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This paper describes the results of a three year study on multidimensional
upwind �uctuation�splitting schemes for the Euler equations� It discusses
successively� ��� a multidimensional wave model allowing the decoupling of
the system in a number of scalar wave contributions suitable for applica�
tion of the scalar advection schemes	 �
� a multidimensional conservative
Roe�linearization for the system of Euler equations in two space dimen�
sions	 ��� multidimensional monotonic and high�resolution scalar advection
schemes on triangles	 ��� optimal multi�stage schemes for the multidimen�
sional scalar advection operators	 �� a multigrid solver for the Euler system
on structured quadrilateral meshes� based on the optimal explicit smoothing
operators�

� Introduction

The equations for inviscid non�heat�conducting �ow� known as the Euler equa�
tions� form a hyperbolic system of conservation laws for mass� momentum and
energy� in which information travels along particular directions called char�
acteristics� It is well known� for instance� that in one�dimensional unsteady
subsonic �ows� disturbances travel both upstream and downstream� whereas
they travel only downstream in supersonic �ows� Recognizing the wave�like
nature of compressible �ows was crucial to the development of the �rst suc�
cessful method for computing transonic �ows ��	� Since then� the development
of numerical methods for solving the multidimensional Euler equations with
improved shock�capturing properties has been a very important research topic
in CFD� Two general methodologies have competed in the last decades� the
�rst one based on central di
erencing and arti�cial dissipation� the second one
relying on the concept of upwinding� This second method is favored by the au�
thors for its capability of somehow mimicking the physics of wave propagation
phenomena� Indeed� for the one�dimensional case� upwind methods based on
the solution of Riemann problems have reached a remarkable level of accuracy�
at a reasonable computational cost�
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Extension to more than one dimension has been based mostly on directional
splitting� thereby misinterpreting the multidimensional physics of the �ow� To
overcome this di�culty� truly multidimensional upwind methods have been
investigated�
A �rst approach� in the framework of Finite Volume methods� is based on

the concept of �rotated Riemann solvers ��	� for which informations are no
longer constrained to propagate in grid�normal directions� but in more physical
directions ��ow� pressure gradient� etc��
A second more general approach� followed in this work� is based on the con�

cept of ��uctuation�splitting� and �nds its natural application on cell�vertex
grids� the cell residuals are decomposed in a set of scalar waves� propagating in
solution�dependent directions� and each wave contribution is then distributed
to the cell vertices using newly�developed high�resolution advection schemes�
During the three�year research� the method has strongly improved in all spe�

ci�c areas relating to the basic methodology� new� more robust wave�models�
which allow the residual decomposition� have been devised� a conservative lin�
earization has been developed� new genuinely multidimensional schemes for
scalar advection equations have been discovered� which are both accurate and
monotonic� �nally� optimally smoothing multi�stage schemes combined with
e�cient multigrid procedures have been developed and implemented for scalar
advection equations and generalized to the Euler equations� This paper pro�
vides a global description of this research�

� Governing equations

The �D Euler equations in integral and divergence forms are given respectively
as�
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where U is the vector of conserved variables� F � F��x � G��y the �ux vector
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� is the density of the gas� u and v are the x and y components of the velocity
vector �u� p is the static pressure� E the speci�c total energy and H � E� p

�
the

speci�c total enthalpy� The system is closed by the Equation of State which in
the case of a perfect gas may be written�
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� is the ratio of speci�c heats� c �
p
�p�� is the speed of sound� Useful

expressions for the previous quantities are�
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Applying Gauss�s theorem to ����� and assuming � �xed in space� one obtains�ZZ
�

�Ut �r � F � d� � �

from which the divergence form of the Euler equations is obtained�

Ut �Fx �Gy � �� �����

Important properties characterizing the hyperbolic nature of the Euler system
can be derived from its quasi�linear form� In conservative variables� one has
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It is often easier to work with the so�called primitive variables� De�ning V �

��� u� v� p �� as the vector of primitive variables� and P � �U

�V
as the Jacobian

of the transformation� one obtains�
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The Euler equations are hyperbolic so that the matrix Cm � A cos ��B sin �
has real eigenvalues for all values of �� namely�

	���m � �u � �m 	���m � �u � �m� c

where �m � cos ���x � sin ���y� The corresponding right �column� and left �row�
eigenvectors� representing respectively an entropy wave� a shear wave� a �fast
acoustic wave and a �slow acoustic wave� are given by�
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The right eigenvectors in conservative variables are obtained from the trans�
formation �R	 � P�r	�

�R	 �

�
���	

� � ��c ��c
u �� sin � ��u� �c cos ���c ��u� �c cos ���c
v � cos � ��v � �c sin ���c ��v � �c sin ���c

u� � v�

�
���u sin � � v cos �� ��H � �c�u � �m��c ��H � �c�u � �m��c
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A simple wave solution of ����� is a solution of the form V � V�W �� where
W �W �x� y� t� is a scalar� For such a solution� one has�
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rW�

�V

�t
�

dV

dW

�W

�t
�

These� combined with ������ and de�ning �m as the unit vector in the direction
of rW � rW �j rW j �m� provide
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which admits non�trivial solutions only if dV
dW

is a right eigenvector of Cm� and

� �
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the corresponding eigenvalue� namely�
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The last equation can be rewritten as a scalar advection equation�

�W

�t
� �	m � rW � �� �����

where �	m� called the frontal speed� is de�ned as �	m � 	m �m� Equation �����
has solutions of the form

W �x� y� t� �W �q�� q � xmx � ymy � 	mt� �����

Equation ����� can thus be rewritten as�

rV � rrW � 
 r �m�

where 
 � dW
dq

represents the strength of the wave�

� Multidimensional upwind schemes

��� Wave models

The �rst step in the construction of multidimensional upwind schemes is the
development of a wave model� which generalizes to �D the eigenvector decom�
position used in all upwind methods for the �D Euler equations� This idea
is explained in more detail in ��� �� �	� Multidimensional wave models have

�



already been proposed in ���� following two independent approaches� one by
Roe ��	 based on simple waves� and one by Deconinck et al� ��	 based on
characteristic theory� These models have been further re�ned� For lack of
space� only the simple wave approach is considered here�
As shown by Roe ��	� a �nite number of the above simple wave solutions

modeling elementary �ow patterns� can be combined to match any variation
of the data� For example� in the case of a ��wave model� one has in primitive
variables�

rV �

�X
k��


krk �mk� �����

and in conservative variables�
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kRk �mk� �����

Thus� the �ux divergence can be decomposed as�
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k��


k	
k
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Notice that� contrary to the �D case� this decomposition is not unique so that
di
erent wave models can be chosen� The �rst two proposed byRoe ��	 �models
A and B� consisted of a set of four acoustic waves� propagating normal to each
other� an entropy wave propagating in the direction of the entropy gradient�
and a measure of vorticity �model A� or shear� perpendicular to the velocity
�model B�� to take care of rotational e
ects� During the �rst year of this project�
no satisfactory results were obtained using either model A or B� Therefore�
a variant �model C� was constructed ��	� with the shear wave propagating
in the direction of the pressure gradient� In this model� the � waves chosen
are� � acoustic waves� with strengths 
�� 
�� 
�� 
�� propagating in directions
�� �� �

� � ���� �� ��
� � � entropy wave� with strength 
� � �� propagating in the

direction � � shear wave� with strength 
� � �� propagating in the direction
of rp� The expressions for the wave strengths and angles are�
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where R is de�ned as
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This model� as will be shown� allows good capturing of discontinuities� although
convergence down to machine zero is not achieved in most cases� To remedy the
problem� it was proposed to send the shear wave in the direction of the velocity
vector �u� This model� called here model E� was used in the �rst�order multigrid
computations ��	� with convergence to machine zero in all cases� The reason is
that the direction of the shear wave does not depend on gradients� which are
much more sensitive to noise than the velocity direction and are ill�de�ned in
regions of uniform �ows�
In the meantime� a new model �model D� was developed by Roe ���	� for

which the shear wave is sent at ��o to the acoustic wave� Consequently� for an
isolated shock wave� the acoustic waves are found to propagate in the direc�
tions normal and parallel to the discontinuity and for an isolated shear layer�
the shear wave propagates in the direction normal to the discontinuity� Such a
model appears to be the most consistent with the multidimensional wave prop�
agation phenomena associated with the Euler equations and will be studied
further in the future� Some preliminary results are included in this paper�

��� Conservative linearization� �uctuations and speeds

����� Conservative linearization

The multidimensional generalization of Roe�s original �D Flux Di
erence Split�
ter ���	 is an essential feature of the overall method� insofar as it allows the
use of quasi�linear forms while guaranteeing conservation� It was discovered
independently by Roe and members of the present team ��� ��� ��	� The main
ideas are summarized here�
A fundamental assumption is that of piecewise linear data� In �D� linear ele�

ments are triangles� We thus consider triangular �unstructured or not� meshes�
with unknowns stored at the vertices� just as in linear Finite Elements� The
parameter vector Z � �

p
��
p
�u�

p
�v�

p
�H �� is assumed to vary linearly

over each triangle� Since �U

�Z
� �F

�Z
�and �G

�Z
are linear functions of Z� their in�

tegrals over a triangle are easily obtained in terms of the average state �Z over
the cell� �Z � �

� �Z� � Z� � Z�	� where indices �� �� � denote the vertices of that
cell� One can de�ne average gradients such as�
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As a consequence of the previous assumption�
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From the equations above� one obtains�
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The linearization is conservative� namely�
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The �rst statement characterizes the �telescopic property of the residuals� the
only terms left after summation involve the outer boundaries of the domain�
The second statement shows that for each triangle the quasilinear form of the
�ux divergence is an exact expression for the �ux divergence�
For linearly varying Z the gradients of the primitive variables� needed to

compute the wave strengths and angles� see ������ can be computed exactly as�

drV �

�
BBB�

�
p
��r�p��

�p
��
�r�p�u�� �ur�p��	

�p
��
�r�p�v�� �vr�p��	

���
�

p
��� �Hr�p��� �ur�p�u�� �vr�p�v� �r�p�H�	

�
CCCA �

The wave decomposition of the gradient of U at the average state �Z�

drU �

�X
k��

�
k �Rk �mk�

combined with the conservative property stated above� gives an exact expres�
sion for the �ux divergence�
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Thus� the expression for the residual over a triangle T is�
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����� Fluctuations and speeds

The residual in cell T has been split into � wave contributions� Each wave
is associated to an advection equation in a pseudo�characteristic variable �W k�
given by eq������ �

� �W k

�t
� ��	

k

m � r �W k � ��

where �W k�x� y� t� � �
k��x � �mk � �	kmt� and r �W k � �
k �mk� For each wave� one
can de�ne the scalar �uctuation and the residual in conservative variables as�
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T � kT
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For the case of supersonic �ow� the frontal speed ��	
k

m may project the �uctuation
outside the domain of dependence� see Figure ���� This unphysical �behaviour
can be cured by using the ray speeds �	k� given by�

�	e � �u� �	s � �u� �	a � �u� c �m� �����

Figure ���� Acoustic ray and frontal speeds �soundspeed c and Mach angle ��

This is allowed thanks to the important property that the �uctuation is invari�

ant for any choice of �	k such that ��	
k

m � ���	
k

� �mk��mk�

�



kT � �ST��	
k

m�r �W k � �ST��	
k

�r �W k � �ST �	km j r �W k j� �ST �	km �
k������
Therefore� for each wave� the �uctuation will be convected according to the
advection equation�

� �W k

�t
� ��	

k

� r �W k � �� �����

Finally� the expression for the scalar �uctuation kT given by ����� can be
rewritten� using Gauss� theorem� as�
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ZZ
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ki �W
k
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where

ki �
�

�
��	
k

� �ni ������

and �ni are the inward normals of the triangle T � scaled with the lengths of the
sides� as shown in Figure ����

Figure ���� Generic triangle

��� Scalar advection schemes

For each wave� the residual  k
T � kT

�Rk is split between the three nodes of
the triangle in an upwind manner� only the downstream node�s� receive�s� a
contribution� Note that from now onward� the average sign will be omitted for
convenience�
The accuracy and quality of the solution depends on� ��� the advection scheme�
��� the quality of the grid� in particular for structured grids� the choice of the
diagonal subdividing each quadrilateral cell into two triangles� and ��� the
wave�model� Considerable research has been devoted to the study of multi�
dimensional scalar advection schemes ���� ��� ��	� A number of schemes has
been devised and three important properties have been identi�ed� positivity�
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linearity�preservation and continuity� A scheme is said to be positive if it pre�
serves monotonicity� and linearity�preserving if it preserves piecewise linear
solutions� For linear schemes� i�e�� of the form Wn�

i �
P

ckW
n
k � where ck are

independent of the data� this last property was shown in ���	 to be equivalent
to second�order accuracy on orthogonal Cartesian grids� based on a method
developed in ���	� Finally� a desirable property of a scheme is continuity of the
distribution� for continuously varying advection speed and gradients� An im�
portant theorem� generalizing Godunov�s theorem� states that a linear scheme
cannot be both positive �P� and linearity preserving �LP�� This is the main
reason for studying non�linear schemes� In this paper� we limit ourselves to a
discussion of three continuous schemes�

�� the N scheme� optimal linear P scheme

�� the Low Di
usion A �LDA� scheme� linear LP scheme

�� the PSI scheme� non�linear P and LP scheme

Other non�linear schemes have been proposed by Roe in ���	� All schemes can
be written in the following form� for a given triangle T and wave k� the residual
at node i receives a contribution

Resi � Resi � �Ti�k 
k
T � Resi � �Ti�kRk�

where �Ti�k are weighting coe�cients such that
P

i �
T
i�k � � for conservation

�
P

i represents the summation over the three nodes of the triangle� and the
�Ti�k sum up to the scalar �uctuation for the cell� kT �

����� N scheme

This scheme� proposed by Roe in ���	� is the optimal linear positive scheme�
In the case of the one�in�ow triangle shown in �gure ���� the upwind strategy
suggests sending all of the �uctuation to the unique downstream node N��

Res� � Res� ��
k
T � ������

For the two�in�ow triangle shown in Figure ���� with downstream nodes N�

and N�� the �uctuation is split according to the decomposition of the advection
speed �	 along the sides of the triangles�

�	 � �	� � �	��

For each component �	i� the triangle is a one�in�ow triangle and ������ can be
used� The contributions to each node are�

Res� � Res� � k��W� �W��Rk� ������

Res� � Res� � k��W� �W��Rk� ������

where �W� �W��� for example� can be computed as rW � �N�N�� This scheme
can be cast into the single formula ���	�
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�Ti�k �
max��� ki�P�
j��max��� kj�

�X
j��

�min��� kj��Wi �Wj�	 � ������

Figure ���� One�in�ow case Figure ���� Two�in�ow case� N

����� LDA scheme

This scheme is linear and LP �hence non�positive�� For the two�in�ow triangle�

the advection vector �	 divides the triangle into two sub�triangles� The splitting
is then based on the ratios of the areas of these triangles to the area of the
original one� see Figure ���� The coe�cients �T��� are thus given by�

�T� �
Area���
Area���

� �k�
k�
� ������

�T� �
Area���
Area���

� �k�
k�
� ������

which sum up to one since
P

i ki � �� Again� this scheme can be cast into a
concise formula�

�Ti�k �
max��� ki�P�
j��max��� kj�

kT � ������

����� PSI scheme

The Positive Streamwise Invariant �PSI� scheme is a non�linear P and LP
scheme� which ful�lls solution invariance along streamlines� Again� for one�
in�ow triangles� the entire residual is sent to the downstream node� For two�
in�ow triangles� the strategy is the following�

�� if � �N�N� � �m�� �N�N� � �m� � �� the line of constantW through the upstream
node is outside �N�� N�	� then apply the N scheme�

�� else� the line of constant W goes through �N�� N�	 as shown in Figure ���
and positivity constraints lead to the following one�target distributions�
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� if 
k� �N�N� � �m�kT � � �N�N� � rW �kT � �� send everything to N��

� else� send everything to N��

A general formula for the downstream nodes �i � �� �� is given by�

�Ti�k �
max��� ki� min

�
�� �Wi �W��

k
T

�
P�

j��

�
max��� kj�min

�
�� �Wj �W��kT

�� kT �

Figure ���� Two�in�ow case� LDA Figure ���� Two�in�ow case� PSI

��� General scheme and time	marching

The explicit forward Euler time�stepping scheme is described here as the sim�
plest iterative technique to obtain steady state� The optimal multi�stage time�
integration scheme used in the multigrid computations will be described in
Section ��
The residual at each node is �rst computed by looping over all triangles� For

each triangle� the wave residuals are distributed according to the chosen scalar
advection scheme

Resi �
X
T

X
k

�Ti�k 
k
T � ������

where
P

T refers to the summation over all triangles having i as common vertex�
The updating of the state vector U at node i is then given as�

U
n�
i � U

n
i �

!t

Si
Resi� ������

In this equation� Si is the area of the median dual cell around node i �equal
to one third of the area of all triangles having i as a vertex� and !t the time�
step chosen with the following restriction� based on the worst case over all
waves ���	�

!t � !tmax �
SiP

T max��� k
T
i �

� ������

��



� Optimal explicit smoothing for multigrid acceleration on quad�

rilateral grids

��� Motivation

The availability of vector and parallel processors and the use of local re�nement
as a basic tool for obtaining high resolution results to complex �ow problems
have increased the interest in using explicit schemes as smoothers in multi�
grid methods for the Euler equations� as an alternative to classical relaxation
schemes� Indeed� multigrid methods work also for hyperbolic problems for two
reasons� low frequency errors are convected out of the domain faster� thanks
to the increased numerical propagation speed resulting from the coarse grid
correction� and high frequency errors are eliminated by damping� thanks to the
dissipation always present in both central and upwind discretizations� There�
fore� it appears logical and worthwhile to extend the idea of optimizing the high
frequency damping properties of a multi�stage scheme ���	 to the present frame�
work of genuinely multidimensional upwind schemes� as proposed in ���� ��� ��	
and brought to maturity in this paper�

��� Scalar advection

����� Space	time discretization

Consider the �D linear advection equation
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� Res�u��
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de�ned in a bounded domain with prescribed initial conditions and Dirichlet
boundary conditions� The physical domain is divided �grid h� into m � n
rectangular cells !Si�j with constant mesh�sizes !x and !y and with the
unknowns located at each cell�vertex� Eq������ is �rstly semi�discretized in
space� the associated semi�discrete equation being formally written as��
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where Lh is the spatial di
erencing operator de�ned on the grid h and applied at
point �i� j�� As an example� consider the standard �rst�order�accurate upwind
�SU� scheme� in its �nite di
erence formulation�
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The time di
erencing operator in ����� is then analyzed by �Fourier� trans�
forming ������ as follows�
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In ������ z � z ��x� �y� �� is proportional to the Fourier transform of Lh� �x
and �y are the spatial wave numbers in the two coordinate directions and �
is the convection angle� de�ned as � � arctan�R� � arctan��y��x�� For the
SU scheme� one has

z �
�
e�i�x � �

�
�R

�
e�i�y � �

�
� �����

In the case of a general coordinate system ��� ��� ����� is re�written as�
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� ��	 � r���u

��
�����

and the de�nitions of � and R are generalized as�

� � max���� ���� R � min

�
��
��
�
��
��

�
� �� � �	 � r�!t� �� � �	 � r�!t� �����

The interest of the authors is focused in developing an e�cient smoother for the
N scheme described previously in Section ������ When using a structured grid�
each quadrilateral cell has to be subdivided into two cells� Due to the degree of
freedom in the choice of the diagonal� di
erent stencils can be obtained� It can
be shown that� for a linear equation on a uniform Cartesian grid� the N scheme
recovers the positive linear scheme with minimum cross�di
usion ���	 if the
diagonal most aligned with the advection speed vector is used� alternatively�
the classical dimensionally�split SU scheme is obtained� Therefore� an optimal
diagonal choice can be performed in each cell� which allows in particular to
improve the resolution of discontinuities�

Figure ���� a� Equally�oriented grid� b� Isotropic grid

For the two con�gurations in Figure ���� the function z ��x� �y� R� takes a di
er�
ent form� depending on the shape of the grid and the direction of the advection
speed vector �	� see ��	 for details�
Finally� the time derivative of the ordinary di
erential equation ����� is dis�
cretized by the multi�stage explicit Runge�Kutta �RK� scheme

u�
� � u	� �����

u�k� � u�
� � ck�z u�k��� � k � �� ���� n� �����

u	� � u�n�� ������
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whose properties will be analyzed in the following�

����� Smoothing analysis

The ampli�cation factor for the RK�scheme of ���������� is the following poly�
nomial function of degree n

