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To enhance realism in a graphics system it is necessary to cover generated
surfaces with realistic textures. A texture in this paper is assumed to be a
realization of a random field. Problems of parameter estimation and random
field synthesis of a given random field model are studied. The most flexible

models for realistic texture synthesis seem to be simultaneous autoregressive
and Gaussian Markov random field models.

1 INTRODUCTION

In this article, we consider texture synthesis methods. The intention is to
overview methods which are capable of reproducing realistic textures for en-
hancing realism in graphics systems. Digitized solid 3D textures are far less
convenlent, since they involve the 2D digitization of a large number of cross-
sectional slices through some material. Synthetic textures are more flexible than
digitized textures, in that synthetic textures can be designed to have certain
desirable properties or meet certain constraints; for example, it can be made
smoothly periodic, so that it can be used to fill an infinite texture space without
visible discontinuities. While a digitized texture must be stored in a tabular
form and evaluated by table lookup, a synthetic texture may be evaluated di-
rectly in procedural form. The purpose of a synthetic texture is to reproduce a
given digitized texture image so that both natural and synthetic texture will be
indiscernible. Therefore we limit ourselves to synthesis methods for which the
analysis step is known, neglecting different ad hoc methods [48] or models with
unknown parameter estimation. In the field of texture analysis, we limit our
atte.tion to a subset of analysis methods, which are useful for described texture

texture segmentation like for example the co-occurrence matrices, the gray level
difference method, etc. The interested reader can consult any standard image
processing textbook. In this attitude we differ from the usual meaning of a tex-
ture analysis problem, where the goal is not to reproduce a given texture but
to discriminate between several different textures instead. Texture model pa-
rameters can serve as a basis for texture discrimination too. While there exists
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an abundance of literature covering the texture analysis, much lesser attention
has been paid to the texture synthesis problem. So far we even do not know a
survey covering the state of the art in this field our selection of methods 1s based
on referenced papers only.

T'here is no exact definition for texture, although some authors claim to give
one. Texture is generally a visual property of a surface, representing the spatial
information contained in object surfaces. Texture may represent [5] information
that permits the human eye to differentiate between image regions. Another at-
tempt to define texture is [19]: A visual texture is a sensory impression obtained
through the eyes, and thus is a visual perception. Texture is considered here to
be the visual perception, by which two neighboring, possibly structured, parts
of the visual field may be effortlessly (spontaneously) separated by means of ob-
servation with fixed eyes. Another definition [23] states: Texture is a structure
which is made of a large ensemble of elements that resemble each other ‘very
much’, with some kind of an ‘order’ in their locations, so that there is no single
element which attracts the viewer’s eye in any special way. The human viewer
gets an impression of uniformity when he looks at a ‘texture’. Some authors (42|
use the term texel or texon for a textured area element. We will not repeat here
the number of rather philosophical definitions of texture, instead we understand
a textured image to be a realization of a random field and our effort is simply
to produce a copy of a given image using modelling techniques.

We use further on the following symbols: M x N is an image size, K is the
number of gray levels (classes), w; is the true class, r,s,u are double indices
(r = {7,7}), I is the image lattice (set of all indices), Y denotes a random vector
(or its realization) of an image in some arrangement, Y, is a random variable
(pixel) at location r, Y, is a random vector Y with excluded Y,., v is a set of
model parameters, I,. or I; ; is a neighborhood of pixel » = {7, 5} , i is a mean
value and ¢“ a variance.

2 T'EXTURE SYNTHESIS METHODS

Several approaches to texture synthesis exist, each of them has its advantages
and also 1ts limitations. Existing methods can be categorized using different
criteria. Englert and Sakas [19] divide methods into ‘models focusing on the
description of spatial organization and the visual appearance of a texture field’
and ‘models arising from texture generation methods’, another possible division
1s into deterministic and stochastic (23] methods. Similarly Bennis and Gaga-
lowicz [5] have also two major groups : structural (macroscopic) methods [4]
consider texture as a spatial arrangement of a set of basic patterns according
to some placement rules, while microscopic methods do not assume a well or-
ganized structure. These textures present a homogeneous visual aspect even
without discernible spatial arrangement. In the first group we will mention ran-
dom mosaic models, fractals and syntactic models. We will focus our attention
on the second group and especially on the autoregressive and Markov random
field models, because of our strong belief that these models are far more flexible
to cover realistic textures than other approaches surveyed in this paper.
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3 RANDOM MOSAIC MODELS
In the random mosaic models, the texture region is first divided into convex

color) w; according to a fixed set of probabilities P;,..., Px. Let r, s be two
points a distance d apart, P(d) the probability that both points are in the same
cell, then [2]:

P(Y, =w;|Ys = w;) = Pj(1 — P(d)), (1)
P(Y, =w;|Ys = w;) = P+ (1 — P;)P(d). (2)

3.1 The Poisson line model

The texture area is divided into convex cells by a set of straight lines with random
positions and orientations. Points («, r) are generated [59] by a Poisson process
of intensity 7/m, where 0 < a < ™ and —o00 < r < oo. Each line is defined as
follows:

T = I COSQ + YSInq. (3)
Probability P(d) can be found to be
P(d) = exp{—27d/~}, (4)

for some other statistical characteristics see [2, 59]. The Poisson line model does
not fit very well [56, 58] with natural textures.

