-
ent form, depending on the shape of the grid and the direction of the advection
speed vector X, see [9] for details.

Finally, the time derivative of the ordinary differential equation (4.4) is dis-
cretized by the multi-stage explicit Runge-Kutta (RK) scheme

uw® = (4.8)
u(F) w4 vz Y k=1, 0, (4.9)
uttt = W, (4.10)

14



whose properties will be analyzed in the following.

4.2.2  Smoothing analysis

The amplification factor for the RK-scheme of (4.8-4.10) is the following poly-
nomial function of degree n

P,(z) =1+ corz(1 4 cnoqvz(...(1 4+ c1vz))). (4.11)

The n parameters ¢, k = 1,...,n—1 and v have to be chosen so as to maximize
the smoothing properties of the scheme, rather than satisfying its time accuracy,
since the interest is limited to steady state. Here, an equivalent and more
convenient expression is used for P,(z); if n is even, the RK-scheme can be
analyzed as a sequence of m predictor-corrector schemes, namely:

P,(z) = H(1+I/kz+ak1/,322), n =2m. (4.12)
k=1

Otherwise, if n is odd, one forward Euler step has to be added:
P.(2) = (1 + vms12) Pam(2), n=2m+ 1. (4.13)

As in the formulation (4.11), n coefficients — namely m parameters aj and
(m+p) parameters v; (p = n—2m) — have to be fixed. Consider a 1D equation,
for simplicity. The goal is to control the magnitude of the amplification factor
p = ||Pn(2)|| in the high frequency range [r/2,7], namely, to minimize its
maximum value o (smoothing factor). The complete mathematical formulation
of the minmax problem is the following:

Oopt = mMin max |P.(2(B8),a, D) |, (4.14)
a,v | Ber/2,n]

where & = (a1, ..., ) and 7 = (v1, ..., Vmyp). In [21], P,(2) was forced to have
m + p zeroes 3y  in the high frequency range and the problem was reduced to

Topt = TN [ max ||Pn(2(ﬁ),ﬁo)||] ; (4.15)
B |Ber/2m J
@ and 7 being expressed as functions of the vector 50 = (Bo,1,---» Bo,m+p)- The

simplified problem (4.15) is equivalent to (4.14) only in the case of first-order
upwind differencing. In all other cases, the solution of (4.15) does not produce
the optimal coefficients, although a satisfactory smoothing is achieved anyway,
see [22]. More importantly, the technique proposed in [21], using (4.15) as goal
function, cannot be extended to the 2D analysis, where a zero of p is a two-
component vector (8y.«,30,y)- For these reasons, a different and more general
approach is proposed using the original parameters a1, ..., Qm, Vi, -y Vmtp,
rather than Gy, ..., G...
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4.2.8 Optimization technique

Consider a first-order upwind 2m-stage scheme in one dimension: for such a
discrete operator, the square of the magnitude of the amplification factor p? has
no more than n 4+ 1 = 2m + 1 local extrema in [0, 7]. Two of them are located
respectively in 3 = 0 and 3 = 7, for symmetry. Since p?(3) is continuous
together with its derivatives, a minimum (maximum) is located between two
successive maxima (minima). Therefore the number of possible maxima in [0, 7]
is N =sup int[(n 4+ 1)/2] = m + 1. When considering only the high frequency
range [r/2,7], N is again m+1, since the boundary value p(3 = 7/2) has to
be included, while the value p(8 = 0) has to be excluded (similarly, for an odd
number of stages (n = 2m + 1), N = sup int[(n +1)/2] = m + 1). Incidentally,
in all numerical experiments, it has been found that the smoothing factor is
minimized when the number of maxima N,,4; in the high frequency range is
equal to V.

