Errata in the article by Bosma and Cannon

The article by Bosma and Cannon in the June 1992 issue of CWI Quarterly con-
tains several errors. These errors were detected too late, for which we sincerely
apologize.

1. MATHEMATICAL ERRORS |
Most of these errors occurred because the empty set symbol (@) was not printed.

Page + line Expression
130, line 12 from bottom | N # :
130, line 4 from bottom | ¥N¥I = | ¥ NYI = Q)
130, line 3 from bottom | Clearly, Clearly, )
131, line 18 from bottom | ## FD A

138, line 18 from bottom | I' 3 I
140, line 1 B=5S= | B=
140, line 2 NV = W
144, line 9 = S =

152, line 3 from bottom | m > € | L > —€

2. E-MAIL ADDRESSES
The e-mail address of Cannon is missing. His e-mail address is

john@maths.su.o0z.au

The editors
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1. INTRODUCTION

The theory of finite permutation groups has proved to be a particularly fertile
field for the design of efficient computer algorithms. Initially, the development of
computational methods for permutation groups was driven by the need to con-
struct the various sporadic simple groups that were discovered during the 1960’s
and 1970’s in the course of a project to classity all finite simple groups. More

to problems arising both in mathematical research and in areas such as applied
combinatorics, cryptanalysis, coding theory and discrete signal processing.

We have available now a rich collection of permutation group algorithms ca-
pable of answering a wide range of questions about rather large and complex
eroups. This area is one of the first branches of ‘non-linear’ algebra for which
a mature and extensive computational theory has been developed. Its theoreti-
cal importance is, for example, reflected in its application to the computational
complexity of combinatorial algorithms. This link is due to the fact that the
automorphism group of a combinatorial structure typically has a natural repre-
sentation as group of permutations acting on the underlying set of the structure.
Thus, the automorphism group of a graph is naturally presented as a permu-
tation group on the set of vertices of the graph. In particular, the complexity
of the celebrated graph isomorphism problem is equivalent to the complexity
of such permutation group problems as that of computing the stabilizer ot a
set. Thus, using permutation group methods, LUKS [31] was able to produce a
polynomial-time isomorphism algorithm for the special class of graphs having
bounded valence.

The main purpose of this paper is to introduce the reader to practical algo-
rithms for permutation groups of very large degree. The paper will concentrate
on the algorithms and theory which enable us to analyze the abstract structure ot
a permutation group (i.e., determine its composition factors). Our goal is the de-
velopment of algorithms capable of determining the abstract structure of groups
having degrees in excess of a million. The size of the field means that our treat-
ment is, of necessity, highly selective. In particular, we only consider algorithms
that are guaranteed to produce correct results. Thus, all algorithms discussed
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will either be deterministic or randomized of the Las Vegas type. Randomized
Monte Carlo algorithms for permutation groups are discussed in the paper by
Cooperman and Finkelstein appearing in this volume.

Apart from its intrinsic interest, we believe that a careful study of the field
will provide important insights for the development of computational theories
for other branches of algebra. In the course of our presentation, we will present
evidence for two elementary, but important, principles which we believe are
senerally applicable to the construction of a computational theory for some new
branch of algebra:

e The effectiveness of algorithms for computing deep properties of algebraic
structures will be critically dependent upon the choice of representation
for the carrier set of the structure.

e The design of algebraic algorithms is a hierarchical process mirroring the
development of the abstract theory. It is possible to design algorithms
in a ‘layered’ fashion so that ‘high-level’ algorithms intended to probe
the deeper properties of an algebraic structure may be constructed out
of a standard set of ‘fundamental’ procedures. The identification of these
fundamental procedures and the discovery of fast algorithms to pertorm
them is a key task in the construction of a new computational theory.

In the case of permutation groups, the carrier set (i.e. the set of group elements)
is represented by means of a set of transversals over a chain of point stabiliz-
ers. This representation is discussed in Section 3, together with methods for
its construction. In Sections 4, 5, 6 and 7 we introduce a number of the fun-
damental procedures for computing with permutation groups. Thus, in Section
4, we present some elementary algorithms which are direct consequences of the
machinery set up in Section 3. In Section 5, we show that our representation
of a permutation group allows us to design very efficient backtrack searches tor
various key subgroups. Section 6 introduces the reader to techniques for com-
puting with the standard permutation group homomorphisms and applies these
techniques to give a method for finding Sylow p-subgroups. In the final section,
we use these basic algorithms as the building blocks for the construction of a
rather deep algorithm which finds a composition series for a group.

Since this paper is directed at the reader who may not be familiar with the
details of permutation group theory we sketch some of the key ideas. For general
background and notation from the theory of permutation groups, the reader 1s
referred to WIELANDT [41]. An elementary exposition of basic permutation
group algorithms may be found in the recent book of BUTLER [8]; an earlier
survey is given in [15]. The examples quoted in this paper to illustrate the

performance of various algorithms were run using the computer algebra system
Cayley V3.8.3 [14] on a SUN MP670.
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2 BAsIC CONCEPTS

Finite permutation groups

Let Q be a finite set having cardinality n. The symmetric group on (1, written
S or S, is the group consisting ot all bijections of ) into itself. A subgroup of
S . is called a permutation group (of degree n).

Permutation groups are of interest both in their own right and also because
of the fact that any group may be represented as a permutation group. Thus, in
the case where G is a finite group of order n, a theorem of Cayley states that G
is isomorphic to a subgroup of S,,. More precisely, an isomorphism between any
G and a subgroup of Sg is given by the map g — ¢,, where ¢, € S acts on
the underlying set of G via multiplication by g: ¢4(x) = = - g for every x € G.
This is known as the right reqular representation of G.

If G is an abstract group, then a group action of GG on a finite set {2 is a mapping
O x G — Q. usually written = — 29 (satisfying z' = x and (x9)" = x9" for
g, h € G). This mapping is obviously a homomorphism G — Sq. Conversely,
such a homomorphism corresponds in a natural way to an action of (G on {): thus,
group actions are permutation representations when viewed as maps G — S5q.

A permutation group G will henceforth be described 1n terms of an action
on a finite set 2, where the homomorphism into Sq is usually required to be
monomorphic (to have trivial kernel). In other words, we require G to act
faithfully on €, so that the only g € G leaving every element of 2 invariant
will be the identity. Following traditional practice, we shall often reter to the
elements of the set () as points.

Before starting our discussion of permutation group algorithms, we say a lit-
tle about how particular permutation groups are presented in practice. For
simplicity, the n elements of 2 will be identified with the integers 1,2,...,n. An
element of a permutation group will often be written as a product of disjoint
cycles, where a cycle (r1,zs,...,Zm), represents the permutation r; — it (for
1<m-—1)and z,, — x;. A finite permutation group (G is certainly generated
by a finite subset X of G. It is easily proved that at most n — 1 generators are
needed, but in fact n/2 will suffice if G & 53, 34], where n is the degree. The
symmetric group S,, of degree n and order n!, is generated by the two cycles
(1,2) and (1,2,...,n). For the purpose of this paper, we assume that a permu-
tation group G is given in terms of a small generating set X of cardinality k. To
avoid repeated calculation of inverses, the generating set X is usually extended
to include the inverses of all its members, that is, X is replaced by X U X ™.

As an aside, we note that given an arbitrary generating set for G it is not easy
to find a generating set of minimal size. However, given a set of k generators
for G, a simple algorithm may be used to reduce their number to n(in —1)/2
in time O(kn?). There also exists a Monte Carlo algorithm which will produce
O(n) generators in time O(knlogn) (see [3]).

Transitivity and orbits
It is natural to consider the equivalence classes of points of {2 induced by the
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action of G, where two points @ and (3 are equivalent if there exists an element
g € G such that o9 = 3. Such an equivalence class is called an orbit and is
denoted by a%“. A permutation group is said to be transitive if it has exactly
one orbit, namely €2; that is, for every pair of points of €2 there is an element of
(' taking the one to the other. Generalizing this notion, a permutation group
is said to be k-transitive, (k > 1), if for every pair of sequences (aq,...,a¢),
(B1,...,0k), of k distinct points of €2, there is an element ¢ in G such that
(ad,...,ad) = (b1, .-, Bk)

Restricting the action of G to a single orbit A gives rise to a homomorphism
of G onto a transitive subgroup of Sao. This reduction to a transitive group plays
an important role in the design of permutation group algorithms (see section 6).

The orbit A of a point « is easily computed by taking images under generators
until no new points are found, as in the algorithm below. For many applications
it 1s also desirable to keep a list of elements z(3) € G, for 8 € A, such that
o®*P) = 3. In order to compactly store both the orbit and the elements x(3),
Sims introduced a linearized tree structure known as a Schreier vector. This is
a vector v whose entries are indexed by the elements of €2, such that v, = —1,
vg = 0 for B ¢ A, and vg = = for o # 3 € A, where z is the first generator
to produce [ as the image of a known point of A during the construction of
the orbit. Given a point 8 € A one easily obtains from such a vector a word
w =] gfj such that 8 = o".

