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In many applications concerning wavelets, inner products of arbitrary functions
f(z) with wavelets and scaling functions have to be calculated. This paper
involves the calculation of these inner products from function evaluations of

f(x).

The relationship between the scaling function @(x), its values at the integers
and the scaling parameters Ay is investigated. This results in the construction

of a one point quadrature formula for the calculation of inner products of
scaling functions and arbitrary functions.

Secondly, efficient multiple point quadrature formulae are constructed. An
elegant method to solve the nonlinear system coming from this construction
s presented. Since the construction of multiple point formulae using ordinary

moments s ill-conditioned, a modified, well-conditioned construction using
Chebyshev moments is presented.

1. NOTATION

In this text we will use the notations IN, Z, IR. L?(IR), [%(Z) for the set of natu-
rals, integers, reals, square integrable functions and square summable sequences
respectively. We will only use real valued functions and the usual definition of
inner product and norm in L*(IR). If no bounds for a parameter k are indicated
under a sum, k € ZZ is assumed.

2. WAVELET MULTIRESOLUTION APPROXIMATION

2.1. The scaling function
In order to construct a wavelet, one first needs a scaling function ¢(x). In this
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volume this function is also referred to as the “father function”. It has the
following properties:

e [t has a non-vanishing integral:

4 X
/ o(x)dx # 0.

— O

o A sequence (hy) € I2(Z) exists such that the scaling function satishies the
refinement equation:

() = \/ﬁz hio(2x — k). 1)
k

This equation is also called the dilation equation [19]. We refer to the
coefficients h, as the scaling parameters. In this paper we only consider
the case where a finite number of scaling parameters is non-zero and the
scaling function consequently has finite support.

The properties of the function ¢(x) and the scaling parameters i are closely
related. The refinement equation has a solution ¢(x) if:

Z hok = z hok+1 = 1/\/—2— (2)
k K

In this case the scaling function satisfies:

Vr € R : qu(:z:ml) mZgb(l)
[ [

The scaling function is called orthonormal if its translates {¢(z — [)}iez form
an orthonormal set of functions:

(p(x), ¢z = 1)) = bio l € ZL. (3)

This orthogonality property can be written as a property of the scaling param-
eters hyg:

Z i ek —21 = dig le Z. (4)
k

Equation (4) is necessary but not sufficient for the orthogonality property (3)
[13]. The functions {¢(x — l) };cz generate a vector space Vy C L?(IR).

2.2. Multiresolution analysis
We summarise the main elements of the concept of multiresolution analysis.
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We refer to [12| and [15] for a more complete description of the subject. Our
notation is slightly different from the one in these references. The basis of V
is tormed by translations of the scaling function over multiples of a constant
distance. The reciprocal of this distance is called the resolution of the basis. To
obtain approximations of f(z) € L*(IR) at different resolutions, we can use the
translated dilations of the scaling function. defined as:

dji1(x) = V2I §(27x — 1) ileZ.

T'he set of orthogonal functions {¢;,;(x)},;c% for a particular 7, generates a space
V; € L*(R). Let P; denote the orthogonal projection L*(IR) — V;. The
vector spaces V; (j € Z) have the following properties defining a multiresolution
analysis [15]:

V; € L*(IR).
Vj C Vj41: this is a direct consequence of the refinement equation (1 ).

1.

2.

3. || f(x) — P f(x)|| = (II%ieI%/ | f(x) — g(x)||: by definition of P;.
g(z)eV,

4.

3.

viz) € V; & v(2zx) € Viy,.
I'he projections P; f(z) converge to f(x) as j tends to infinity:

X0
lim P, f(x) = f(z) or | ] V; is dense in L*(IR).
Y iamde ® F—0
] =

The orthogonal complement of V; in V. is denoted by W; and satisfies W, L V;
and W; & V; = V;4,. Consequently:

+ 00
EB W, is dense in L*(IR).

]=—00

The orthonormal wavelet function, also referred to as the “mother function” is

defined as:

Y(z) =V2) grd(2x —k) with gp = (=1)* hy_y. (5)

It can be proven that the functions {%;;(x)}ez with ¥, (z) = V2 (272 — )
form an orthonormal basis of W; [12] [19]. As a consequence of equations (2)
and (5) the wavelet function 1 (z) satisfies:

-+ OO
Y(z)dx = 0.