A simple gradient method is not well suited for solving (4.14), since the func-
tion o(d, V) is not differentiable when two or more maxima are equal: in fact,
small perturbations of @ and ¥ around this position, move the location of ¢
from one maximum to another. The present strategy aims at eliminating such
discontinuities before applying the gradient method. First consider the case
of a 2-stage scheme with Nyae = N = m + 1 = 2; under the equal excursion

principle, the two maxima M, and M; must be equal, namely:
Mo(a,v) = My (a,v) . (4.16)

In [21], the optimal 8y was calculated from the nonlinear Equation (4.16), thus
solving the minmax problem (4.15) directly. Here, (4.16) is used as a condition
for expressing « as a function of v. The fulfillment of (4.16) makes the function
o(a(v),v) = o(v) always differentiable with respect to v: in fact, the derivative
do(a(v),v)/dv is defined in the singular sub-domain o = a(v), determined by
(4.16), in which o coincides with either of the maxima. The smoothing factor
is then minimized by imposing the following condition, that completes the set
of two equations in the two unknowns «a and v,

do(a(v),v)

=0 (4.17)

It is noteworthy that using (4.17) is more appropriate than forcing a zero of
p [21], which does not guarantee the optimum. Eqgs.(4.16) and (4.17) can be
solved analytically for first-order upwind differencing. In a more general case,
a numerical approach is required: 1) a solution (a®,2%) with Nyax = N = 2
is guessed; 2) « is evaluated from (4.16) using the Newton-Raphson technique,
keeping v constant; in such a way, a new solution (a!,v! = 1), satisfying the
condition My = M; = o, is obtained; 3) the derivative d o/dv is evaluated
numerically, with a = a(v) calculated from (4.16) and the value of v is then
increased or decreased, always satisfying (4.16), depending on the sign of do/dv,
until the minimum is reached.
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Consider now the more general case of n stages and 1 < Nyaxy < N =
m + 1: the vector & can be decomposed as & = dgrad + o_z’max, where Ggraq =

(1, ey Qe Nmax+1:07 s 0) and @max = (0, ..., 0, Apm— Nanax+2 - Q). For Npax =
1, it results in @max = 0 and dgpeq = &, Whlle for Npax = N one has Amax = O

and dgred = 0. The Nmax maxima are again imposed to be equal:
My (8,7) = Mp_1(a,7), k=1,...,Nmnax — 1. (4.18)

This allows to express the (Nyax — 1) nonzero components of @yax as functions
of the remaining parameters. Finally, the first partial derivatives of the differ-
entiable function o (@max(@grad, 7) + Ggrad, V) = a(agmd, V) with respect to the
components of 7 and to the non-null components of dg,qq are set to zero:

0o (dgrad, V)
8I/k
80(&grad; 17)
8agrad,k

= 0, k=1,..,m+p, (4.19)
0, k=1,.,m— Npax +1. (4.20)

The numerical procedure described above is easily extended to the general case
of n stages and Npax < N: in the step 1), a solution (@°,7%) is guessed; step
2) consists in calculating dmayx from (4.18) by means of a Newton iteration: the

differences
Ry, = My — My, k=1,..,Npax — 1, (4.21)

are defined as the components of the residual vector R. Suppose that the

actual solution is (@, 7%); in the next gradlent step, the updated value @'t =

@ i+ Admay has to satisfy (4.18), that is, R=0. Starting from @40 = @

max’
the solution is updated as @5/, = @bi—1 + A& . the correction AaJ being

max ) max

calculated from the hnearlzed expressmn of R = 0:

A& =Rl (4.22)

The maxima My, k=0,1, ..., Nmax — 1, as well as the Jacobian matrix aR’i—l/
8ozmax, are evaluated numerlcally by a updated. The value @%J  is updated
until E = 0. Step 3) consists again in a classical gradient method: the partial
derivatives in (4.19) and (4.20) are continuous and are evaluated numerically
as well. Np.x is eventually updated at each gradient step.

The entire optimization procedure can be extended to the 2D case, keeping
in mind some very important recommendations: firstly, it appears from (4.5)
that the Fourier transform of L” depends on the CFL ratio R; therefore, the
smoothing properties of the scheme, as well as the corresponding optimal coef-
ficients and time step, will depend on R as well. In two dimensions, the domain
of definition of P,(z) is the square
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{8z € [0,7], By €[0,7]},

P,(z) being point symmetric with respect to the z and y axes, while the high
frequency region is defined as

{n/2< B <m B=max(Bs )} (4.23)