ALGORITHM ORBIT AND SCHREIER VECTOR.

Input Q;a€);a subgroup G of Sq generated by X = {g1,92, - Ok |-
Output Orbit O = a“ and Schreier vector v.

(0) Initialize O = {a}, N = {a}, and the vector v by v, = —1, vg = 0 for
a # 3 e ().

(1) Repeat the following three steps while N #:

(1) Put I = US_,I;, where I; = N9, fori=1,... k.
(i1) Put N =1\ O, and for each 8 € NN I; put vg = g;.
(iii) Replace O by O U N.

REMARKS. The construction of an orbit takes time O(kn).

The algorithm is easily adapted to provide a transitivity test: calculate the
orbit A of any point, and if A is all of 2 then and only then is G transitive.

Primitivity and blocks
A block ot G is a subset ¥ C (2 such that for each g € G either ¥ N V9 = or

VNV =W, Clearly, , the sets {w}, for w in 0, and Q, are all blocks (the trivial
blocks of G). A transitive permutation group is said to be primitive if these
are the only blocks. In a transitive permutation group, the translates W9 of a

130



block W are also blocks and {¥9Y : g € (G} partitions 2 into equal-sized subsets.
The collection of distinct translates of a block ¥ form a block system, which is
a G-invariant partition of 2. A transitive group that has a non-trival block is
sald to be imprimitive.

If the transitive group G is imprimitive, then it induces a transitive action
on each non-trivial block system. By choosing a maximal block system (with
This 1s the second main reduction for homomorphism-based permutation group
algorithms (see Section 6).

Given points a and S of 2, the following algorithm constructs a block systemn
such that o and 3, lie in the same block ¥. The system is minimal in the sense
that no proper subset of ¥ containing o and 3 is a block for G.

ALGORITHM BLOCKS

Input ); o, 8 € 2; a transitive subgroup G of S¢; generated by X = {g1,¢2,...,gr}
Output Block system B containing a block ¥ minimal with respect to the con-
dition that «, 3 € V.

(0) Create an wnitial partition of Q: B = {{«, B}, {~v} : for each ~ € Q\

{a,B}}.

(1) Repeat the following two steps fori=1,...,k:

(i) Calculate B9 = {W9: : ¥ € B}.

(i1) Modify B as follows: If ¥' N W9 #£z£ W9 N W for two sets V', ¥ €
B and some i, then replace V' and V" by W' U V",

REMARKS. It is interesting to note that this algorithm can be made to run 1n
time O(knlogn) by a careful choice of data structures. For example, Atkinson
11| uses a time-varying integer-valued function on the points of {2 that agrees on
two points if and only if they are currently known to lie in the same block.

By applying the Blocks Algorithm to each pair «, 3 of distinct points chosen
from 2, one can determine whether G is primitive in time O(kn=log(n)). How-
ever, for large degrees this approach is much too inefhicient and so, in practice,
the following reduction is employed. Let GG, be the subgroup of GG that fixes the
point « (see also the next section), and let «, ..., a, be representatives tor the
orbits of G, on €. If none of the pairs (o, ;) for 2 = 1,...,r lies in a proper
block for GG, then G is primitive. In order to take advantage of this reduction we
need generators for the stabilizer G, which may be very expensive to compute if
it is not already known. In this situation, we employ the random Schreier-Sims
method (see section 3) to quickly compute some subgroup H of G, and we then
apply then the Blocks Algorithm to the pairs (o, ;), for ¢ = 1,...,s, where
Y1,...,7%s are representatives for the orbits of H.

131



EXAMPLES:

(1) The wreath product (with product action) ot the projective group PGL(2, 7)
and the projective group PGL(2, 5), is a primitive group of degree 262,144. A
straightforward implementation of the above ideas establishes primitivity i 550
seconds. Of this time, approximately 500 seconds was spent in constructing an
approximation H of a one-point stabilizer using twelve pseudo-random elements.
The subgroup H has 7 orbits and each application of the Blocks Algorithm took,
on average, 5 seconds.

(2) The wreath product (with product action) of the projective group PGL(2,
9) and the symmetric group Sg, 18 a primitive group of degree 1,000, 000. The
execution time required to prove the primitivity of this group was 2, 350 seconds.
Approximately 2,270 seconds was spent in constructing an approximation H to
(7., having 7 orbits on 2. Each application of the Blocks Algorithm took, on
average, 14 seconds.

Regularity

There is a strong relation between most of the notions introduced so tar and
point stabilizers: the point stabilizer G of a point § € {1 1s the subgroup of &
fixing 3. It is clear that the image of some 3 € {2 under two elements g, g2 € G

is the same if and only it g g5 ' fixes 3, that is

=7 = gi1g; € G

The first implication of this is that the length of the orbit of 3 must equal the
number of distinct (right) cosets [G : G| of its point stabilizer. In fact the
Schreier vector is an encoding of a set of coset representatives for Gz in G.

It is not hard to show that a transitive permutation group has no non-trivial
blocks (is primitive) if and only if the subgroups Gg are maximal in G. For,
let N be a subgroup containing G 3. Then the orbit ¥ = 3% must be a block:
suppose there is some point « € ¥ NWY; then o = B = 379 for some h,h' € N,
hence h'gh~! fixes 3 and ¢ € G3. But then V9 = W. The converse 1s equally
easy.

If, at the other extreme, Gz = {id} for every point, then G is called semaregu-
lar. Note that all orbits in a semiregular group must have length [G : G| = |G];
therefore a transitive group is semiregular (and then called regular) it and only
if its order equals its degree.

ALGORITHM REGULARITY

Input ; a transitive permutation group G generated by X = {g1, 92, - -, g }-
Output Returns true if GG is regular, false otherwise.

(0) Initialize f to be true. Choose a point a € §1.
(1) Repeat the following three steps fori=1,..., k:

(i) Calculate v = o9 and define the map z: Q — Q by z(w) = v, where
w € G 1s such that w = o, for each point w € ).
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(i1) If z s not byective, set f equal to false and go to Step (2).

(1i1) If 2 does not commute with g;, for some j in 1,2,... k. then set f
to talse and go to Step (2).

(2) Return f.

REMARKS. This algorithm (due to Sims, unpublished) checks that the centralizer

of G 1n 5S¢ acts transitively. Then for any point 3 there exists an element z in
| . 3 A A R 1 .

that ceﬁntrahzer such that o®* = (. 'Ihengore Gy = 27 'Gpz = Gy: = Gy, for

every (3, and since G is transitive, G, = {id}.

"To conclude this section we mention Frobenius groups, which will briefly ap-
pear in Section 7. A Frobenius group i1s a non-regular transitive permutation
eroup in which every element g # id fixes at most one point. (The elements hav-
ing no fixed points form, together with id, the Frobenius kernel.) A Frobenius
group is not regular, but G, 3 = {id} for all points o # 3.

3. STABILIZERS, BASES AND STRONG GENERATORS

Stabilizers
A transversal T for a subgroup H of a group G is a complete set of (right) coset

SCHREIER’'S LEMMA. Let H be a subgroup of G = {(g1,...,9x). Then H s gen-
erated by the elements h; ; = t;g;6(tig;)™", where t; runs through a transversal

coset Hg.

As a consequence, it is possible to determine generators for the point stabilizer
G ., of a point « in time O(kn?): simply take all Schreier generators g, g; g:;‘w
where the g; generate (G, and, for any w in the orbit % the element g, (obtained
from the Schreier vector) is such that a9« = w.

Furthermore, it is now possible to give an algorithm to answer one of the most
basic questions that one might ask about a given permutation group: what 18
its order? Since the order of G is the product of the length of the orbit a“ and
the order of the point stabilizer G, one can determine the order by applying
the Orbit algorithm and the above point stabilizer construction repeatedly to a
succession of points aj, s, .. .,a, until Gu, as,....a, = {1d}.

However, if the subgroup H has index r in G, then Schreier’s Lemma yields
1 +7(k—1) generators for H. For a finite group G, the subgroup H will usually
be generated by a tiny fraction of this number. Consequently, it is impractical
to use the above point stabilizer construction iteratively, to obtain the order,
since the number of Schreier generators constructed as one moves down the
subgroup chain rapidly becomes unmanageable. Sims therefore introduced a

slightly different strategy in order to avoid constructing redundant generators.
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Before describing this strategy, we introduce the fundamental notions of a base
and strong generating set for a permutation group.