—OQ

Also:
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This is the inverse of equations (5) and (1).

3. APPROXIMATICN OF POLYNOMIALS BY SCALING FUNCTIONS

It is possible to represent certain polynomials with the functions {¢(x — ) },cz.
In this case the sequence of coefficients does not belong to [“(ZZ). Consider an
indicator function X[, g This function is clearly an element of L4(IR) and can
thus be represented in Vi & @il W;. Since the integral of ¥/(x) vanishes, the
coefficients of the 1, ;(z) are zero except if their support contains « or 3. Now,
if o tends to —oo and B to +00, the constant function 1 is expressed in terms of
the ¢(x — ). Its coefficients are independent of [ and are denoted by a:

;-|-OQ

] = aZgb(m — 1) with a = / ¢(z)dz.
z

~ O

Integrating the first equation over {0, 1] yields:

+ o<
l=a ¢(x)dzx.
Consequently:
—+ OO
/ b(r)de = +1

Notice that there are two possibilities of which we will retain the positive. As a
result:

Ve eR: Y ¢(z—1)=1. (7)
!

Following a similar reasoning we can state that it is possible to represent a
polynomial z? with the set of functions {¢(x — [) },c% if the first p + 1 moments
of the wavelet vanish. We will denote the number of vanishing moments of a
wavelet function ¥ (x) with the symbol g. The number of vanishing moments

1s a important feature of the wavelet. In this context the following property is
usetul:

+ O | .
/ x?w(x)dmz()(i:o’*"q—-—l) <> ngklzo (imo,.,.,q—-l)
k

The number of vanishing moments defines the convergence properties of a wavelet
series since if f € C9 [19]:
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|f(z) = P f(z)]| = O(277%),

In order to find the coefficients of the representation of a polynomial in V;. one
derives using (1) and (2) that for p > 1 [2]:

—+ O 1 D .
o :_p Iy ¢ — / ——— o E p o | / ‘ :
YT i=1
This is a p-terms recursion relation. The m; denote the moments of the scalin o

parameters h;:

1 .

If necessary, we can write this dependency explicitly:

M1 = 1Tl
2m? + m.
— 1 2
My = P (9)
3
, 2m3 + dmyims + m;
My = ——

I

4. DECOMPOSITION AND RECONSTRUCTION ALGORITHM
Since Vj is equal to V;_, ® W, _1, a function v;(x) € V; can be written uniquely
as the sum of a function v;_;(x) € V;_; and a function wi—1(x) € W;_y:

vj(x)
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T'here 1s a one-to-one relationship between the coefficients of these functions that
can be derived easily using (1), (5), and (6). The decomposition step is:

l/j......ljg — E hk__.gl I/j’k; and gy —1.1 = E :gkf--—Ql Vi k- (10)
k

T'he reconstruction step consists of calculating the Vi, out of the v;_;; and the
Hgj—1,1°

vik =% hgp_avj_1,+ > G2t ij—1,1. (11)
: :
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These operations are one step in the multiresolution algorithm described in
14] [15).

To use this in a practical algorithm we assume that the hj, are non-zero for
0 < k < L, and that the g, are chosen as (—1)*h _y, so the g, too are non-zero
for 0 < k < L. Suppose we want an approximation in V,, of a function f(x) in the
interval [0, 1]. This means that we need 2" coefficients v,, ;. The next sections of
this paper involve the calculation of these coefficients using function evaluations
of f(x). From these coefficients, the coefficients of the multiresolution basis can
be calculated. We start with 2" coefhicients v, ; with 0 < < 2™ at level n. At
level j, we will calculate 27 coefficients u;; and v;; with 0 < [ < 2. We can
write the decomposition formulae (10) as:

L L
Vi1l = E hiVjgk+or and pj_1; = E Gk Vj hyol-
k=0 P

These formulae show that in order to calculate the 27~ coefficients vi_1,1 and
tj—1,, L — 1 coeflicients, namely v, ...v;0 47 o are not calculated at the
right boundary. For the reconstruction, coefficients will be missing at the left
boundary. In order to solve this problem several possibilities can be considered
(assume 0 < 7 < n):

e Setting these coefficients equal to zero: v, ; =0 fori <0Oori > 2/ — 1.
e Using symmetry at the boundaries:

Vj,i
Vi

e Considering the sequences as periodic: v ; = V;; mod 24 -

Vi —i 1 < 0
I/j,Q(Qjml)-—-—’i 1 > 27 — 1.