The smoothing factor must be defined in the domain determined by (4.23).
However, for R — 0, namely, when the advection direction is aligned with one
of the coordinate lines (in this case the & axis), one has z (8, =0, 8,) — 0, for
consistency, and therefore P,, — 1. No smoothing can be provided for the waves
Bz = 0; moreover, the attempt of minimizing the smoothing factor results in
a reduced stability of the scheme for all waves, since the entire amplification
factor field is raised up and even set to 1 in the extreme case R = 0. For a
genuinely 2D scheme, a similar situation occurs also for the waves 8, = 8,
when the advection involves only the diagonal grid points (R = 1). Such a
problem was already seen in [23], when considering a scalar advection equation,
and overcome by using an exact linearized advection speed and limiting the
domain of definition of . However, the first procedure cannot be extended to
the case of the Euler equations, see [24]. In conclusion, the domain of definition
of o must exclude the waves that produce a unitary amplification factor, for
consistency, namely:

{7/2< B <m B=max(Bs,By); B >0, By >0} (4.24)

In the case of schemes capable of convecting signals along the diagonal grid
points exactly, the frequency (8, = 7, 8y = m) must be excluded as well. Re-
ferring to the optimization procedure described above, the boundary maximum
is a local extreme on the line

{0<Be <7/2,By =72} U{Be =7/2,0 < By < 7/2}, (4.25)

whereas the interior maxima have to be searched in the restricted high fre-
quency domain defined by (4.24), see Figure 4.2. The coefficients used in the
Euler calculations are provided in [9, 24].

5 RESULTS

Solutions of a scalar advection equation are first computed for different schemes
and choices of the diagonals. Solutions of the Euler equations are then pre-
sented with emphasis on discontinuity-capturing and multigrid.

5.1 Results for scalar convection
The scalar advection equation

w4+ X-Vu =0

-

is considered, with constant speed X = 1, 1. The fluctuation over a cell,
(3.5), becomes:



FIGURE 4.2. High and low frequency Fourier domain
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The linear and non-linear schemes are tested on three different grids, parallel
(diagonals aligned with X), perpendicular (diagonals normal to X) and isotropic
(alternating diagonals), on the domain 0 < © < 1,0 < y < 1. Dirichlet bound-
ary conditions are imposed: © = 3.0 on y =0, u = 5.0 on z = 0. The state at
point (0,0) is set at the average state u = 4.0.

The N scheme captures the steady discontinuity exactly (in two rows of cells)
only for the parallel grid: in that case, all triangles are one-inflow and so
the entire residual (which is zero) is sent to the downstream node, thereby
preserving the exact steady state. For the perpendicular and isotropic grids,
the solution spreads: for the two-inflow triangles, the zero fluctuation is split
into two non-zero components and the exact solution is destroyed.

The LDA scheme preserves linear solutions; therefore, in the case of the parallel
and isotropic grids, for which the exact solution can be mapped linearly onto
the mesh, the solution is preserved. For the perpendicular grid, the solution
spreads, and a non-monotone profile is obtained.

The PSI scheme, like the LDA scheme, is linearity preserving. Therefore, it
preserves the exact steady solution on the parallel and isotropic grids. For the
perpendicular grid, the solution spreads though less than for the N scheme, and
contrary to the LDA scheme, a monotonic solution is obtained.

All schemes converge to machine zero with no difficulties.

5.2 Results for the Euler equations using simple time-stepping

In this section, the multidimensional schemes for the Euler equations are first
tested on non-smooth steady flows, which, in the case of inviscid compressible
flows, are either shock waves or slip lines. Particular attention is focused on the
ability of the fluctuation splitting schemes to resolve or “capture” the disconti-
nuities. A detailed study of a nonlinear scalar conservation law [25] is of great
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help in understanding the mechanism of wave splitting. The different scalar
advection schemes are tested and compared to one another on several test-
cases, involving normal and oblique shocks, shear layers, a jet interaction and
the transonic flow over an airfoil. The convergence properties of the schemes
are also assessed.

5.2.1 Normal and oblique shock

A normal shock is considered. States upstream and downstream of the shocks
are related by the Rankine-Hugoniot jump relations for normal shocks, which
in this case give for M; = 2.0, p; = 1.0 and p; = 1/v, My = 0.57,p2 =~ 2.66,
and p2 =4.5/7.

The discontinuity is taken aligned with the mesh, and periodic boundary con-
ditions are imposed. In this case, all triangles are one-inflow, for which the
one-target update formula is both positive and linearity preserving. Just as in
the scalar case, the profiles (not shown) contain three cells or two intermediate
states.