Base and strong gemerators

In order to design efficient algorithms for permutation groups 1t 1s necessary to
develop a computationally efficient method of representing the set of elements
of the group. In many branches of algebra, structures can be presented in terms
of some ascending chain of substructures, where the substructures are described
by means of a basis of some kind. Thus, a vector space may be presented by an
ascending chain of subspaces, the i-th member of which is spanned by the first
i elements of a basis (for 7 = 0,1,..., up to the dimension). Although groups
do not possess the linear structure that leads to the usual concept of a basis,
Sims [37] introduced a chain of subgroups which plays a very similar role to that
played by the chain of subspaces defining the echelon form representation of a
subspace of a vector space.

A base B for a permutation group G is a sequence of distinct points B =
(B1,--.,0k) from ©Q such that the only element of G that fixes each of them
is the identity. In other words the pointwise stabilizer Gg,,... g, 1s trivial. We
consider the chain of subgroups of G consisting of the pointwise stabilizers G'*) =
Gg,....3,_, of the first i — 1 base points, for i =1,2,...,k + 1. Then:

(id} =GFD < < ... <@? <@g =qG.

A strong generating set S for G relative to B is a set of generators for G
which includes generators for each stabilizer G(*) in the chain above, so for
i=1,2... k+1,

G = (G N §)13847.

A transversal for GU*Y in G will be denoted by U(*). The sequence of
transversals UD -.. U®) provides us with the required representation of the
set & since every element g € G has a unique representation g = ugugr—1---uUj
with w; € U®. Furthermore, A{) = ,BZ-G(“, is called the i-th basic orbat.
Note that the order of the group can be read off from the transversals, since
G| = [UR)| - |[uk-D|...|UM)|, and that transversals can be obtained in the
form of the Schreier vectors together with the orbits, using the Orbit Algorithm.
Finally, if B = (81,...,0k) isabase, and g € G, then B9 = (37, ..., ;) is called
the base image of g (relative to B). Note that its base image uniquely determines
g. For brevity, we will often write BSGS for base and strong generating set.
One of the important advantages of representing elements by means of base
images arises from the fact that for many interesting groups, the size of a base
B may be rather small compared to the degree of the group. For example, linear
groups, regarded as permutation groups acting on a vector space, always have a
base of size at most logn. The worst case occurs for the symmetric group S,:
it is clear that a base must contain n — 1 points (and that any n — 1 will do);
choosing B = (n,n — 1,...,2) one finds that G(*) = Sn—i+1, the full symmetric
group acting on the first n — i1 points (which form the i-th basic orbit). Then
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S =1{(1,2),(2,3),...,(n—1,n)} is easily seen to be a strong generating set for
S,,, with respect to B.

Betore we describe a method for constructing a BSGS, we show how knowledge
of it provides us with a membership test.

ALGORITHM STRIP

Input  {2; a permutation g € Sq; a subgroup G of Sq,, together with base B
and strong generating set S, basic orbits AW and transversals U,

Output An element h € S, and elements u; € U ) for j =1,2,...,k defined

as follows: if g € G then h = id and ¢ = ugugr—_1---uy; if g € G then
h # id.

(0) Initialize h =g, 1 =1, u; =1id for 3 =1,2,...,k, and f = true.

(1) Repeat the following step until either i = k + 1 (in which case g € GG) or
f = false (in which case g ¢ GG).

(i) Calculate /3{*‘ ;f ﬁ,ﬁ" & AW then f = false, else let u; be the unique
element of U for which 3% = (3 24, replace h by hu; b and replace i
by 1+ 1.

REMARKS. Algorithm Strip may be used as a membership test tor G.

In fact Algorithm Strip may be used in the slightly more general situation
where a base and strong generating set are not yet known for the whole of G,
but only for some subgroup of GG. For this application, Strip is modified to
return a drop-out level j in case g does not lie in the subgroup of G defined
by the transversals U (1) ... UW_ The drop-out level j is defined to be the
smallest integer such that ﬁ;} ¢ AU). The permutation h returned by Strip will
be referred to as the residue of g.

We now present a practical algorithm for determining a base and strong gen-
erating set for a permutation group. Again the main tool is Schreier’s Lemma
but this time, rather than building up a complete point stabilizer as suggested
before, whenever a new Schreier generator x is constructed, we use the modi-
fied form of Strip to test whether z lies in the subgroup H of G defined by the
existing partial BSGS. If it does not lie in H, we use it to create new Schreier

generators at the drop-out level for x and if 1t does lie in H we simply discard
it.

ALGORITHM SCHREIER-SIMS
Input ; a subgroup G =< g1,..-,9m > of Sq.

Output A base B and a strong generating set S relative to B for G.
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(0) Initialize B = (81) (any point of €2 mogjed by some generator g; of G),
S — {glv* . . 797?'&.}; S(l) — S; A(l) — I:S( > — B]q and 1 = 1.

While i > 0 repeat Steps (1) and (2).
(1) For each 6 € A and each s € S perform Steps (1)—(iii).

(i) Let gs be an element of G such that 37° = 6 and define g = gssgs- .

(i1) Apply algorithm Strip to g and < SU+1) 5. if g e< SO > continue
with Step (1). If g ¢< SUTY > et h be the residue of g and j its
drop-out level, replace S by S U {h}; if 3 = k + 1 then replace B by
(B1, B2, -+ Bk, Br+1), where Bri1 18 a point moved by h and replace
k by k+ 1.

(iii) Recalculate SV = {s € S : B = B1,...,0, = Bi—1}, AW =

ool : . . .. .
fS > and the Schreier vectors forl =1+ 1,2+2,...,7, and replace

1 by 7.
(2) If S has not been modified in Step (1), replace v by 1 — 1.

REMARKS. The theoretical complexity of BSGS algorithms is heavily dependent
upon the choice of data structures used to store the transversals U (4). Sims stored
each transversal U(") in the form of a Schreier vector and the running time of a
variation of his original algorithm was bounded by O(n® + kn?) [20]. Using the
so-called labelled branching data structure for the U, JERRUM [23] described a
variant of the original Sims algorithm with running time O(n° + kn?). KNUTH
27] describes another variant with running time O(n® + kn?).

The random Schreter method and verification

For larger degrees the Schreier-Sims algorithm considers too many Schreier gen-
erators in Step (1) and so a different approach must be adopted. First, a “prob-
able” BSGS for GG i1s constructed, and then an algorithm is applied which either
verifies that the BSGS is correct, or establishes that it is incomplete.

A “probable” BSGS may be constructed very quickly by using a fixed number
of randomly chosen elements of G in place of the products t;g; in Schreier’s
lemma (Random Schreier-Sitms algorithm). Thus, instead of taking every pair
0 and s to construct generators g in Step (1)(i), one chooses a random element
g € (G, and keeps repeating this until for m consecutive choices of ¢ nothing
happens in Step (1)(ii) (that is, each g lies in the subgroup of G found so far);
here m is an integer that is chosen beforehand to determine the probability that
the algorithm returns a complete base and strong generating set. An important
practical issue that arises with the Random Schreier-Sims method concerns the
need to somehow choose random elements g € G. This is usually done by taking
random words 1n the generators g;; to make these reasonably random, the words
have to be very long (depending on the degree of the group). It is easily shown
that for truly random g the probability that ¢ lies in the subgroup of G defined
by an incomplete base and strong generating set is less than 1/2. o
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The main inductive step in BSGS verification is the following: Suppose H
is a subgroup of G'#) with a certified BSGS. If we can show that H = G2
then we will have verified the correctness of the BSGS for (¢. In practice, H
will be the approximation to G(?) constructed by the Random Schreier-Sims

generators for H 1s assumed to be known by induction. The verification involves
comparing the index of H in G with the length of the orbit ;3f*;. This method
made 1t practical to construct BSGSs for groups having degree in the thousands.
In 1986, Brownie and Cannon developed a new verification algorithm based on
an 1dea of Sims. Instead of testing each of the Schreier generators given in
the above lemma for membership of H, we test a much smaller subset defined
in terms of representatives for the orbits of certain one-point and two-point
stabilizers. This algorithm, as implemented in Cayley, has constructed and

-----

milhon.

EXAMPLES:

(1) The Fischer sporadic simple group F'i5, has order 1255205709190661721292800
and possesses a permutation representation of degree 309,936. The random
Schreier-Sims algorithm constructs a BSGS for the group in 4176 seconds. A
further 3930 seconds is required by the Brownie-Cannon-Sims algorithm to verity
the correctness of this BSGS.

(2) The Harada-Norton sporadic simple group has order 273030912000000 and
possesses a permutation representation of degree 1, 140, 000. The random Schreier-
Sims algorithm constructs a BSGS in 8000 seconds. A further 19,700 seconds 1s
required to verify the correctness of this BSGS.

CoOOPERMAN and FINKELSTEIN [16] describe an algorithm which verifies strong
generation in O(n?) time. Experimental work is needed in order to establish
whether or not the Cooperman-Finkelstein algorithm is a practical competitor
to the Brownie-Cannon-Sims algorithm.