Pn�z� � � � cn�z�� � cn���z������ � c��z���� ������

The n parameters ck� k � �� ���� n�� and � have to be chosen so as to maximize
the smoothing properties of the scheme� rather than satisfying its time accuracy�
since the interest is limited to steady state� Here� an equivalent and more
convenient expression is used for Pn�z�� if n is even� the RK�scheme can be
analyzed as a sequence of m predictor�corrector schemes� namely�

Pn�z� �

mY
k��

�� � �kz � 
k�
�
kz

��� n � �m� ������

Otherwise� if n is odd� one forward Euler step has to be added�

Pn�z� � �� � �m�z� P�m�z�� n � �m� �� ������

As in the formulation ������� n coe�cients " namely m parameters 
k and
�m�p� parameters �k �p � n��m� " have to be �xed� Consider a �D equation�
for simplicity� The goal is to control the magnitude of the ampli�cation factor
� � kPn�z�k in the high frequency range ����� �	� namely� to minimize its
maximum value � �smoothing factor�� The complete mathematical formulation
of the minmax problem is the following�

�opt � min
�
� ��

�
	 max
� � ����� �	

kPn�z���� �
� ���k


�� ������

where �
 � �
�� ���� 
m� and �� � ���� ���� �mp�� In ���	� Pn�z� was forced to have
m� p zeroes �
�k in the high frequency range and the problem was reduced to

�opt � min
��


�
	 max
� � ����� �	

kPn�z���� ��
�k


�� ������

�
 and �� being expressed as functions of the vector ��
 � ��
��� ���� �
�mp�� The
simpli�ed problem ������ is equivalent to ������ only in the case of �rst�order
upwind di
erencing� In all other cases� the solution of ������ does not produce
the optimal coe�cients� although a satisfactory smoothing is achieved anyway�
see ���	� More importantly� the technique proposed in ���	� using ������ as goal
function� cannot be extended to the �D analysis� where a zero of � is a two�
component vector ��
�x� �
�y�� For these reasons� a di
erent and more general
approach is proposed using the original parameters 
�� ���� 
m� ��� ���� �mp�
rather than ��� ���� �m�
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����� Optimization technique

Consider a �rst�order upwind �m�stage scheme in one dimension� for such a
discrete operator� the square of the magnitude of the ampli�cation factor �� has
no more than n� � � �m�� local extrema in ��� �	� Two of them are located
respectively in � � � and � � �� for symmetry� Since ����� is continuous
together with its derivatives� a minimum �maximum� is located between two
successive maxima �minima�� Therefore the number of possiblemaxima in ��� �	
is �N � sup int��n� ����	 � m� �� When considering only the high frequency
range ����� �	� �N is again m��� since the boundary value ��� � ���� has to
be included� while the value ��� � �� has to be excluded �similarly� for an odd
number of stages �n � �m���� �N � sup int��n�����	 � m���� Incidentally�
in all numerical experiments� it has been found that the smoothing factor is
minimized when the number of maxima Nmax in the high frequency range is
equal to �N �
A simple gradient method is not well suited for solving ������� since the func�
tion ���
� ��� is not di
erentiable when two or more maxima are equal� in fact�
small perturbations of �
 and �� around this position� move the location of �
from one maximum to another� The present strategy aims at eliminating such
discontinuities before applying the gradient method� First consider the case
of a ��stage scheme with Nmax � �N � m � � � �� under the equal excursion
principle� the two maxima M
 and M� must be equal� namely�

M
�
� �� �M��
� �� � ������

In ���	� the optimal �
 was calculated from the nonlinear Equation ������� thus
solving the minmax problem ������ directly� Here� ������ is used as a condition
for expressing 
 as a function of �� The ful�llment of ������ makes the function
��
���� �� � ���� always di
erentiable with respect to �� in fact� the derivative
d��
���� ���d� is de�ned in the singular sub�domain 
 � 
���� determined by
������� in which � coincides with either of the maxima� The smoothing factor
is then minimized by imposing the following condition� that completes the set
of two equations in the two unknowns 
 and ��

d��
���� ��

d�
� � � ������

It is noteworthy that using ������ is more appropriate than forcing a zero of
� ���	� which does not guarantee the optimum� Eqs������� and ������ can be
solved analytically for �rst�order upwind di
erencing� In a more general case�
a numerical approach is required� �� a solution �

� �
� with Nmax � �N � �
is guessed� �� 
 is evaluated from ������ using the Newton�Raphson technique�
keeping � constant� in such a way� a new solution �
�� �� � �
�� satisfying the
condition M
 � M� � �� is obtained� �� the derivative d ��d� is evaluated
numerically� with 
 � 
��� calculated from ������ and the value of � is then
increased or decreased� always satisfying ������� depending on the sign of d��d��
until the minimum is reached�
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Consider now the more general case of n stages and � � Nmax � �N �
m � �� the vector �
 can be decomposed as �
 � �
grad � �
max� where �
grad �
�
�� ���� 
m�Nmax�� �� ���� �� and �
max � ��� ���� �� 
m�Nmax�� ���� 
m�� ForNmax �
�� it results in �
max � �� and �
grad � �
� while for Nmax � �N one has �
max � �


and �
grad � ��� The Nmax maxima are again imposed to be equal�

Mk��
� ��� �Mk����
� ���� k � �� ���� Nmax � �� ������

This allows to express the �Nmax��� nonzero components of �
max as functions
of the remaining parameters� Finally� the �rst partial derivatives of the di
er�
entiable function ���
max��
grad� �����
grad� ��� � ���
grad� ��� with respect to the
components of �� and to the non�null components of �
grad are set to zero�

����
grad� ���

��k
� �� k � �� ����m� p� ������

����
grad� ���

�
grad�k
� �� k � �� ����m�Nmax � � � ������

The numerical procedure described above is easily extended to the general case
of n stages and Nmax � �N � in the step ��� a solution ��

� ��
� is guessed� step
�� consists in calculating �
max from ������ by means of a Newton iteration� the
di
erences

Rk �Mk �Mk��� k � �� ���� Nmax � �� ������

are de�ned as the components of the residual vector �R� Suppose that the
actual solution is ��
i� ��i�� in the next gradient step� the updated value �
i�max �

�
imax�!�
max has to satisfy ������� that is� �R � ��� Starting from �
i�
max � �
imax�
the solution is updated as �
i�jmax � �
i�j��max �!�
jmax� the correction !�


j
max being

calculated from the linearized expression of �R � ���

� �Rj��

��
max
!�
jmax � ��Rj��� ������

The maximaMk� k � �� �� ���� Nmax��� as well as the Jacobian matrix � �Rj���
��
max� are evaluated numerically� by a updated� The value �


i�j
max is updated

until �R � ��� Step �� consists again in a classical gradient method� the partial
derivatives in ������ and ������ are continuous and are evaluated numerically
as well� Nmax is eventually updated at each gradient step�
The entire optimization procedure can be extended to the �D case� keeping
in mind some very important recommendations� �rstly� it appears from �����
that the Fourier transform of Lh depends on the CFL ratio R� therefore� the
smoothing properties of the scheme� as well as the corresponding optimal coef�
�cients and time step� will depend on R as well� In two dimensions� the domain
of de�nition of Pn�z� is the square
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f�x � ��� �	� �y � ��� �	g�
Pn�z� being point symmetric with respect to the x and y axes� while the high
frequency region is de�ned as

f��� � � � �� � � max ��x� �y�g� ������

The smoothing factor must be de�ned in the domain determined by �������
However� for R� �� namely� when the advection direction is aligned with one
of the coordinate lines �in this case the x axis�� one has z ��x � �� �y�� �� for
consistency� and therefore Pn � �� No smoothing can be provided for the waves
�x � �� moreover� the attempt of minimizing the smoothing factor results in
a reduced stability of the scheme for all waves� since the entire ampli�cation
factor �eld is raised up and even set to � in the extreme case R � �� For a
genuinely �D scheme� a similar situation occurs also for the waves �x � �y
when the advection involves only the diagonal grid points �R � ��� Such a
problem was already seen in ���	� when considering a scalar advection equation�
and overcome by using an exact linearized advection speed and limiting the
domain of de�nition of �� However� the �rst procedure cannot be extended to
the case of the Euler equations� see ���	� In conclusion� the domain of de�nition
of � must exclude the waves that produce a unitary ampli�cation factor� for
consistency� namely��

��� � � � �� � � max ��x� �y� � �x � �� �y � �
�
� ������

In the case of schemes capable of convecting signals along the diagonal grid
points exactly� the frequency ��x � �� �y � �� must be excluded as well� Re�
ferring to the optimization procedure described above� the boundary maximum
is a local extreme on the line

f� � �x � ���� �y � ���g  f�x � ���� � � �y � ���g� ������

whereas the interior maxima have to be searched in the restricted high fre�
quency domain de�ned by ������� see Figure ���� The coe�cients used in the
Euler calculations are provided in ��� ��	�

� Results

Solutions of a scalar advection equation are �rst computed for di
erent schemes
and choices of the diagonals� Solutions of the Euler equations are then pre�
sented with emphasis on discontinuity�capturing and multigrid�


�� Results for scalar convection

The scalar advection equation

ut � �	 � ru � �
is considered� with constant speed �	 � ��x � ��y� The �uctuation over a cell�
������ becomes�
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Figure ���� High and low frequency Fourier domain
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The linear and non�linear schemes are tested on three di
erent grids� parallel
�diagonals aligned with �	�� perpendicular �diagonals normal to �	� and isotropic
�alternating diagonals�� on the domain � � x � ��� � y � �� Dirichlet bound�
ary conditions are imposed� u � ��� on y � �� u � ��� on x � �� The state at
point ����� is set at the average state u � ����

The N scheme captures the steady discontinuity exactly �in two rows of cells�
only for the parallel grid� in that case� all triangles are one�in�ow and so
the entire residual �which is zero� is sent to the downstream node� thereby
preserving the exact steady state� For the perpendicular and isotropic grids�
the solution spreads� for the two�in�ow triangles� the zero �uctuation is split
into two non�zero components and the exact solution is destroyed�
The LDA scheme preserves linear solutions� therefore� in the case of the parallel
and isotropic grids� for which the exact solution can be mapped linearly onto
the mesh� the solution is preserved� For the perpendicular grid� the solution
spreads� and a non�monotone pro�le is obtained�
The PSI scheme� like the LDA scheme� is linearity preserving� Therefore� it
preserves the exact steady solution on the parallel and isotropic grids� For the
perpendicular grid� the solution spreads though less than for the N scheme� and
contrary to the LDA scheme� a monotonic solution is obtained�
All schemes converge to machine zero with no di�culties�


�� Results for the Euler equations using simple time	stepping

In this section� the multidimensional schemes for the Euler equations are �rst
tested on non�smooth steady �ows� which� in the case of inviscid compressible
�ows� are either shock waves or slip lines� Particular attention is focused on the
ability of the �uctuation splitting schemes to resolve or �capture the disconti�
nuities� A detailed study of a nonlinear scalar conservation law ���	 is of great
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help in understanding the mechanism of wave splitting� The di
erent scalar
advection schemes are tested and compared to one another on several test�
cases� involving normal and oblique shocks� shear layers� a jet interaction and
the transonic �ow over an airfoil� The convergence properties of the schemes
are also assessed�


���� Normal and oblique shock

A normal shock is considered� States upstream and downstream of the shocks
are related by the Rankine�Hugoniot jump relations for normal shocks� which
in this case give for M� � ���� �� � ��� and p� � ���� M� � ������� � �����
and p� � ������
The discontinuity is taken aligned with the mesh� and periodic boundary con�
ditions are imposed� In this case� all triangles are one�in�ow� for which the
one�target update formula is both positive and linearity preserving� Just as in
the scalar case� the pro�les �not shown� contain three cells or two intermediate
states�
The next test�case is an oblique shock at ��o to the freestream �ow� with a
de�ection angle of about ��o� and upstream and downstream Mach numbers
M� � ���� and M� � ����� Densities are respectively �� � ���� and �� � �����
The N scheme and the PSI scheme are tested here on an isotropic grid� with
model C� The Mach number contours are plotted for each scheme� For the
N scheme� Figure ��� shows that the solution is spread over the grid� Con�
vergence stalls after a drop of about three orders of magnitude in the density
residual� In the case of the PSI scheme� the discontinuity is captured exactly�
with one intermediate state� as shown in Figure ���� Convergence is satisfac�
tory� with a drop of four orders of magnitude in the residual�


���� Shear aligned with the grid

A shear with a density jump is computed on an isotropic mesh� Conditions are
M� � ��� and M� � ���� �� � ��� and �� � ��� and equal pressure across� The
PSI scheme was used with model C and D� Clearly� model C� which uses the
direction of the pressure gradient� ill�de�ned across a shear layer� is not robust
for such a case� Better results are obtained with model D� both in terms
of accuracy and convergence� Figure ��� shows the Mach number contours
obtained with model C� the discontinuity is found to spread a little� On the
contrary� it is kept perfectly with model D� as seen in Figure ����


���� Jet interaction

In this section� the �uctuation splitting schemes are compared to a standard
�nite volume scheme� Roe�s Flux Di
erence Splitting �FDS� scheme ���	� The
comparison is made on a test�case cited by Glaz and Wardlaw ���	� a pure
Riemann problem consisting in the interaction of two supersonic parallel jets�
for which an exact solution can be computed� The upper stream� denoted
���� at conditions M� � ���� �� � ���� and p� � ����� the lower stream�
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denoted ���� at conditions M� � ���� �� � ��� and p� � ���� The interaction
of the two jets produces a shock wave propagating in the low pressure region
and an expansion fan propagating in the high pressure region� with a contact
discontinuity in between�
Solutions were computed with the N and PSI schemes using model C� as well
as with a �rst and second�order FDS scheme� For the �uctuation splitting
schemes� the cell�vertex isotropic grid consists of ��� �� nodes� on the domain
��� �	� ��� �	� corresponding to the ��� �� cell�centered mesh used in the FDS
calculations�
Density contours for the four di
erent computations are plotted in Figures ����
���� ��� and ���� It appears that the N scheme is better than the �rst�order
FDS scheme� but less accurate than the second�order one� whereas the PSI
scheme is comparable to the second�order FDS scheme�
Convergence stagnates after a drop of about ��� orders of magnitude in the
residual� As anticipated in Section ���� model C does not converge to machine
accuracy whenever there are regions of zero pressure gradient�


���� Transonic NACA ���� airfoil

A transonic �ow �M� � ����� angle of attack �o� is computed around a NACA
���� airfoil� on a structured O�type mesh with ��� � �� nodes� The grid
with �xed diagonals is shown in Figure ���� The far��eld is at �� chords and
the far��eld boundary conditions are not corrected with the required circula�
tion� The numerical solution is computed using model D and the nonlinear
PSI scheme� The Mach number contours are given in Figure ����� showing
well�de�ned shocks on both pressure and suction sides of the airfoil� Conver�
gence for the PSI scheme with model D stagnates after a residual drop of �
orders of magnitude�


�� Multigrid results for the Euler equations

The smoother described in Section � is designed to work e
ectively in con�
junction with a multigrid method� Here� the well�known FMG FAS V�cycle
of Brandt ���	 is employed� with one pre� and one post�application of the
aforementioned three�stage Runge#Kutta smoother� at all levels� The choice
of the grid transfer operators is brie�y outlined� the defect dhi�j � �Resi�j
is computed at each grid point �i� j� of the mesh h and collected onto the
coarser grid H��h using classical full�weighting� The coarse grid correction is
then transferred back to the �ner grid by standard bilinear interpolation� This
solver� proven e
ective for scalar advection equations ���	� is now applied to
Roe�s six wave decomposition model E using the �rst�order N scheme spatial
discretization described previously�
As shown before� the choice of the diagonal a
ects the accuracy of the N scheme�
also when used in conjunction with the multi�dimensional Euler solver� How�
ever� since the propagation direction is not unique in this case� the selected
diagonal cannot be optimal for all of the waves� Two strategies have been an�
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alyzed� namely� �� since the wave with largest �
k within a cell is the one that
locally dominates the �ow behaviour� its propagation direction de�nes the op�
timal diagonal� as described before ���	� �� in presence of shocks� the diagonal
more aligned with the discontinuity is selected ��	�
Characteristic boundary conditions are imposed at subsonic inlet and outlet�
total enthalpy� entropy and �ow angle are speci�ed at in�ow boundaries� while
the pressure is speci�ed at outlet� At the wall� the equations are integrated
also in a row of auxiliary cells outside of the physical domain� the mirror�image
�ow conditions are calculated by imposing impermeability and isentropic simple
radial equilibrium ��� ��	� The multigrid Euler solver has been tested versus
three subsonic� transonic ��	 and supersonic ���	 �ow problems�


���� Subsonic and transonic GAMM channel

For the �rst two cases� the �ow through the GAMM channel is calculated for
two di
erent values of the inlet Mach number� using a ���� �� uniform non�
orthogonal isotropic grid� The iso�Mach lines for the subsonic case �Mi � ����
are shown in Figure ����� The solution is rather symmetric� the small shift at
the lower wall shows that a small amount of numerical dissipation is introduced
in the re�compression region� Convergence to machine zero is obtained� as well
as in the other two cases� see Figure ����� where the single� and the multi�
grid convergence histories are presented� the logarithm of the L��norm of the
residual of the mass conservation equation is plotted versus the work� one
work unit being again de�ned as one single�stage residual calculation on
the finest grid� The FMG FAS V�cycle strategy discussed before has been
employed� the time step being unique for all waves and based on the fastest
one� Even without any characteristic time stepping� a considerable gain in work
is achieved� The reduction in the convergence rate� seen at R � ����� is due to
the well�known multigrid alignment phenomenon� error modes of low frequency
along the streamlines and high frequency in the transversal direction are created
near the lower wall and can be neither smoothed by the time integration� nor
convected out from the domain by the coarser grids� Semi�coarsening should
reduce such a problem�
Similar considerations apply to the solution of the transonic �ow case �Mi �
����� shown in Figure ����� A further decrease in the MG convergence rate is
experienced in this case �see Figure ������ since no extra�relaxations are applied
in the shock region�


���� Shock re�ection on a �at wall

Finally� the well known shock�re�ection problem has been considered� the
oblique shock impinging upon a �at plate at a �� degree angle� see Figure �����
where the solution obtained using a ��� � �� uniform isotropic grid and the
N scheme is presented� The shock resolution is typical of a good �rst�order�
accurate genuinely multidimensional method and can be easily improved by
using the diagonal choice strategy described above� see Figure ����� Obviously�
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use of a non�linear scheme like the PSI leads to better shock resolution as seen
previously in Figures ��� and ���� Single grid and multigrid convergence his�
tories are shown in Figures ���� and ����� the single grid solution is rather
fast� thanks to the hyperbolic nature of the spatial problem� nevertheless� a
considerable reduction in work is achieved when using multigrid� in both cases�
The comparison between Figures ���� and ���� shows that no signi�cant in�
crease in computational time ��	 is required by the adaptive solver� in spite of
its improved shock resolution�

Conclusions

A major step forward in the development of multidimensional cell�vertex up�
wind schemes for hyperbolic conservation laws has been made during this
project� Wave models based on Roe�s simple wave decomposition have been
further developed and tested� providing a two�dimensional decomposition of
the �ux divergence into scalar contributions� Contrary to grid�aligned decom�
positions� the models allow the recognition of shocks and shears for multidi�
mensional �ow without reference to the grid�
Linear as well as non�linear scalar advection schemes have been further de�
veloped and successfully applied to each of the scalar wave contributions of
the Euler residual� The nonlinear PSI scheme is monotone and preserves lin�
ear solutions� It allows similar discontinuity�capturing properties as standard
high�resolution upwind schemes on much more compact stencils� involving only
direct neighbours� On structured grids� the choice of the diagonal for splitting
the quadrilaterals represents an additional degree of freedom to improve the
accuracy and discontinuity capturing� Such an automatic diagonal optimiza�
tion procedure has been devised and implemented with success�
A signi�cant step towards the overall success of the methodology has been
made by devising a general conservative linearization of the Euler equations
over triangles� This allows the use of quasilinear expressions without any loss
of conservation�
The above developments have led to the �rst working Euler solver based on
�uctuation�splitting and simple wave modelling�
An explicit multi�stage smoother has been designed for general two�dimensional
advection operators� Its e
ectiveness has been �rstly demonstrated in a multi�
grid code for scalar equations� using several genuinely multi�dimensional up�
wind schemes� Then� the explicit multigrid strategy has been extended to the
wave�decomposition of �D Euler equations� A signi�cant e�ciency improve�
ment has been achieved in all cases analyzed�
The solver has been tested for a wide range of applications including shocks�
shears� airfoils and channels at subsonic� transonic and supersonic speeds� This
demonstrates the validity of the new concepts introduced which can be seen as
a major breakthrough in compressible Computational Fluid Dynamics�
Further work is still needed for improving the robustness of wave models when
used in combination with high�order schemes� and in the areas of linearization�
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boundary conditions and multigrid� Finally� extension to Navier�Stokes and �
space dimensions has to be considered�
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