The next test-case is an oblique shock at 45° to the freestream flow, with a
deflection angle of about 14°, and upstream and downstream Mach numbers
M; =1.98 and M, = 1.45. Densities are respectively p; = 3.11 and p; = 5.29.
The N scheme and the PSI scheme are tested here on an isotropic grid, with
model C. The Mach number contours are plotted for each scheme. For the
N scheme, Figure 5.1 shows that the solution is spread over the grid. Con-
vergence stalls after a drop of about three orders of magnitude in the density
residual. In the case of the PSI scheme, the discontinuity is captured exactly,
with one intermediate state, as shown in Figure 5.2. Convergence is satisfac-
tory, with a drop of four orders of magnitude in the residual.

5.2.2  Shear aligned with the grid

A shear with a density jump is computed on an isotropic mesh. Conditions are
My = 2.6 and M3 =~ 4.8, p1 = 1.0 and p; = 2.0 and equal pressure across. The
PSI scheme was used with model C and D. Clearly, model C, which uses the
direction of the pressure gradient, ill-defined across a shear layer, is not robust
for such a case. Better results are obtained with model D, both in terms
of accuracy and convergence. Figure 5.3 shows the Mach number contours
obtained with model C: the discontinuity is found to spread a little. On the
contrary, it is kept perfectly with model D, as seen in Figure 5.4.

5.2.8 Jet interaction

In this section, the fluctuation splitting schemes are compared to a standard
finite volume scheme, Roe’s Flux Difference Splitting (FDS) scheme [11]. The
comparison is made on a test-case cited by Glaz and Wardlaw [26]: a pure
Riemann problem consisting in the interaction of two supersonic parallel jets,
for which an exact solution can be computed. The upper stream, denoted
(1), at conditions M7 = 4.0, p; = 0.50 and p; = 0.25; the lower stream,
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denoted (2), at conditions My = 2.4, po = 1.0 and ps = 1.0. The interaction
of the two jets produces a shock wave propagating in the low pressure region
and an expansion fan propagating in the high pressure region, with a contact
discontinuity in between.

Solutions were computed with the N and PSI schemes using model C, as well
as with a first and second-order FDS scheme. For the fluctuation splitting
schemes, the cell-vertex isotropic grid consists of 41 x 41 nodes, on the domain
[0,1] x [0, 1], corresponding to the 40 x 40 cell-centered mesh used in the FDS
calculations.

Density contours for the four different computations are plotted in Figures 5.5,
5.6, 5.7 and 5.8. It appears that the N scheme is better than the first-order
FDS scheme, but less accurate than the second-order one, whereas the PSI
scheme is comparable to the second-order FDS scheme.

Convergence stagnates after a drop of about 1.5 orders of magnitude in the
residual. As anticipated in Section 3.1, model C does not converge to machine
accuracy whenever there are regions of zero pressure gradient.

5.2.4 Transonic NACA 0012 airfoil

A transonic flow (M, = 0.85, angle of attack 1°) is computed around a NACA
0012 airfoil, on a structured O-type mesh with 128 x 32 nodes. The grid
with fixed diagonals is shown in Figure 5.9. The far-field is at 20 chords and
the far-field boundary conditions are not corrected with the required circula-
tion. The numerical solution is computed using model D and the nonlinear
PSI scheme. The Mach number contours are given in Figure 5.10, showing
well-defined shocks on both pressure and suction sides of the airfoil. Conver-
gence for the PSI scheme with model D stagnates after a residual drop of 3
orders of magnitude.

5.8 Multigrid results for the Euler equations

The smoother described in Section 4 is designed to work effectively in con-
junction with a multigrid method. Here, the well-known FMG FAS V-cycle
of BRANDT [27] is employed, with one pre- and one post-application of the
aforementioned three-stage Runge—Kutta smoother, at all levels. The choice
of the grid transfer operators is briefly outlined: the defect d;‘,j = —Res; ;
is computed at each grid point (7,j) of the mesh h and collected onto the
coarser grid H=2h using classical full-weighting. The coarse grid correction is
then transferred back to the finer grid by standard bilinear interpolation. This
solver, proven effective for scalar advection equations [24], is now applied to
Roe’s six wave decomposition model E using the first-order N scheme spatial
discretization described previously.