Base change
In permutation group computation, it frequently turns out to be desirable to
compute a strong generating set for the group G relative to a base different from
the current one of G. Of course, we could achieve this by running the Schreier-
Sims algorithm again using the new base to determine the choice of stabilizers.
However, once we have any BSGS for G there are much faster ways ot computing
a strong generating set relative to a new base. 'T'his technique will be referred
to as base change.

Suppose B = (B1,...,0k) is a base and S is a strong generating set for G
relative to B. Clearly, if v ¢ B, then B’ = (831, ..., Bk, 7) is also a base for G, and
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S is a strong generating set also relative to B'. Similarly, if B” = (81,..., 8k-1)
is a base for (G then again S is a strong generating set relative to B”. Finally, any
permutation of B will also form a base (but usually S will no longer constitute a
strong generating set relative to such a base). Any such permutation of the base
B may be obtained by performing a sequence of adjacent transpositions, that 1s,
transpositions of adjacent pairs of points 3; and 3;4+;. Algorithm Interchange
below constructs a strong generating set for the base B as modified by such a
transposition. leen this algorithm, changing base from B to C = (vy1,...,%)
proceeds as follows: First replace B by B' = (81, ..., 08k, 71,.-.,7v). Now using
Algorithm Interchange repeatedly, find a strong generating set S’ for B" =

(Y1, --->Y 01, -+, Bk) and return B = (7y1,...,y) and S’.
ALGORITHM INTERCHANGE

Input A base B = (31,...,0r) and strong generating set .S relative to B
for a permutation group G, an integer 3 with 1 < 73 < k, and basic orbits
AU) AU+

Output A strong generating set for G relative to B' = (31,...,8j-1,83j+1,

(0) Initialize T = SUT?) T = AU\ {B;, 8,41}, and A = g1 = {j;}.
(1) While ' # repeat Steps (1) and (ii).
(i) Choose v € I and let x € GY) be such that v = B7 .

(ii) If 57, ¢ AUTD then replace T by F\7<7> if 3%, +1 e AU+ then

let y € GUTY bpe such that By BL 1, replace T by T U {xy},
recalculate A = Bf”’ and replace by I'\ A.

(2) Return S"=SUT.

RH}MARKS. The new set S’ is obtained by adding extra generators T for the
new GYTY  which is the only stabilizer that changes. In fact, the new stabilizer
GU+D) equals Gg) , so is contained in the old G), and therefore the new

(j 4 1)-th basic orbit is contained in the old j-th basic orbit AU). It follows that
all points in the new (j + 1)-th basic orbit must be contained in the initial set
I, and at every stage either no point of v<?> lies in the new (5 + 1)-th basic
orbit, or all of them do. Now a point 87 is in the (5 + 1)-th basic orbit of B’ if

and only if [)’j_;i is in the (j + 1)-th basic orbit of B.

This algorithm, which is due to Sims [38, 39], runs in time O(n?), so that a
complete base change as outlined above will take O(kIn?). Some modifications

which speed up this procedure are described in [8]. In [5] a variant with running
time O(kn3) is described.

138



S S NSRS B AN

T T T P oA R P B AR A M M e 4

A quite different approach involves using the random Schreier-Sims algorithin
to construct a set of strong generators relative to the new base. In this situa-
tion, since the order of the group is already known, the verification of correctness
of the BSGS 1s trivial. This approach was first discussed by LEON [28] and is
employed in the Brownie-Cannon-Sims verification algorithm. Recently, Coop-
ERMAN, FINKELSTEIN and SARAWAGI [18] have described a random base change
algorithm having a very favourable running time.

4. SOME APPLICATIONS

In this section we mention some easy applications of the algorithms in the pre-
vious section to the construction of various interesting subgroups of a given

permutation group.

The first application is (an alternative way) to compute the stabilizer (G, ... a,
for any sequence of distinct points «q, ..., q;.

ALGORITHM SEQUENCE STABILIZER

Input 2; a subgroup G of S generated by {g;,...,gx} and equipped
with a base B = {3, ..., 0.} and strong generating set; a sequence
A= (aq,...,qp) of points of €.

OUtPUt GC’EI veenyCX]

(1) Apply the Interchange Algorithm repeatedly to change the base to (o, ...
o, Biv1, - -, Br), where Biyq,...,08, € B.

(2) Return the (I + 1)-th stabilizer G+,

REMARKS. It should perhaps be remarked here that it is much harder to de-
termine the set stabilizer G, . . .}, that is, the subgroup whose elements leave
{ay, ..., } invariant as a set but not necessarily pointwise. In fact the problem
of finding set stabilizers has been shown to be at least as hard as the well-known
problem of testing graph isomorphism (which is one of the famous problems
in complexity theory that is not known to be solvable in polynomial time nor
known to be NP-complete). See also sections 5 and 6.

The second application is that of determining the normal closure ot a given
subgroup (or subset) of G. The normal closure nclg(Y) of a subset Y in G is
the intersection of all normal subgroups of G containing Y .

It is readily proved that nclg(Y') is generated by elements g tyg, for g € G
and y € Y.

ALGORITHM NORMAL CLOSURE
Input 2 a subgroup G of Sq generated by {g1,...,gx}; asubset ¥ C G.

Output Base and strong generators for nclg(Y)

139



(0) Initialize N =Y and W =Y and B =S5 =.

(1) Repeat the following step until W =:

(1) Choose w € W, replace W by W \ w and perform Step (a) for every
generator g; of G.

(a) Let h = x~'wx; apply Algorithm Strip to test whether or not
he€ N; i h¢ N, then replace N by N U{h}, use a version of
the Schreier-Sims Algorithm to replace B by a base and S by a
strong generating set for < N >, and replace W by W U{h}.

(2) Return the base B and strong generating set .S for < N >= nclg(Y).

REMARKS. In [17] an algorithm is described that uses only one application of
the Schreier-Sims Algorithm, albeit in a group of degree 2n.

We now have available the tools to calculate commutator subgroups. If H
and K are subgroups of GG, the commutator subgroup [H, K] is the subgroup of
G generated by the commutators [h, k| = h='k~'hk, with h € H k € K. If

generators tor normal subgroups H and K are given, H =< hy,...,h, > and
K =< ki,...,ks > say, then |[H,K| = nclg({[h,k] : h € {hi,....h.},k €
{k1,...,ks}}). So commutator groups of normal subgroups may be found using

the Normal Closure Algorithm above. This immediately enables us to calculate
the derived series and the lower central series for a permutation group.
The derived series for GG is the chain of subgroups

G=G®>agl>...>aql>qgu+th > ...

3

where GUTY = [GU) GU)]. If the series stabilizes at G, that is, if G(*¥) = G
for k£ > j, then GU) is called the solvable residual of GG, and is written G(°°). A
group is solvable if G(*) = id. Hence we have a solvability test.

The lower central series for GG is the chain of subgroups

G =71(G) > v2(G) > -+ 2 ’Yj(G) > ’Yj+1(G) >

where v;11(G) = [v;(G),G]. If v(G) = id for some [, then G is nilpotent.
Our ability to compute commutator subgroups provides a nilpotency test for
permutation groups.

5. BACKTRACK SEARCH ALGORITHMS

Backtrack search

An important technique in permutation group theory is that of backtrack search.
It 1s typically applied to find the subgroup of a given permutation group whose

elements satisfy some (group theoretic) property, such as centralizing a given
element. _
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Backtrack search is a standard technique in computational combinatorics be-
ing used, for example, in the construction of automorphism groups of combi-
natorial structures, such as graphs, codes, block designs etc. Typically, these
automorphism groups are regarded as subgroups of the full symmetric group of
the underlying point set.

Although the principles of backtrack search are not hard to understan d, they

.....

terms. Therefore, we will illustrate backtrack search using the (simplistic) exam-

ple of finding the automorphism group of the cube graph (in three dimensions).
EXAMPLE. Consider the automorphism group of the cube graph. Obviously,

this will be a subgroup of the full symmetric group on 8 points Ss. The group
G we are seeking will act on the set 2 consisting of the 8 vertices of the graph,
as in Figure 1.

FI1GURE 1.

The elements of the group Sg may be represented in the form of a tree having
8! leaves and just one root: Start at the root, and let one branch correspond to
every possible image of the point 1 and label each node with that image (these
are the 8 nodes at level 1). Continue this process for every new node, until all
possibilities are exhausted (at level k there will be n+1 — k branches originating
from each node).

This tree is merely a way of enumerating all elements of Sy, so that each
element corresponds to a path from the root to some leaf. In fact we could have
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height 7, where each path from root to leaf would correspond to an image of the
base (1,2,3.4,5,6,7).