Similar possibilities hold for the p; ;. The first two possibilities are an ad hoc so-
lution and do not allow an exact reconstruction. This fact is called the boundary
effect. 'The more levels used in the decomposition, the more the reconstruction
1s contaminated by the boundary effect. Only the last possibility allows an exact
reconstruction. In order to understand this, we show that the algorithms that

use the periodic sequences correspond to an orthonormal multiresolution basis
of L*([0,1]). This construction is also described in [16]. All formulae derived
hereafter only hold for positive level numbers (7 > 0).

Define a 2’-dimensional vector space V" generated by the functions ¢%,(-) with
0 <1 < 27 which are defined as:

L—1
¢5.1(T) = X[0,1)(2) Z @j,i1(x + m) 0<1<27. (12)
=0
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It the support of ¢;(x), which is [[/2/,(l + L)/27], is a subset of [0, 1], then
i1(x) = ¢j(x). Otherwise ¢;;(x) is cut at the integers into pieces of length

1 Wth‘h are shifted onto |0,1] and added up, yielding ¢, (x). The maximum
numb@r of these pieces is equal to L, since j > 0. Also:

X(0,11(T) Z Gj(x+m) =7, a(r) 0<1< L2 —1) (13)
=0

The space WX 1s defined as the orthogonal (omplement ot V7 on +1- This

vector space 1 s generated by orthogonal functions Y7, which are (léﬁne(l similarly
to (12).

The multiresolution coefficients are defined as:

vig = (f(2),¢j(xz)) and p;= (f(x),y;,(x)).

In fact a notation with asterisk for v;; and u,;; would be more consistent, but
the asterisk is omitted in order not to complicate the notation. Using (13) the
refinement equation (1) can be written as:

¢;“1 ! Z hk d)_} (k+21) mod 2J ( )

laking the inner product of this equation with f(x), yields:

Vi1l = E hk 7,(k+20) mod 27 -

This is the formula used in the periodic decomposition algorithm. The second
decomposition formula and the reconstruction formula can be derived similarly.
1he complete periodic algorithm is described in [20]. Now:

L—1
vie = (f(@),¢5.(2)) = D (f(@), ¢z +m)xp(z))
= ZXm m+1]( )f(m""'rn)a‘?bJJ(l)) = (f"(z) Qﬁjl(lf))

This means that we actually calculated the coefficients, as considered in the
infinite case, of a function f*(z), a limited periodic expansion of the restriction
of f(z) to [0,1]. Since f*(z) is square integrable, its projections in V; will
converge to f*(z) if j tends to infinity. Therefore the projections of f(z) in v
will converge to f(x) x[o,1)(z) if j tends to infinity, or:
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+ 00
@ W* is dense in L*([0, 1]).

J=—0C

It f*(x) is a sufficiently differentiable function, the wavelet coefficients u;; decay
as O(n?) with n; = 277. However, if f(0) # f(1), f*(z) is not continuous at the
integers and the convergence will be slow since the wavelet coefficients at the
boundary decay as O(,/7;).

The functions ¢7 (z) satisty:

29 —1

Z ¢ (x) = @X[m]- (14)
[=0

T'his 1s a consequence of equation (7). Taking the inner product of equation (14)
with f(z) yields:

23 1

1
V27 Z Vil = Vo0 = f(l:)dl
[=0 0

In this last coefficient the influence of the scaling function has disappeared !

5. EXAMPLES AND GENERALISATIONS

A well-known example of orthogonal wavelets with compact support are the
ones constructed by Ingrid Daubechies [7]. This is a family of wavelets with N
vanishing moments and 2N scaling parameters hy (N € IN). The h; are non-
zero for 0 < k < 2N — 1, and the support of ¢(z) is [0,2N — 1]. The support of
the corresponding 7 (x) is [—(IN — 1), N].