As shown before, the choice of the diagonal affects the accuracy of the N scheme,
also when used in conjunction with the multi-dimensional Euler solver. How-
ever, since the propagation direction is not unique in this case, the selected
diagonal cannot be optimal for all of the waves. Two strategies have been an-
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alyzed, namely: 1) since the wave with largest @* within a cell is the one that
locally dominates the flow behaviour, its propagation direction defines the op-
timal diagonal, as described before [28]; 2) in presence of shocks, the diagonal
more aligned with the discontinuity is selected [9].

Characteristic boundary conditions are imposed at subsonic inlet and outlet:
total enthalpy, entropy and flow angle are specified at inflow boundaries, while
the pressure is specified at outlet. At the wall, the equations are integrated
also in a row of auxiliary cells outside of the physical domain; the mirror-image
flow conditions are calculated by imposing impermeability and isentropic simple
radial equilibrium [9, 29]. The multigrid Euler solver has been tested versus
three subsonic, transonic [9] and supersonic [24] flow problems.

5.3.1 Subsonic and transonic GAMM channel

For the first two cases, the flow through the GAMM channel is calculated for
two different values of the inlet Mach number, using a 129 x 65 uniform non-
orthogonal isotropic grid. The iso-Mach lines for the subsonic case (M; = 0.6)
are shown in Figure 5.11. The solution is rather symmetric: the small shift at
the lower wall shows that a small amount of numerical dissipation is introduced
in the re-compression region. Convergence to machine zero is obtained, as well
as in the other two cases, see Figure 5.12, where the single- and the multi-
grid convergence histories are presented: the logarithm of the L'-norm of the
residual of the mass conservation equation is plotted versus the work, one
work unit being again defined as one single-stage residual calculation on
the finest grid. The FMG FAS V-cycle strategy discussed before has been
employed, the time step being unique for all waves and based on the fastest
one. Even without any characteristic time stepping, a considerable gain in work
is achieved. The reduction in the convergence rate, seen at R =~ —2.5, is due to
the well-known multigrid alignment phenomenon: error modes of low frequency
along the streamlines and high frequency in the transversal direction are created
near the lower wall and can be neither smoothed by the time integration, nor
convected out from the domain by the coarser grids. Semi-coarsening should
reduce such a problem.

Similar considerations apply to the solution of the transonic flow case (M; =
0.83) shown in Figure 5.13. A further decrease in the MG convergence rate is
experienced in this case (see Figure 5.14), since no extra-relaxations are applied
in the shock region.

5.8.2  Shock reflection on a flat wall

Finally, the well known shock-reflection problem has been considered, the
oblique shock impinging upon a flat plate at a 29 degree angle, see Figure 5.15,
where the solution obtained using a 193 x 65 uniform isotropic grid and the
N scheme is presented. The shock resolution is typical of a good first-order-
accurate genuinely multidimensional method and can be easily improved by
using the diagonal choice strategy described above, see Figure 5.17. Obviously,
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use of a non-linear scheme like the PSI leads to better shock resolution as seen
previously in Figures 5.1 and 5.2. Single grid and multigrid convergence his-
tories are shown in Figures 5.16 and 5.18: the single grid solution is rather
fast, thanks to the hyperbolic nature of the spatial problem; nevertheless, a
considerable reduction in work is achieved when using multigrid, in both cases.
The comparison between Figures 5.15 and 5.18 shows that no significant in-
crease in computational time [9] is required by the adaptive solver, in spite of
its improved shock resolution.

CONCLUSIONS

A major step forward in the development of multidimensional cell-vertex up-
wind schemes for hyperbolic conservation laws has been made during this
project. Wave models based on Roe’s simple wave decomposition have been
further developed and tested, providing a two-dimensional decomposition of
the flux divergence into scalar contributions. Contrary to grid-aligned decom-
positions, the models allow the recognition of shocks and shears for multidi-
mensional flow without reference to the grid.

Linear as well as non-linear scalar advection schemes have been further de-
veloped and successfully applied to each of the scalar wave contributions of
the Euler residual. The nonlinear PSI scheme is monotone and preserves lin-
ear solutions. It allows similar discontinuity-capturing properties as standard
high-resolution upwind schemes on much more compact stencils, involving only
direct neighbours. On structured grids, the choice of the diagonal for splitting
the quadrilaterals represents an additional degree of freedom to improve the
accuracy and discontinuity capturing. Such an automatic diagonal optimiza-
tion procedure has been devised and implemented with success.