Backtrack search traverses the search tree in such a way that large subtrees
may be ignored. Thus, the automorphism group G of the cube graph may be

\\\\\

restrict to a base for G rather than to a base for Sg. In this case it is easy to
see that the cube 1s ixed pointwise if we fix three suitable points. Choosing the
points 1,2, 3 for our base (it is usual to rearrange points in such a way that the
base points come first), this means that we have reduced the tree search to the
first three levels of the tree for Sy, part of which is shown in Figure 2.

Giiven a base, the next thing we require is an algorithm that, given a base 1mage
(Y1 v25 ..., Y&) as input, either extends this image to a unique automorphism in
(r, or reports that no such extension exists. For the cube graph this is very easy
to do, using just the adjacency relation. For example, it is clear from Figure 1
that the base image (1,4, 3) uniquely extends to the automorphism interchanging
the points 6 and 8, and the points 2 and 4, while leaving the others invariant. On
the other hand, the base image (1, 3, 2) cannot be extended to an automorphism,
since the image 3 of 2 is no longer adjacent to the image 1 of 1.

level 1 1

FIGURE 2.

Proceeding in this fashion, it is easy to enumerate all 48 elements of G. But
this is only practical because our example is so small. We seek a more efficient
way of organizing the search which, moreover, provides more structural infor-
mation than just the list of elements for G. This is where the backtrack search
starts to pay off: firstly, it will actually consider far fewer than 8-7-6 elements,

and secondly, it will yield strong generators for G with respect to the chosen
basis.
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lexicographical ordering on the base images. Thus (2,3,4) < (3,1,2) < (3,1,4)
etc. Note that, since base 1mages correspond injectively to group elements, this
gives an ordering on the elements of (G. In Figure 2 this means that we traverse
the tree from left to right.

We start the backtrack search at level 3, looking at all base images of the form
(1,2, %), i.e. we search the subgroup G = G, ,.

The first element to be considered is the base image (1,2, 3), corresponding to
the identity element of G. This is, of course, an element of (. The next two base
images, (1,2,4) and (1,2, 5) do not extend to automorphisms, since neither 4 nor
5 is adjacent to 2 in the graph. But (1,2,6) does extend to an automorphism,
namely. in cycle notation (leaving out cycles of length 1), to g; = (3,6)(4,5),
which will be the first generator of G. Since neither (1,2,7) nor (1,2,8) extend to
automorphisms, g; will be the only generator for the subgroup (7, » that fixes the
first two base points. The search has exhausted all possibilities at level 3, so we

that is, all base images starting with (1,3): we are now searching G \ iy » for
elements of G. However, no such element will extend to an automorphism, and
we go on to base images starting with (1,4). In fact, we may use the ‘extend’
algorithm to determine, given an initial segment of a base image ot length 2,
either the (two) possible extensions or the fact that it cannot be extended. For
(1,4) one obtains the two possible extensions (1,4,3) and (1,4,8). The first of
these corresponds to the second generator go = (3,4)(6,8) of . The base 1mage
(1,4, 8) corresponds to the element (2,4,5)(3,8,6) = g1g2 ot (7, which is already
in the subgroup < g, g2 > of G. If we continue in this way, we still enumerate
all elements of G, perhaps recognizing now when we do not have to extend our
set of generators.

However, there is a technique for pruning the search tree using the subgroup
generated so far. This is called the first in the orbit test. The orbits of < g1, g2 >
are {1},{2,4,5},{3,6,8},{7}. It is only necessary to consider new base images
for which the image is first in its orbit (that is, if it is the smallest element 1in
the orbit). In general, when searching G\ GO+ | one only need consider base
images (Y1, .-, Yie1, Yiy- - -, Yk) With 7 first 1n 1ts orbit. In our example, we are
currently searching G2 \ GB) = G, \ Gi.2, so we need only consider the base
images (1,2, *) and (1,3, %) at this point: both have already been considered in
fact, hence we go up one level and start searching G\ G® = G\ G,. Here
again we only need consider base images of the form (2, *,*) and (3,*, *). The
first partial image in G that extends, (2, 1, x), yields (2, 1, 4) (and (2,1,5)). Now
(2, 1, 4) corresponds to the element (1,2)(3, 4)(5,6),(7,8) = g3 of G, which 1s not
in < ¢gi1,¢2 >. But the only orbit of < ¢g1,92,93 > 1s 1n tact {1,2,3,4,5,6,7,8},
and since now only 1 is first in the orbit and we have already dealt with that
case, we may go up one level. Since we are already at the top level, we terminate
having found the complete automorphism group, G =< ¢1,92,93 >.

Figure 3 shows the small part of the tree which has been searched.
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REMARKS. When constructing the automorphism group of a combinatorial
structure, as 1 our example above, the overgroup H in which the search for
G is conducted, is the full symmetric group Sq,.

The first in its orbit criterion that is used in Step (2) is based on the following
property relating g and its corresponding base image (Y1se ooy Y0):

g 15 first in its left coset gH e Vi : ~; 1s first in the orbit fy;” ..
Usually it is too expensive to calculate H'Y)| because it involves a base change.
There is also a criterion for being first in the right coset:

g is first in its right coset Hg <= Vi: 3¢ isfirstin AY.
Applying both criteria to base images simultaneously is an attempt to restrict
consideration to one element from each double coset HqgH.

Applications

specific to each particular type of problem are used to prune the search tree.
Two techniques often used in backtrack searches for subgroups ot (G satistying
a certain property, are the choice of a suitable base, and the utilization of known

rrrrr

subgroups. Careful choice of the base enables us to apply our pruning criteria in
that the first in the coset criteria are much more effective early in the search.
Rather than explaining this in detail, we give a few examples of problems for
which backtrack algorithms are commonly used. For details we refer the reader
to |5, 8.

To find the centralizer C(z) = {g € G : gz = zg} of an element z € G one
applies a base change to (G so that the base consists of the first A& points which
appear in the initial cycles of z, (ideally the base is contained in the first cycle).
Given the image of the first point in a cycle, the images of all other points in
the cycle are determined: suppose that 3,41 = 37 and that g centralizes z and
let y; denote the image 8Y; then v = 8}, = 8,7 = 8] =7

A slight modification yields an algorithm for determining the centralizer C'c; (H)
— {g € G: gh = hg for h € H} of a subgroup H of G. In this case one chooses
a base compatible with the orbits of H. In particular, this provides a way of
calculating the centre Z(G) = {g € G: gx = zg forall x € G}.

Backtrack algorithms to determine the normalizer Ng(H ) =4{g€g: gH =
Hg} of a subgroup H of G have also been developed.

Finding set stabilizers Gq,.... «,} 18 another application of backtrack methods.
Although, as we mentioned, this is a hard problem (from a theoretical point
of view), backtrack can be applied successfully. Here one can use the known
subgroup technique, since the stabilizer of the set 5 = {aeq, ..., will contain
the pointwise stabilizer G, ... «, as a subgroup. Using base change, if necessary,
we choose a base B such that a....,q, appears as an initial segment: B =
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(yy..o, e, B1,...,08s). The important thing is that now G("t1 is a known
subgroup of the stabilizer Gy, . ,.1.- As a consequence, only base images of
the initial segment (rather than of the whole base) have to be considered, since
each such image determines a coset of GG (r+1) in G{a;.....ay, and the elements of
such a coset either all belong to Gy, . ,1 or none do.

Finally, we mention a backtrack algorithm for finding the intersection H; N Hs
of two subgroups H; and H; of G. Here one chooses a common base for both
subgroups, so that base images can be compared directly.

The BSGS backtrack search of a permutation group was introduced by Sims
in 1970, when he described backtrack algorithms for computing centralizers and
intersections of subgroups. Over the next decade, Butler, Cannon and Sims
developed backtrack searches for constructing set stabilizers, normalizers, Sylow
p-subgroups and for testing conjugacy of elements and subgroups (see [38], [39],
5], [6], [8]). HoLT [22] presents a backtrack algorithm for computing subgroup
normalizers which employs many specialized tests to prune the backtrack search
tree. The performance of his algorithm is superior in many cases to the Butler
algorithm [6].

Very recent work of LEON [29] represents a major step in the evolution of back-
track algorithms for permutation groups. The efficiency of a backtrack search
1s heavily dependent upon the information available to prune the search tree.
Using the idea of successive refinement of ordered partitions, first introduced by
McKAY [32, 33] as part of his highly successful graph isomorphism algorithm,
Leon is able to devise new and powertul tests. An early implementation of a set
stabilizer algorithm based on these ideas demonstrates performance that is dra-
matically superior to the “first generation” set stabilizer algorithm. As a result
of this work we can expect a new generation of backtrack algorithms, exhibiting
superior performance, to emerge in the near future.