A generalisation of orthogonal wavelets are biorthogonal wavelets. This concept
is introduced in [5] [6]. In this case the wavelets are not orthogonal, but with
each wavelet 1, ;(x) a dual wavelet v, ;(x) is associated such that the coefficient
of 1;(x) in the wavelet series of a function f(z) is given by ( f(x),v;(x)).
The dual wavelets are the translated dyadic dilations of one dual mother wavelet
)(x) which is derived from a dual scaling function ¢(x) that satisfies a refinement

equation. As a result different coefficients will appear in the decomposition and
reconstruction step.

The construction in [6] has the advantage that all filters used in the wavelet
transformation have linear phase and finite length. The filter coefficients are also
rational numbers which can facilitate implementation. The scaling functions here
are cardinal B-splines which are smoother than the Daubechies’ scaling functions
with the same number of scaling parameters.

A special case of the biorthogonal wavelets are the semi-orthogonal wavelets
or pre-wavelets [5] [18]. In this case the wavelets that belong to one subspace
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W, are not orthogonal but the subspaces W are still orthogonal. The wavelets
constructed in |5] have this property. Also here the scaling functions are cardinal
B-splines, but the dual filters do not have finite length any more.

6. ONE POINT FORMULAE
In order to obtain the approximation of a function f(x) € L?(IR) in V; one has
to calculate the coefhicients:

e 00
il = / f(z)¢ji(x)dx.
— )

In this section we construct a one point quadrature formula for the calculation
of these integrals, but first we will prove a theorem essential in this construction.

THEOREM 1. If ¢(x) s an orthogonal scaling function with compact support and
with q > 3, then:

/:O r*p(z)dr = ([_: m¢>(m)dm)2. (15)

PROOF Since g > 3 we have:

(z, ¢(x = k) ) M, + k Mo,

|
]

k

and

2 = ) byg(z—k) with by My + 2k M, + k* M,.
k

Thus

L\ 1,

I

Y k¢(x—k) = z—M, and > ko(k)
k

k

and

D Kox—k) = 22 (Mo+2kM)é(z — k)
k

k

:Z:QHQMl:z:mMQ—F?M?a

and

Z(:z:----—-—k:')2 oz — k) 2 M? — M.

k

Integrating this last equation over [0, 1] yields:

My = 2M2— M, or My = M?
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Another way to express this theorem according to (9) is my = m? or My = mo =

>k k?@(k). If f is sufficiently differentiable we have:

|

+ O » 4= OO
/ f(@)gu(z)de = /i / f (nj (z +1)) (a)da

'
————

= \/% [f(o‘fj-,.l) T 1y f’(Cl’jJ) My o + 77? fu(aj,l) M2 o /2 + 0(77}3)] *

« ~ X0
with 1), =277, «;, =n; (e +1) and M, , = / (z — a)Pop(x) dz.

— OO
The M, , are called the shifted moments. A consequence of theorem is:

i

VaoeR: M, = M?

l,cx

We can take /n; f(«;,;) as an approximation of the integral. We still have a
free parameter a which can be chosen such that M 1. and consequently the first
error term vanish. This happens if « is chosen equal to M. If ¢(x) is interpreted
as a mass distribution along the r—axis, a is the mass center. But if the scaling
function satisfies the conditions of theorem . also the second error term vanishes
and the one point quadrature formula becomes:

-+ OO
/ fx)pju(z)de = /m; [faj1) + Kjin;) (16)

= O

with

|

K = ¢ [ 1705 E@)+0) @ - a)ola)da

and £(x) between z and «.

The degree of accuracy of a quadrature formula is p, if all polynomials of degree
less than or equal to p are integrated exactly. The degree of accuracy of this

one point quadrature formula is 2. This approximation improves for smoother
f and increasing j.

In practical cases usually a number of discrete samples a;, with 0 < i < 2", is

given. In that case a function a(z) € V,, is constructed to start the multiresolu-
tion scheme [15]:

2" —1
a(x) = \/Nn Z a;Pn () with 7, =277,
[=0

T'he quadrature formula can help us to find the relationship between the func-
tion a(z) and the discrete samples a;. Indeed: /7, a; = (a(x), pni(z)) and
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means that we have a quasi-interpolating property with an error of O(n3) [5].