A significant step towards the overall success of the methodology has been
made by devising a general conservative linearization of the Euler equations
over triangles. This allows the use of quasilinear expressions without any loss
of conservation.

The above developments have led to the first working Euler solver based on
fluctuation-splitting and simple wave modelling.

An explicit multi-stage smoother has been designed for general two-dimensional
advection operators. Its effectiveness has been firstly demonstrated in a multi-
grid code for scalar equations, using several genuinely multi-dimensional up-
wind schemes. Then, the explicit multigrid strategy has been extended to the
wave-decomposition of 2D Euler equations. A significant efficiency improve-
ment has been achieved in all cases analyzed.

The solver has been tested for a wide range of applications including shocks,
shears, airfoils and channels at subsonic, transonic and supersonic speeds. This
demonstrates the validity of the new concepts introduced which can be seen as
a major breakthrough in compressible Computational Fluid Dynamics.
Further work is still needed for improving the robustness of wave models when
used in combination with high-order schemes, and in the areas of linearization,
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boundary conditions and multigrid. Finally, extension to Navier-Stokes and 3
space dimensions has to be considered.

24



REFERENCES

1.

2.

3.

10.

11.

12.

13.

14.

15

E.M. MURMAN and J.D. CoLE (1971). Calculation of plane steady tran-
sonic flows. AIAA Journal, Vol. 9, pp. 114-121.

S.F. Davis (1984). A rotationally biased upwind difference scheme for the
Euler equations. Journal of Computational Physics, Vol. 56, pp. 65-92.

H. DECONINCK, P.L. ROE, and R. STRUIJS (1992). A Multi-dimensional
Generalization of Roe’s Flux Difference Splitter for the Euler Equations. 4¢"
Int. Symp on Computational Fluid Dynamics, July, 1991, to be published
in Computers and Fluids.

P.L. RoE (1992). Beyond the Riemann problem I. ICASE-LARC Work-
shop on ‘Alg. trends for the 90s’, Hampton, VA, September, 1991, to be
published by Springer.

H. DECONINCK (1992). Beyond the Riemann problem II. ICASE-LARC
Workshop on ‘Alg. trends for the 90s’, Hampton, VA, September, 1991, to
be published by Springer.

P.L. RoE (1986). Discrete Models for the numerical analysis of time-
dependent multidimensional gas dynamics. Journal of Computational
Physics, Vol. 63.

H. DECONINCK, CH. HIRSCH, and J. PEUTEMAN (1986). Characteristic
decomposition methods for the multidimensional Euler equations. Lecture
Notes in Physics, 264, Springer.

P. DE PaLma, H. DECONINCK, and R. STRUDIS (1990). Investigation
of Roe’s 2D Wave Decomposition Models for the Euler Equations. VKI
Technical Note 172, July.

L.A. CataLaNo, P. DE PaLma, and G. Pascazio (1992). A multi-
dimensional solution adaptive multigrid solver for the Euler equations. Proc.
13th International Conference on Numerical Methods in Fluid Dynamics,
Rome, July.

P.L. RoE and L. BEARD (1992). An improved wave model for multidimen-
sional upwinding of the Euler equations. Proc. 13th Int. Conf. on Numerical
Methods in Fluid Dynamics, Rome, July.

P.L. ROE (1981). Approximate Riemann Solvers, parameter vectors and
difference schemes. Journal of Computational Physics, Vol. 43, No.2, Oc-
tober.

R. StrunJs, H. DECONINCK, P. DE PaLmA, P.L. ROE, and K.G. Pow-
ELL (1991). Progress on Multidimensional Upwind Euler Solvers for Un-
structured Grids. ATAA-91-1550, June.

P.L. ROE, R. STrUWIS, and H. DECONINCK (1992). A conservative lin-
earization of the multidimensional Euler equations. J. Comp. Phys., to
appear.

R. STruwls, H. DECONINCK, and P.L. ROE (1990). Fluctuation Splitting
Schemes for multidimensional convection problems : an alternative to finite
volume and finite element methods. VKI LS 1990-03, Computational Fluid
Dynamics, March.