3.2 The rotated checkerboard model

with uniform probability (orientation in the interval [0, 7]). Using the result-
ing coordinate grid, the plane is tessellated into square cells of side length 0.
Probability of the same class for two distant points [56]:

1 — 4d/mwb + d*/7b? d < b

. 2 4 d? 4 B
P — _— — - — — b < d< by2 '
(d) 1 T W(de/biZ _ 1)1/2 — )\/ (

T WCOS(B/d) - 1b2
0 d > b\/2

Because of the rectangular character of the rotated checkerboard model (the
square model [2]) generated texture, we cannot expect 1t to fit very much with
natural textures. This model can be useful for certain man-made textures how-

except that hexagons are used in lieu of squares. Another possibility 1s the ro-
tated triangular model [2], where an equilateral triangular tessellation can be
formed by connecting the growth centers of neighboring cells mn a hexagonal
tessellation.

3.8 Voronot tessellation .
The principle of this method (known also as the Dirichlet tessellation or the oc-
cupancy model) is to create a cell around each of the seed points (generated for
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example by a Poisson process). Each cell contains all plane po?nts for Whi(}h the
corresponding seed point is the nearest one. Voronoi tessellation shz:imres similar
disadvantages in a low natural texture modelling with the both previously men-
tioned methods, while the parameter estimation 59] is more difficult and even
problematic on images with nonlinear or unclear borders between homogeneous

areas.

3.4 Random mosaic models analyss

Random imosaic models parameter estimation is based on model fitting tech-
niques using known dependences between the observed features (variogram, com-
ponent width, perimeter, etc.) and the model parameters. If there 1s defined
a distance between two classes (for example gray levels), we can modify the
definition of the variogram ([56, 57]) of a random mosaic:

V(d) = E{(Y: — Yr4a)*}. (6)

In a special case of constant gray level in each cell and uncorrelated gray levels
in different cells the variogram can be simplified {56

V(d) = 20°(1 = P(d)). (7)

&

where ¢? is assumed to be the standard deviation of texture’s classes (gray
levels) and P(d) is the probability that two points distance d apart are in the
same cell. For the Poisson line model and the rotated checkerboard model we
can compute for a given o the theoretical variogram as a function of the Poisson
parameter 7 or checkerboard square size b. Given a variogram of a real texture,
these parameters can be obtained using fitting techniques.

Some other models [56] of this class, as for example the Johnson-Mehl model
and the bombing model are not mentioned here, because they do not tulhll our
criterion to have solved the analytical step (parameter estimation) too.

If a texture can be divided into fixed-size windows, regularly replicated over a

whole Image array, we obtain a deterministic mosaic model (periodic tessellated
model).

4 SYNTACTIC MODELS

In the structural approach a texture is considered to be defined by subpatterns
which occur repeatedly according to a set of well-defined placement rules within
the overall pattern. A texture pattern is composed of fixed-sized windows as sub-
patterns. Each window is represented by a tree of which each node corresponds
to a pixel in the window. A pattern primitive is the label representing the gray
level of each pixel. A tree grammar is then used to characterize the windowed
texture pattern. Some examples of this approach can be found in 24, 25]. In
order to model the image of interest, it is necessary to have the stochastic tree
grammar actually inferred from the available image samples. Such an inference
procedure requires the inference of both the tree grammar and its production
probabilities. Unfortunately, a general inference procedure for stochastic tree
grammars does not exist and is still a sub ject of research [25]. Only some very

special cases can be treated by existing inference algorithms, like for example
[25]:
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a) Windowed patterns are grouped into clusters usin g a similarity measure.

b) Each cluster consists of a finite set of trees having the same structure. A
stochastic tree grammar is then inferred for each cluster.

c) The final texture grammar is the union of placement rules and all stochastic
tree grammars.

Using such an algorithm it is still difficult to solve grammar inference for other

and the algorithm is computationally demanding due to employing large set
searching procedures.

5 FRACTAL MODELS

Fractals are sets, whose Hausdorff-Besicovitch dimension, which in general is
a real number, is strictly larger than their topological dimension [3, 49]. We
limit ourselves to fractals with two additional properties, the similarity of each
segment to all others and statistical invariance over wide transformation of scale.
The primary control that fractal techniques provide over the resulting object is
by the value of a single parameter determining the fractal dimension. The only
examples of fractal objects being used to model natural phenomena are based on
fractional Brownian functions. A random function Y, is a fractional Brownian
function (surface for 2D) if for all » and d:

Y'r'—l—dh — Y,

P(=rm T <) = F(1), (8)

where F'(t) is a cumulative distribution function. If Y, is scalar, then the fractal
dimension of Y, is D =2 — H.