(a(z), dp () = /T [a(nn (@ +1))+0(n3)], so a; = a(n, (+1))+O(n?). This

In [8] scaling functions are constructed that have g— 1 vanishing shifted moments:
A/IJ,(Y =0 J mlaaqmla (17)

where g is the number of vanishing wavelet moments. In this case the one point
quadrature formula has an error of O(n;). However, these functions have the
disadvantage that the number of non-zero scaling parameters is 50% higher than
in the original Daubechies scaling functions with the same number of vanishing
wavelet moments. This results in an increase of 50% in calculation time. These
tormulae are also described in [2].

7. MULTIPLE POINT FORMULA

7.1. Principle

If the accuracy of the one point quadrature formula of the previous section 18
not sufficient, we can use multiple point integration rules with higher degree of
accuracy. In this section we assume that ¢(r) is an integrable function with
compact support |0, L], which satisfies a refinement equation (1) with L+ 1 non-
zero coetficients. Notice that the orthogonality demand is not required here.
I'his makes the results applicable to a wider range of scaling functions, includ-
Ing biorthogonal functions, B-spline functions [4] [5] and their autocorrelation
functions.

The quadrature formula will be used at the finest level of the multiresolution
tree to calculate the v, ;. In order to keep the notations simple though, we will
elaborate on the calculation of the 14 ; and in particular of vo.0- LThe quadrature
formulae for other coefficients can be found using a linear transformation. The
abscissae should be chosen equidistant for two reasons:

e In some applications, especially in signal and image processing, the func-
tion f(x) is only known at equidistant abscissae.

e One usually wants to calculate a number of integrals vy ;. Each pair of
adjacent functions ¢(z — ) and ¢(x — (I + 1)) overlap in an interval of
length L —1. If the abscissae are equidistant, it is possible that quadrature
tormulae for different integrals have common points.

We will choose the abscissae equidistant with spacing 2°. Additionally, inspired
by the idea in the previous section, we try to shift the abscissae over a distance
7 1n order to increase the degree of accuracy without increasing the work load.
We construct an r point quadrature formula for the calculation of:

L _ r
o= [ 9(2) f(@)de~ 3w flax) = Q1]
0 k=1
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with xp = dp — 7, dp = (k= 1)2° and (r — 1)2° — L < 7 < 0. The range of the
shift 7 is determined by the requirement that no abscissae should fall outside
the mtegration interval or on its boundary. In order to have a non-zero range
for the shift 7, the parameters r and s should be chosen such that (r —1)2% < L.

This technique to construct quadrature formulae is also used in [2] but here the
shift 7 is given a fixed value.

7.2. Construction using ordinary moments

In order to find the r + 1 unknowns {7, wy, ... , Wy}, one can impose the degree
of accuracy to be r. This results in the following system which is nonlinear in
the unknown 7.

wak [dk: — T]i = M, 0 <1< (18)

An elegant way to determine the value of the shift 7 uses the product polynomial
[I(x). This polynomial is defined as:

T T

1) = [[ (@ - ) = [[e+7 - de) = S pilr)e

k=1 k=1 1=0)
with p;(7) a polynomial of degree r — i in 7 and pr(7) = 1. Since the degree of

accuracy has to be r, the product polynomial IT(x) has to be integrated exactly.
T'he quadrature formula yields zero for this polynomial. Thus:

0

L L r
Q. = /0 b(2) I(z) dzr = /0 6(2) Y pi(r) 2t da

arr;

Zpi(*r) Mz = P(T)

1=

|

T'his latter expression is a polynomial of degree r in 7. For the quadrature
formula to exist, I'(7) must have a real root in the interval ((r — 1)2% — L,0).
However, there is no theoretical certainty that I'(+) will have a real root in this
interval. It there is no root in this interval, an arbitrary value for 7 has to be
chosen and one degree of accuracy is lost. We will use the notation Q| f] for
this case. Once 7 is determined, the weights are the solution of the system of

linear equations formed by the first r equations of (18).
7.3. Calculation of T'(1).
Let
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T — L T I """"'?; 7 re— J
P — . . . _7 F e ‘ry ., . . , re—— I . . . ]
pi(T) = E pi; 7 and I'(7) = E E pi; T M; = E E M;p; ;| 1.
7=0 i =0 j=0 j=0 \i=0

The coefficients p; ; are symmetric (p; ; = p;;) since the product polynomial is

. » f'a'a - T "
symmetric in 7 and r. The coefficients p; ; can be found as pg j) 11

a8 M, T —1
H(?n) (‘I‘.) — (SE + T — dk:) — [)f ; )’T'J :fl?l .
k=1 1=0 =0

An algorithm can be derived by writing:

1) (x) ( + 7 — dpy,) T~ D (),

|

and 1dentifying the coefficients of the powers of x and 7. The complete descrip-
tion of the algorithm can be found in [20].