6. HOMOMORPHISM METHODS

Homomorphisms

The use of structure-preserving mappings is a powerful tool in the design of
algebraic algorithms. Each homomorphism ¢ of the permutation group G onto
a group H 1s determined by a unique normal subgroup N of G (the kernel of
¢). Unfortunately, if NV is an arbitrary normal subgroup of GG, then the quotient
group G'/N need not have a permutation representation of reasonable degree.
Even if the quotient were known to possess a representation of small degree, it is
not clear how one might construct this representation without first constructing
the regular representation of G/N. Consequently, in practice, given an arbitrary
normal subgroup N, we are restricted to constructing quotients of G by N
in situations where |G : N] is less than a million. This situation is partially
relieved by the fact that there are two important kinds of permutation group
homomorphisms that permit very efficient computation. _. |
Firstly, as noted in Section 2, the restriction of the action of G to a G-invariant
subset A of Q2 defines a homomorphism of G into a subgroup G* of the symmetric
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group Sa; we will call such a homomorphism a constituent homomo rphtsm.
Secondly, if I' is a G-invariant partition of Q0 (i.e. a system of imprimitivity
for G in its action on ), the action induced b y (G on the sets of I', defines
a homomorphism of GG into a subgroup G' of the symmetric group Sp. Such
a homomorphism will be called a blocks homomorphism. The ‘combination of
these two homomorphisms enables us to perform a crucial reduction. Takin o A
to be an orbit of G, we obtain a transitive group H = G2, acting on the set. A
Now taking I' to be a maximal proper H-invariant partition of A, we obtain a
primitive group K = H' acting on T

Suppose that a BSGS is known for GG. Let ¢ : G — H be a homomorphisni.
In order to compute effectively with ¢ we need to have efficient algorithms to
solve the following problems:

(a) Construct a BSGS for im¢ and ker¢ directly from that for (.
(b) Determine images ¢(g) for ¢ € G and preimages ¢~ '(h) for h € H.

(¢) Construct a BSGS for ¢(7), with I < GG and for o7 ' (K), with K < H, from
the given ones for I and K.

E:fficient solutions for the constituent and blocks homomorphisms were developed
in the 1970’s by Butler and Cannon (see Butler [7]). Let us first consider the
case where ¢ is a constituent homomorphism.

ALGORITHM CONSTITUENT HOMOMORPHISM

Input (2; permutation group G acting on 2 equipped with BSGS; a G-
invariant subset A of €2.

Output Bases Byer, B and strong generating sets Sier, Sim for ker¢ and ime
of the constituent homomorphism ¢.

of A in G; choose points 31, ...,8s of Q such that B = (ay,...,0,01,...,0s)
1s a base for (.

(1) Choose points ay, . ..,q, of A such that G, ... «,. 18 the pointwise stabilizer

(2) Apply the base change algorithm to obtain a strong generating set S for G
relative to B.

(3) Put Bim — (6}51, - . ,CXT) and Sirn — @(S \ S(T+1)).
(4) Put Byer = (B1, ..., 3s) and Sker = G(r+1)

REMARKS. Thus, for the constituent homomorphism, problem (a) is solved
by changing the base for G so that the points of A appear at the beginning.
Computing the image of an element is then trivial. Now consider an element
h € im¢. Viewing A as a subset of 2 and using the BSGS set tor &, construct
an element g € G such that (a1,...,a.)9 = (Y1,---,%) = (aq, - - .o, ). Since
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¢~ Y (h) = kerg - g, we have solved problem (b). To obtain a BSGS for the image
of a subgroup I of GG, one proceeds exactly as in the above algorithm, with
(G replaced by I. Finally, to obtain a BSGS for the preimage of a subgroup
K of H, one changes base to obtain strong generators 71" relative to the base
B = (a,,...,qa,), and forms the preimage for each element of 7' as above. Then
o~ HT)uU S*+D is a strong generating set for ¢~ '(K) with respect to B.

We now consider the case where ¢ is a blocks homomorphism. Assume that
G acts transitively on the set 2 and suppose that I' = {¥,,..., ¥, } is a system
of imprimitivity for GG. It is convenient at this point to consider the action of
G on the set Q' = T U Q. Applying the previous lemma with Q = Q', A =T
and a; = U, forz = 1,...,r, immediately gives us a BSGS for im¢ and for kerg.
The only complication is that we have to compute the chain of stabilizers for
the blocks:

G>Gy, 2Gy, v, 2 -2Gy, . v,

in place of the chain of sequence stabilizers

G 2 GCH 2 Gt’haﬂz 2 2 Gt’ll,---aﬂw

Tl i -

Although the construction of the stabilizer of an arbitrary set is known to be
hard (as we saw), the stabilizer of a block may be computed efficiently using the
following simple algorithm.

ALGORITHM BLOCK STABILIZER

Input  €2; permutation group G acting on €2, equipped with BSGS; a block
v,

Output Generators for the block stabilizer Gy.

(1) Choose o« € V; use the point stabilizer Algorithm to obtain generators X
for Go. PutY = {id}.

(2) Calculate the orbit o“. Perform Step (a) until a<¥> = ¥ N a“,

(a) Choose v € (¥Na®)\a<Y> and find g € G such that &9 = ~. Replace
Y by YU {g}.

(3) Return X UY.

REMARKS. The correctness of this algorithm is based the following observation
8]: if X is a generating set for G, with & € ¥, and Y is a subset of GG such that

a<t> =VvnN a%, then Gy =< X UY > (because < X UY > is transitive on
UNa® and < X >,= Gy).
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ALGORITHM BLOCKS HOMOMORPHISM

Input {}; permutation group G acting transitively on 2, equipped with
BSGS; a system I' = {¥,... ¥, } of imprimitivity for (.

Output Bases Byer, iy and strong generating sets Sy.., Si,, for kereé and ime
of the constituent homomorphism ¢.

(1) Choose points B1,...,8s of Q such that B = (Wi, ..., W, B, .., 3s) 18 a
base for G in its action on I' U ().

(2) Apply base change and the Block Stabilizer Algorithm to obtain a strong
generating set S for GG relative to B.

(3) Put Biy, = (¥q,...,¥,.) and S;,, = (S \ Sy,
(4) Put Byer = (81,...,0s) and Sker = ST

REMARKS. This provides a solution to problem (a) for the blocks homomor-

homomorphism, with a slight complication caused by the fact that we have to
translate between the action of G on I' U 2 and its action on Q.

Sylow subgroups
We now apply these i1deas to design an algorithm for constructing the Sylow
p-subgroup P of a permutation group G.
for this problem. One method involves constructing P by means of successive
cyclic extensions. An initial subgroup P, of P is sought by examining a random
selection of elements of G for one having order divisible by p. Suppose the
subgroup F; of P has been constructed. In order to construct F;4,, we require
an element x € G\ P; such that z normalizes F; and #? € FP;. Rather than
searching the whole of G for such an element we may restrict our search to
some suitably chosen subgroup T of ¢G. Thus, Cannon [13] and Butler and
Cannon [10] choose T to be Cg(z) for an element z in the centre Z(F) such
that |sylow (Cg(z))| > |F;|, while Holt [22] chooses T' to be N (F;). In either
case a backtrack search is employed to construct T' (see Section 5). The Butler-
Cannon algorithm then uses a second backtrack procedure to search T for a
suitable extending element x. These backtrack-based methods become rather
inefficient once the exponent of p in G exceeds 15 or 16.

The second approach utilizes the following lemma.

LEMMA. Let P be a p-group acting on the set 2, with orbits Ay, ..., A,. Let K
be the kernel of the natural action of Cs,(P) on the set {A1,...,Ar}. Then K

18 a p-group.

This approach was suggested by P. Neumann in 1983 and was subsequently
developed into a practical algorithm by Butler and Cannon [10].
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ALGORITHM SYLOW
Input ; a permmutation group G acting on {2 with known BSGS; a prime
number p.
Output Sylow p-subgroup P of G.
(0) Put Py = id. If p does not divide the order of G, put P = P, and terminate.

(1) Put 1 =1, and find P, =< x > by generating random elements y of G until
y is found with order o divisible by p, whereupon x = y™/P" | with p" being
the largest power of p dividing m.
Repeat the following steps until termination.

(2) Locate an element z # 1 in Z(F;) such that |sylow (Cq(2))| > |Pi|; if no

such element can be found, P = P; and terminate. Find C = Cg(z).
Further, let I' be the fired point set of C' and let A = Q\ T.

(3) Construct the constituent homomorphisms ¢ : C — C> and v : C — CL.

(4) Let ¥ denote the partition of A defined by the cycles of ¢(z). Construct
the blocks homomorphism o : C? — (C®)*. Recursively compute the

Sylow p-subgroup Q of o(¢(C)). Let Q be the preimage of Q in C, so
Q=0¢""(c7(Q)).

(5) Recursively compute the Sylow p-subgroup R of ¥(Q). Put P11 = v~ Y R).
(6) Replace 1 byt + 1.

REMARKS. Note that before applying the lemma, we first restrict the centralizer
(' so as to act solely on the p-cycles. Experience has shown that this additional
reduction of the degree leads to better performance. If it is possible to quickly
locate an element z of order p in the centre of sylow,(G), then rather than
constructing our way up a chain of subgroups to P, we may obtain P directly
by taking ' in the above procedure to be Cg(z).