R. STruws, H. DECONINCK, and P.L. ROE (1991). Fluctuation Splitting

25



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Schemes for the 2D Euler Equations. VKI LS 1991-01, Computational Fluid
Dynamics, February.

H. DeEcoNINCK, K.G. POWELL, P.L. ROE, and R. STRULJS (1991). Multi-
dimensional Schemes for Scalar Advection. AIAA-91-1532-CP, May.

CH. HirscH (1991). Compact schemes for two-dimensional convection
problems. VKI LS 91-01, Computational Fluid Dynamics.

P.L. ROE (1990). “Optimum” upwind advection on a triangular mesh.
ICASE Report No. 90-75.

P.L. RoOE (1987). Linear advection schemes on triangular meshes. CoA
Report No. 8720, Cranfield Institute of Technology, November.

H. DECONINCK, R. STRUIJS, G. BouRGoI1s, H. PAILLERE, and P.L. ROE
(1992). Multidimensional upwind methods for unstructured grids. Agard
R-787, May.

B. vAN LEER, C-H. Tal, and K.G. POWELL (1989). Design of optimally
smoothing multi-stage schemes for the Euler equations. AIAA Paper 89-
1933-CP.

L.A. CATALANO and H. DECONINCK (1991). Two-dimensional optimiza-
tion of smoothing properties of multistage schemes applied to hyperbolic
equations. TN-173, von Karman Institute, Belgium, 1990 also Multigrid
Methods: special topics and applications II, GMD-Studien No. 189, GMD
St. Augustin, Germany, pp. 43-55.

L.A. CaTALANO, M. NAPOLITANO, and H. DECONINCK (1992). Optimal
multi-stage schemes for multigrid smoothing of two-dimensional advection
operators. Communications in Applied Numerical Methods, 8, pp. 785-795.
L.A. CatavaNo, P. DE PAaLMA, and M. NAPOLITANO (1992). Explicit
multigrid smoothing for multidimensional upwinding of the Euler equations.
NNFM, 35, Vieweg, Braunschweig, pp. 69-78.

H. DECONINCK, H. PAILLERE, R. STRULJS, and P.L. ROE (1993). Mul-
tidimensional upwind schemes based on fluctuation-splitting for systems of
conservation laws. Journal of Computational Mechanics, to appear.

H.M. GrLaZ and A.B WARDLAW (1985). A high-order Godunov scheme for
steady supersonic gas dynamics. Journal of Computational Physics, Vol.
58, No.2, pp. 157-187, April.

A. BRANDT (1982). Guide to multigrid development. Lecture Notes in
Mathematics, 960, pp. 220-312, Springer Verlag, Berlin.

G. Pascazio and H. DECONINCK (1991). Multidimensional upwind scheme
for the Euler equations on quadrilateral grids. VKI-PR 1991-15, Belgium.
A. DADONE (1992). A numerical technique to compute Euler flows at
impermeable boundaries based on physical considerations. 4th Int. Conf.
on Hyperbolic Problems, Taormina, Italy.

26



FiGURE 5.1. Oblique shock: N FIGURE 5.2. Oblique shock: PSI

FIGURE 5.3. Shear: PSI/model C FIGURE 5.4. Shear: PSI/model D

FIGURE 5.5. Jet: N/model C FIGURE 5.6. Jet: Roe 15tO
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FIGURE 5.7. Jet :PSI/model C

FIGURE 5.9. NACA airfoil: struc-
tured mesh (128 x 32 O-mesh)

FIGURE 5.11. Subsonic channel:
Mach contours - N/model E

FIGURE 5.8. Jet: Roe 2¢O

FIGURE 5.10. NACA airfoil: Mach
contours - PSI/model D

FIGURE 5.12. Subsonic channel:

convergence histories
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FIGURE 5.13. Transonic channel:
Mach contours - N/model E

FIGURE 5.15. Shock reflec-
tion: Mach contours - N/model E
(isotropic grid)

FIGURE 5.17.  Shock reflection:
Mach contours - N/model E (grid
with adapted diagonals)

FIGURE 5.14. Transonic channel:
convergence histories

FicUurRE 5.16.  Shock reflection:
convergence histories (isotropic

grid)

Shock reflection:
(grid with

FIGURE 5.18.
convergence histories
adapted diagonals)
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