A disadvantage of this construction is that the system of equations (18) is ill-
conditioned 1f r is large. In the construction of ),4 for the Daubechies scaling
function with N = 4, the condition number of the linear system to find the
weights is 9.10'>. This problem can be overcome if we construct a system by
imposing that the Chebyshev polynomials of degree less than or equal to r are
integrated exactly [10]| [17]. This is done in the next section.

8. MODIFIED CONSTRUCTION OF THE QUADRATURE FORMULA

Interesting properties of the Chebyshev polynomials only hold in the interval
\—1,1], one first needs to transform the scaling function ¢(z) to this interval
yielding a function ¢(y). We will use the notation y to indicate an independent
variable that varies between —1 and 1:

To(z) =1, Ti(z)=czand T, (z) =22 T,_1(x) =T, _o(z) for n > 1 '1]. Since the

- L L(y+1 20 — L

T'he transformed refinement equation (1) becomes:

A(y) = V2> hi¢(2y —2k/L +1).

k

We will try to construct an r point quadrature formula for the calculation of:

L 41 . L y n 1
Yo, o = Qf)(il?)f(ﬂl)dﬂj — Qﬁ(y)f ....,___,(, _2“ . ) dlj
0 —1
+1 ,...., - N . ‘
= p(y)f(y)dy = Z Wi f(yr) = Z wi fxr) = Q[ f],
-1 k=1 k=1
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similar to the previous case. We can construct a
written as a linear combination of Chebyshev polynomaials,

and try to find one of its roots in the appropriate interval.

ified moments.

18 possible to calculate the transformed ordinary moments as in (8) and calcu-

1

g

Eﬁ ey

te the modihed moments from them using the coefficients z‘i ) of the Cheb Vs

In order to find a recursion formula, we write this last
Chebyshev polynomial
or equal to p:

, shifted and dilated
as a sum of Chebyshev polynomials of degree less than

| =27 " wP (k) Ti(y). (22)
| t==0

Substituting (22) in (21) yields:




I . h’k" (p) _ *

=0 \k=0

T'his appears to be a stable recursion formula. By using standard properties of
the Chebyshev polynomials, the coefficients w(’ ) (k) can be calculated recursively.

Details can be found in [20]. The same reference gives the construction of the
coefficients of I'(¥) as a linear combination of C hebyshev polynomials.

The condition number of the system for the construction of the same ()14 tormula
as 1n the previous section is now 2.10° ! The roots of the polynomial I'(7) can
be found as the eigenvalues of its Chebyshev companion matrix. The effects of
an orthogonal basis on the condition of the roots of a polynomial is discussed
n [11]. It is stated there that the interval of orthogonality should contain the
roots of interest. This condition is satisfied in most cases here.

9. ERROR ANALYSIS OF THE QUADRATURE RULE

Let o be an arbitrary point of the interval (0, L) not equal to one of the abscissae
and let P, ( ) be the polynomial of degree r which interpolates the function f(x)
in xo,...,z.. If f(x) € C"110, L] then [3]:

I

Ve e [0,L] : 3&(x) €]0,L[: f(x) P.(x) + e,(x)

with

[I(z) (z — zo)

(r + 1)!

- fUD(g()).

e-(x) = -

Let E,[f] denote the error of the integration rule:

(f(2),0(x)) = Qr[f]+ E[f].

Then
E-\f)] = E.[P.+e] = E.[P]+E.e]| = E, e,
= (o(z),er(z)) — Qrler]
1 - | r—+1
= S/ ¢(z) () (z — xo) f (£(x)) dx

with &£(x) € (0, L).