Experimentally, it has been found that this algorithm generally runs a great

homomorphisms has been suggested by ATKINSON and NEUMANN [2].

KANTOR [24] and KANTOR and TAYLOR [26] show that the Sylow p-subgroup
of a finite permutation group may be found in polynomial time. However, their
proot does not appear to provide the basis for a practical algorithm.

7. COMPOSITION SERIES

Composition series of a permutation group
A composition series for (G is a series

{ld} :-H()‘:]H]_QHQQ"'{]HTEG

150



ETTE A A TR e PR I St i ) P i bRt S e
(i L L) et e i ad febel et [ B

A Lt P A Aot | A b i MR e A R P A L L M

of subnormal subgroups H; such that each quotient H, /H,_y is simple (1 <1 <

N ——

r). (These subgroups are called subnormal because while H, is normal in H, 1,
it is not necessarily normal in G.)

Suppose (G 1s an arbitrary permutation group. Using the techniques described
In section 6 we may construct a subnormal series as above such that each quo-
tient H;/H,_, is primitive (1 < ¢ < 7). Thus, the problem of constructing
a composition series for G has been reduced to the problem of constructing a
composition series for a primitive group. However, the possibilities for the struc-
ture of a primitive group are severely constrained by the O’Nan-Scott Theorem,
as we will see below. Analyzing the structure of (G using this theorem will re-
quire a base and strong generating set; but before constructing these it 1s highly
desirable to recognize the case in which ' contains the alternating group A,,.

The detection of A,, as a subgroup

Assume that G acts faithfully on the set €2 of cardinality n. We wish to devise
a fast algorithm for deciding whether or not the alternating group A4,, is a sub-
group of G. Of course, if a BSGS is already known for G/, the question may
be settled instantly by examining the order of G. However, if the degree of G
is large, it is very important to detect the presence of A, betore attempting to
construct a BSGS for G. We outline a fast Las Vegas algorithm for this problem.
Upon termination, our algorithm will have either proved that A, < G, or have
established that it is unlikely that A,, < G.

The starting point for our algorithm is the following theorem due to Jordan.

THEOREM. Let G be a primitive permutation group of degree n contarning a
p-cycle, where p is a prime such that p < n —3. Then A, < G.

Thus, if a primitive permutation group contains a cycle x of prime length fixing
at least three points, then A4, < G; numerous workers have extended this result
to the case where x is a product of ¢ cycles of length p, with p prime and
1 < g < p (see WIELANDT [41, I1.13]). The most general theorem of this type
was proved by PRAEGER [36]. Before stating the theorem it 1s convenient to
introduce the following notation. A Jordan element for a primitive permutation
sroup G of degree n is an element of prime order p consisting of ¢ cycles of length
p (with 1 < ¢ < p) and &k = n — gp fixed points. A Jordan element which cannot
belong to any smaller subgroup of S,, than A, will be called a Jordan witness

(for A,,).

THEOREM (PRAEGER). Suppose G is a primitive permutation group of degree
n for which A,, £ G and which contains a Jordan element. Suppose further that
n % m(m—1)/2 (for any m) and n # q.

Then k < 5q/2 — 2.

For small values of ¢ better bounds on k are known (see [41, II.13]). Following
Praeger’s result, LIEBECK and SAXL [30] produced a complete classification of all
eroups containing a Jordan element for which A, £ G. Taken together, Jordan’s
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theorem and its generalizations by Manning, Praeger, Liebeck and Saxl allow
one to determine whether a Jordan element is in fact a Jordan witness.
We now outline a variant of the algorithm [12], in which the construction of a

IIII

In Step (3), the fact that all 2-transitive groups are known ([11, 12]) is used;

thus, in both (2) and (3), the classification of finite simple groups is used. (This
assumption may be avolded at some cost in efhiciency).

ALGORITHM DETECT ALTERNATING
Input (2; a permutation group G acting on 2; a positive integer m.

Output True if A, < G, false otherwise.

(1) Apply the primitivity test of section 2. If G is found to be imprimitive, note
that A,, £ G and terminate.

(2) Generate m ‘random’ elements of G and examine their powers for the pres-
ence of Jordan elements. Determine whether any of these Jordan elements
s actually a Jordan witness. If such a witness is found, note that A,, < G
and terminate.

(3) Construct a BSGS for G. If, during its construction, G is found to be t-
transitive (t > 2) and if the degree of G does not correspond to that of a
t-transitive group other than A,, or S,,, abort the construction and report
that A,, < G. If the construction proceeds to completion, report whether

C————

or not A, < G (by calculating the order) and terminate.

REMARKS. If a suitable value has been chosen for m, the probability that
A, < G will be small once one gets to the stage where a BSGS has to be
constructed. The trick with this algorithm is to choose m sufficiently small so
that the cost of the algorithm is not excessive when A4, Z (G, but sufficiently
large so that the probability of initiating the BSGS construction on a group
containing A,, is small.

What is the probability of finding a Jordan witness among a sample of m

elements chosen from G?7 The following result of P. Neumann [34] provides a
partial answer; see also [19].

LEMMA. Let j(n) denote the number of elements in S, which contain exactly
one cycle of length p, with p < n — 3 prime, and are such that the lengths of all
the other cycles are not divisible by p. Then:
i) 1
n! log,(n)

> €, for a non-negative function € € O((log, n) ~2).

Since random elements are also used in the primitivity test, in practice, the test
for primitivity and the search for a Jordan witness are performed in parallel.
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The major technical difficulty with the above algorithm concerns the need to
generate randomly chosen elements of (. The only way of producing elements
in G is to evaluate words over the generating set X. However, it is not difficult
to show that in order to generate unbiased elements it is necessary to choose
extremely long words. If this is done, the cost of the algorithm is prohibitive.
In practice, therefore, we are forced to work with relatively short words in the
generators. Consequently, the elements of G that we examine may not represent
a truly random sample.

Example One hundred groups generated by pairs of random permutations on
100, 000 letters were constructed. The algorithm correctly determined that the
alternating group of degree 100,000 was a subgroup of each of these groups.
The mean recognition time for the 100 trials was 24 seconds with a standard
deviation of 20. Repeating the trial with permutations of degree 1,000, 000, gave
a mean recognition time of 296 seconds with standard deviation 240.

The O’Nan-Scott Theorem

Let G be a primitive group on the set (2. Let N be a minimal normal subgroup
of G. Then N is transitive and its centralizer Cq (V) 1s also a normal subgroup
of G. There are two cases depending upon Cg(N):

(1) If Ca(N) # 1, then Cg(N) is transitive, so that both N and Cg(N) are
regular. Note that if Ny and Ny are distinct minimal normal subgroups of
(G, then Ny < C(Nyp) and Ny < Cn(N3). Thus, if N is abelian, it is the
unique minimal normal subgroup of &G, while if it is non-abelian, G has
exactly two minimal normal subgroups (/N and C¢(/N)). Further, since N
and Cg(N) are left regular and right regular representations of the same

group, they are isomorphic.

(ii) If C¢(N) = 1, then N is non-abelian and it is the unique minimal normal
subgroup of GG, and G is isomorphic to a subgroup of the automorphism
group of V.

Recalling the fact that a minimal normal subgroup of a finite group is a direct
product of isomorphic simple groups we see that, in every case, the socle of &
(the product of its minimal normal subgroups) is a direct product of isomorphic
simple groups. A somewhat more detailed analysis of the possible structure ot
a primitive group is provided by the O’Nan-Scott Theorem [11, 24, 35].

THEOREM (O’NAN-ScOTT). Let G be a primitive group acting faithfully on a
set ) of cardinality n. Then one of the following cases holds:

(I) G has an elementary abelian regular normal subgroup of order n = p¢, for
some prime p and some d > 1.

(II) The socle of G 1is a direct product N = Ty x --- x T} of isomorphic non-
abelian simple groups T;. In this case one of the following must hold:
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(1) 2 can be identified with a set Q x --- x Q (k copies), so that n =
n* = |Q|*, and the action of G is the wreathed product action; more-
over there 1s a faithful primitive permutation representation on Q of

a group contarming 11 as a normal subgroup.

(i1) n = |T1|1*=V® for integers a and b with ab = k > 1, and N, =
Dy x---xXDy for o € Q, where D; is a diagonal subgroup of T(i—1)a+1 X
o+ X Lja; furthermore G acts transitively on {Ty,..., Tk} with block
system {{T(i=1ya+1,---sLia} : 2=1,...,b}.

(iii) n = |T1|*, with k > 2, and G acts transitively on {Ty,..., T}

(iv) n = |T1|'§', with k > 4, and G has two orbits on {Ty,...,Ty} of length
k/2.