We do not use this formula to estimate the error. The most important factor in
this error formula will appear to be the (r + 1)th derivative of f(z). Another
way to see that this factor appears in the error is Peano’s theorem [9]. In general

(n; =277):

Z wif (0 (zk + 1)) + K™ (23)

|

Vj,l
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Using a generalisation of Bernoulli polynomials it is possible to derive an asymp-
totic error expansion for the quadrature formula [21]. As a result it is possible
to use extrapolation techniques similar to Romberg integration.

10. FITTING THE FORMULAE IN THE MULTIRESOLUTIONSCHEME

10.1. Using a quadrature formula at the finest level
Assume we have to calculate T coefficients Vn, ylelding a function v, (z):

T-1
Un(fc) — Z Un,l ¢’n,l(x) with Un,l = <¢)n,la f(:E) > *

=0

T'he quadrature formula and error estimation yield:

Unt =V | ) wif (M (k= 1)2° = 7+ 1)) + Koy nit | (24)
k=1

In order to calculate the coefficients, the function f(z) is evaluated (or “sam-
pled”) at a resolution 2. This means that s > 0. The total number of evalu-
ations for the calculation of the T integrals is equal to T + (r —1)2% = Neval
Notice that the total number of evaluations is dominated by the first term and
1s only slightly dependent on 7. As a result the one point quadrature formula,
which needs T evaluations can always be replaced with a quadrature formula
with higher degree of accuracy which requires in total almost the same num-

ber of evaluations. The work load is equal to T r multiplications and 7" (r — 1)
additions.

The highest order formula is the one with maximal r for s > 0. The maximal
value of r for a specific choice of s is found by the requirement that the admittance
interval of 7 is not empty: (r —1)2°< L or r = [L/ 2°]. Thus r is maximal
if s is minimal. This yields s =0, »r = L and N¢vel = T + (L —1). The error in
this case is of order O(ni*1!).

Now one can calculate the coefficients of the multiresolution wavelet basis us-

Ing the tree algorithm described in section The errors on all the coefficients

calculated in the tree are of order O(n7+1).

10.2. Using a quadrature formula at the one but finest level

T'his section describes a method to obtain a higher accuracy in one part of the
tree at the cost of a lower accuracy in the other part. The part of the tree in
which the accuracy increases is the subtree formed by the v,_1;...19; and the
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Un—21--.M1o,. LThe part of the tree in which the accuracy decreases is formmed by
the v, ; and the p, 1.

T'he idea is to use function evaluations at resolution 2" in a quadrature formula
for the calculation of the coefficients at the one but finest level, namely the

Un—1,1- 10 get this resolution of evaluations, s has to be chosen equal to —1.
The highest order formula is the one with r = 2L.

2L
Un—1,1 — \/2 TIn Z’U)k f (7]:,1 ((ll{' - 1) — 27 + 25)) T ]{n---l.,i ni[;ﬁ—l ' (25)
k=1

The shift 7 and the weights W, are determined as described in section . The
number of evaluations for the calculation of T inner products is 27 + 2(L — 1).
From these coethcients the multiresolution coefficients of the first part of the tree

can be calculated using the decomposition scheme. The error on the coefficients
of this part is O(n2t+1).

For the calculation of the v, ;, we use a quadrature rule with s = 0 and r = L.
The degree of accuracy is r — 1 since the value of the parameter 7 is already
determined by the first quadrature formula. The u,,_;; can be calculated with
one step of the decomposition scheme. The error of the coeflicients of the second
part of the tree is O(nk).

10.3. Remark

The quadrature formulae (16) and (23) show that the coefficients v;; are O(,/7;).
This is due to the fact that the ¢; ;(x) are scaled to have a unit Lo-norm and their
integral is thus equal to ,/7;. This factor always appears outside the brackets
of the quadrature rule to get a fair comparison between different formulae. In
order to have coefficients of the same range in the whole tree, a factor 1/v/2 is

introduced in the decomposition scheme and a factor v/2 in the reconstruction
schemae.