Abelian socle

From the analysis above we see that an algorithm is required for constructing an
elementary abelian regular normal subgroup of G (if it exists). We suppose that
n = p?, for some prime p. Let us denote an elementary abelian regular normal
subgroup of G (if it exists) by N. Now N is equal to the largest elementary
abelian normal p-subgroup O,(G) of G. One approach is to calculate O,(G)
by computing the Sylow p-subgroup P using the method of Section 6, and then
Intersecting P with its conjugates (using the intersection algorithm of Section
5). However, for d > 20 it becomes expensive to compute P and so we seek an
alternative approach to the computation of .

T'he approach we describe here is due to P. Neumann and involves constructing
a small set of elements, one of which is guaranteed to lie in N. Then N may be
obtained by applying the normal closure algorithm of Section 4 to the subgroup
generated by each of these elements in turn. Since N is very small, an application
of the normal closure algorithm in this context is cheap.

The starting point is the following easy lemma, see Neumann 134].

LEMMA. Let G be a permutation group containing a reqular normal subgroup N.
Let H be a subgroup of G with fized point set T, where 'l > 2, and let C be the
centralizer of H in GG. Then:

(1) C' acts transitively on T, and

(i1) C NN acts regularly on T .

It 1s obviously desirable to choose the subgroup H in such a way that its central-
1zer 1s as small as possible. Consequently, we take H to be a two point stabilizer
in G. In fact, by taking H to be the stabilizer of the first two base points 3y, b2,
we obtain a suitable H without the need for any additional computation. The

general structure of the elementary abelian regular normal subgroup algorithm
1s as follows.

ALGORITHM ELEMENTARY ABELIAN REGULAR NORMAL SUBGROUP

Input  {2; a primitive permutation group G on 2 equipped with a BSGS.
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Output An elementary abelian regular normal subgroup N for G if it exists.

w' - — d . ) : o B . W N . ) | :
(1) Let p be prime such that n = p®; if such p does not exist, then G does not
have an elementary abelian regular normal subgroup: terminate.

(2) If G s regular, then set N = GG and terminate.

el

(this is easy since the order of G is small).

(3) If G is a Frobenius group, then calculate the Frobenius kernel and terminate

(4) Let p1, B2 be the first two base points of G; we may assume H = Gy, 3, #
{id}. Calculate the fizxed point set T' of H. If || is not a power of p, then
terminate, since G does not have an elementary abelian regular normal
subgroup.

(5) Calculate C' = Cq(H); if C does not act transitively on I', then terminate
since G does not have an elementary abelian reqular normal subgroup.

(6) Calculate P = O,(CY); if P does not act transitively on I, then terminate
since G does not have an elementary abelian reqular normal subgroup.

(7) Calculate the centre Z of O,(C).

(8) For each z € Z for which < z > acts reqularly on 0, compute N =ncle; (<
z >). If some N 1s regular, return N and terminate; if no element of Z
generates a reqular normal subgroup, then G does not possess an elemen-
tary abelian regular normal subgroup.

If G does contain an elementary abelian regular normal subgroup NV, 1t 1s a
straightforward matter to construct a composition series {id} = Ny a9 Ny < [V, <
.-~ a N, = N for N. We recursively compute a composition series {id} =
Go<Gqi1a9Go <.+ <G, tor the stabilizer GG, of a point in (. The series

{id} = Ng< Ny <Na<---aN, =NaNGaNGy<---aNG, =G
1s then a composition series for G.
REMARKS. Since (8;,32) is a base for C!', we have |C'| < |T'|(|T'| — 1). Con-

sequently, C' is a very small group and O,;,(CF) may be computed using the
Sylow p-subgroup algorithm.

Note that O,(C') may be obtained at little cost. The kernel ot the homomor-

is the p-primary part of the nilpotent group < Z(Gpg, 3,), £ >, where R 1S the
subgroup of C generated by the preimages of a set of generators for O,(Ch).
For further details the reader should consult [34].

E.XAMPLES.
(1) Consider G = S35 1 S which has degree 1024 and order



1384756746908520303863323978879191673089370263814838157312 - 1014,

Taking (1,32 to be the first two points of the base computed for G, we obtain
2 set I’ of cardinality 2 and a subgroup C having order 2. Exclusive of the
time taken to construct a BSGS for (G, the algorithm, as implemented in Cay-
ley, establishes that G has no elementary abelian regular normal subgroup In
100 seconds. This time is completely dominated by the 96 seconds required to
compute Ca(Gs, 8,)-

(2) Consider G =AGL(12, 2) which has degree 4096 and order

2638954583512504817331360505834218002085052416000.

Again the set I" has cardinality 2 while the subgroup C has order 2. Starting with
a known BSGS for (G, the algorithm constructed the elementary abelian regular
normal subgroup in 490 seconds. Of this, 350 seconds were spent constructing the
centralizer Cq(Gp, 3,), and 105 seconds were spent forming the normal closure
which produced the required normal subgroup.

Non-abelian socle

We now assume that case (II) of the O’Nan-Scott theorem applies. The socle of
G may be found in this case with the aid of the following theorem.

THEOREM. Let G be a finite group such that O,(G) s trivial for each prime p
that divides |G|. If N is the normal closure of Z(sylow,(G)), then the socle of
G is equal to the solvable residual N(°®) of N.

For a proof see [34].

This theorem reduces the calculation of the socle to the application of standard
algorithms. However, in the range of permutation group degrees amenable to

practical computation, the O’Nan-Scott theorem allows us to do a great deal
better.

LEMMA. (Neumann) Let G be a primitive permutation group of degree n. If
n < 60* = 12,960,000, and n cannot be expressed in the form m%, with integers
m > 5 and d > 5, then the socle of G is G(>°).

For n < 10° this lemma covers all but 21 possible degrees. Thus, our socle
algorithm uses this lemma if applicable, and otherwise resorts to the previous
theorem. For groups of degree n = m¢ < 10° (with m,d > 5), Kantor 1251
describes an alternative approach to the calculation of the socle.

T'he final step involves splitting the socle N of GG into its simple direct factors.
We know that either

N = M, or N = M, x M

with M} =T x---xTygand My = Tg4,q X---XTsy, where M; and M5 are normal
in G and where 77 = ... 2 Ty = Ty =2 ... 2 Thy = T, a non-abelian simple

12
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eroup. Let I' be a maximal proper block system for N in its action on £2 and let ¥
be the homomorphism ¢ : N — N'. Then N' is primitive and so is isomorphic
to N/Y, where Y is a maximal normal subgroup of N. Now, renumbering if
necessary, Y = To X - - XTy (it N =M),orY =Ty x -+ - XTyxTyiox- X1y
(if N = M, x My). So for X = Cpy(kery) we have X = T, (it N = M), or

ALGORITHM SPLIT SOCLE

Input 2; a primitive permutation group G on ) equipped with a BSGS; the
socle N of .

Output The simple direct factors of N.

(1) Construct a maximal proper block system I' for N. Let'Y be the kernel of
the action of N on I', and let X = Cn(Y).

(2) If | X| # |['|*, then N = M, and the factors Ts,---,Ty are obtained by
conjugating X = T repeatedly by the generators of (5.

(3) Construct Z = Z(Cx(x)), forx 21, x € X. If for some 2 € Z, z # 1,
the normal closure X, =ncl(< z >) is a proper subgroup of X, then N =
My x My, so set Ty = Xy, and Ty = Cx(X1); the remaining direct factors
are obtained as the G-conjugates of Ty and T,;. Otherwise, N = My, so
the remaining direct factors Ts, ..., Ty are constructed as the G-conjugates

Of Tl.

REMARKS. Let K be the kernel of the action of G on the simple factors of N.
A composition series for G now consists of the obvious composition series for
N, followed by subgroups of K which, modulo /V, form a composition series for
the abelian group K /N, followed by subgroups of G which, modulo K, form a
composition series for the (small) group G/ K.

EXAMPLE. The wreath product (with product action) of the projective group
PGL(2, 9) and the symmetric group S5, is a primitive group of degree 100, 000
and order 2321901584000000. Using a variant of the composition series algorithm
that identifies the composition factors (Kantor [25]), we obtain the following
picture of the abstract group structure:

COMPOSITION FACTORS OF GROUP K

TPV VRV ——————————————aerprerrerer A= SR g e g R s R el I

G2

| Cyclic(2)
K
| Cyclic(2)

>

| Alternating(5)
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Cyclic(2)

Cyclic(2)
Cyclic(2)
Cyclic(2)
Alternating (6)
Alternating(6)
Alternating(6)
Alternating(6)

Alternating(6)

= — ¥ — ¥ — ¥ — ¥ — ¥ — ¥ — ¥ — ¥ — %

Including the time taken to construct a BSGS, the calculation took approxi-

mately 5800 seconds. Most of the time was spent computing the derived sub-
group.
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