11. EXISTENCE OF THE QUADRATURE FORMULAE

As mentioned above, there is no guarantee that a quadrature formula with degree
of accuracy r exists. In case of the Daubechies scaling functions we verified that
the quadrature formula (Qon_1 exists for 2 < N < 10. The quadrature formula
(Qan—2 exists for 2 < N < 5. For N > 5 this rule is not useful since it involves
too many points. The weights of these formulae can vary in sign, but their
absolute value doesn’t grow too large when the number of points increases. For
B-spline scaling functions, the quadrature formula ¢ exists for 2 < L < 10 and
Q21 exists for 2 < L < 4. The weights of the latter formulae are all positive.

12. EXAMPLE

We now compare the different quadrature rules in a practical example. We
construct several multiresolution trees, each with coarsest level O and finest level
n, and this for several n. We compare each time v ¢ for the different quadrature
rules.
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I | trapezoidal | one point |

n | 9.2" ; __rule | formula | Q5 1 @5 | Qi

0 5 7.08e-04 1.17e-02 | 6.13e-04 | 2.15e-03 -

1 10 | 4.17e-03 1.43e-03 | 9.78e-05 | 4.40e-05 | 1.03e-08

2 20 7.96e-04 1.76e-04 | 4.30e-06 | 6.51e-07 | 1.11e-19

3 40 1.15e-04 2.19e-05 | 1.52e-07 | 9.38¢e-09 | 4.21e-15
4 &0 1.53e-05 2.74e-06 | 5.03e-09 | 1.38e-10 | 9.99¢-16
D 160 1.98e-06 3.43e-07 | 1.61e-10 | 2.09e-12 -
6 | 320 2.50e-07 4.28e-08 | 5.10e-12 | 3.19e-14 -
7 640 3.195e-08 0.39e-09 | 1.60e-13 | 1.11e-16 -

8 | 1280 3.96e-09 6.69e-10 | 4.66e-15 | - -

9 | 2560 4.96e-10 8.37e-11 | 2.22e-16 - -

10 | 5120 6.20e-11 | 1.04e-11 I | -

TABLE 1. Errors of the integration rules.

Sufficient coefficients v;,; are provided at level j to calculate the coefficients of
the next level j —1. As one can see from the decomposition formula, the number
of coefficients v;; has to be twice the number of coefficients vi_1,. plus L — 1.

Thus, L2/ — (L — 1) coefficients are needed on level J to retain one coefficient at
level O.

The one point formula based integration thus needs L2" — [, + 1 evaluations.
In case we use an L-point quadrature formula at the finest level the number of
evaluations is equal to the number of coefficients of the finest level augmented
with L — 1, yielding L2". In case we use a 2L-point quadrature formula at the
one but finest level the number of evaluations is equal to twice the number of
coeflicients of the one but finest level augmented with 2(L—1), yielding also L2™.
Note that, if we would use the trapezoidal rule with evaluations at resolution 2"

directly for the calculation of vq g, the total number of evaluation points would
be equal to L2™ — 1.

As an example we take for ¢(z)

) the Daubechies scaling function with N = 3
f(x) = sin(x) and:

5
Vo0 = f ¢(z) sin(z)dz = 0.741104421925905 . . . (26)
0

We compare the one point formula, the quadrature formulae Qf (with7 = —1 /2),

5, (210, and the trapezoidal rule directly applied for the calculation of this
integral. The total number of evaluations is then respectively 5.2" — 4, 5.2™

0.2", 5.2™ and 5.2" — 1. The results are given in table 1. They show that for

suliciently differentiable functions f(z), it is useful to search for the optimal
value for the shift 7.

Lhe trapezoidal rule has an error of O(73) here, instead of O(52) as we would
expect. T'his is also a consequence of theorem .

o



13. CONCLUSION

In this paper we described multiresolution wavelet approximation and we devel-
oped several quadrature formulae for the calculation of a wavelet decomposition.
We showed that a one point quadrature formula can be deducted from proper-

e -

constructed by solving a nonlinear system. This construction can become ill-
conditioned when using ordinary moments. We tackled this problem by usin o
Chebyshev modified moments. Which formula is suited in a practical situation
still remain unanswered, such as the accuracy of the formulae and the influ-
ence of the shift 7 if f(&r) is not sufficiently differentiable or if f (r) contains
singularities.
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REMARK

While preparing the final draft of this text, we were informed that the first
theorem was also proven independently by R. Gopinath. Unfortunately at this
time we cannot indicate the right reference.
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