If H = 0.5 and F'(t) is the standardized Gaussian distribution, then Y, is
the classical Brownian function. A surface can be accurately approximated by
a single fractal function, if the fractal dimension is stable over a wide range ot
scales. The texture is defined to be fractal [50] if

E{|Yrirq — Ye|} || d ||~ = const. (9)

Several useful properties of the fractal Brownian function were proven in [50].
The fractal dimension of a fractal Brownian function is invariant under transfor-
mation of scale. A 3D surface with a spatially isotropic fractal Brownian shape
produces an image whose intensity surface is fractal Brownian and whose frac-
tal dimension is identical to that of components of the surface normal, given a
Lambertian surface reflectance function and constant illumination and albedo.
The opposite proposition is also valid. The fractal textures can be synthesized
using one of the following methods [18] (5.1-5.3), combined with an analytical
method (5.4,5.5).

5.1 The Fourier transformation method

A random Gaussian field is spatially filtered to generate well-defined second-
order connections between pixels. The phase of the Fourier transformed random
field is unaltered, but the modulus is forced to assume a form f~%. The parame-
ter P can be altered to cause the inverse Fourier transformation of this modified
field to have any particular fractal dimension between 2 and 3. Experiments on

309



fractal textures generated using this method with identical first order statistics
show [18], that the minimal resolvable difference in fractal dimension is 0.06.

5.2 The cylindrical integration method

A path within a random Gaussian field of zero mean painted on a cylinder is
integrated over to produce a Brownian variation in image brightness. The path
in cylindrical coordinates, is defined as x cos(6) + ysin(8), 8, where r = (x,y) is
the rectangular coordinate of the cell in the Brownian field, and 6 is the variable
of integration. Although this method is able to produce true fractals, it is unable
to generate a range of different dimension fractals.

5.8 The midpornt displacement method

The brightness at the center of a square is interpolated from the four corner
brightness values. This value is perturbed by an amount related to the size of
the square. The four subsquares are treated similarly and so on down to the
resolution of the image. The result was shown not to be truly fractal, but the
method is quick and efficient to implement.

5.4 The Peleg method

The fractal dimension of Brownian function can be measured directly or from
Fourier power spectrum P(z) of Y,, as the spectral density of fractal Brownian
function is proportional [50] to 2727~ The brightness field of a texture is
imagined to form a surface with brightness represented by height. The method
149] is based on the volume v , occupied by all points distant e or less from the
surface. The surface area is obtained by dividing the volume by 2¢ and is found
to be a function of . The method uses the increase in apparent area A(e) at

each increment of € to obtain a signature for the texture from which the relation
(10) can be fitted to obtain H:

A(e) = FelH—1), (10)

5.5 The Pentland method

It the texture is fractal, then (9) must hold so we can estimate the fractal di-
mension from relation (11):

E{ly'r—l—d “Y’r'|}HdHMH :E{Iyr-pd"myr‘l}? (11)

where ||d|| = 1. Using (11) and a least square regression for different d, we can
estimate H. If the relation (11) holds, then the viewed surface must be a 3D
fractal Brownian surface and can be modeled using this fractal model.

6 SECOND ORDER STATISTICAL MODELS

T'his texture model generates a random field which has second-order statistics
similar to the natural texture we are trying to simulate. It is assumed, that al-
though Julesz conjecture [38] (that second-order statistics are sufficient in terms
of human visual texture discrimination) was proved not to be generally valid,
such an approximation is still fairly accurate. The set of second-order joint den-
sity functions ps 3(Y1, Y2), necessary for model analysis, can be estimated from a
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natural texture field using occurrence matrices computed from a given texture;
first order statistics are estimated from the corresponding histogram.

6.1 The algebraic reconstruction technique

We assume that a reconstructed random field is homogeneous (translation in-
variant). The problem Is to ﬁnd a joint denc,ity func‘ti(')n p(}*"l, . YMN) fmm
problem with KMV linear equ&tlons and 1neq1,.,1dllt1eb. 'I h(f’: use c_)f btcll__l_dfil d tec,h—-
niques 1s limited by the large dimensionality of the problem. The ART method
starts [22| with generating all simulated pixels from a uniform distribution:

| )
R (12)

p O (Yi,...,Yun) =

In each iteration the sum of the differences between the actual and the recon-

structed marginal is computed and evenly divided amongst the K™ ¥ =2 recon-
struction elements:

p(n+1)(Y17 ... 7YMN) — max{oap(n)(yla RIS YMN) -+ t(j(n)(y)}v V{Y}:’ (13)

MN—-1 MN
W) = ey Y GORY) SpUEY)

The convergence of the ART algorithm depends on the choice of constant {.

6.2 Second order spatial averages

The principle of this method is to generate a homogeneous random field with
the second order spatial averages

Pa(wi,w;) = Za r = wi)8(Yrpa — wj), (15)

equal to those of a given texture field. The first step of the method 1s synthesizing
a texture field, which is a realization of a homogeneous white noise and whose
histogram is equal to the desired (p*) histogram [26]:

p(w;) = p* (w;) Vi=1,..., K.

In the second step, the texture field is modified point by point to minimize the
mean square error between the desired second order spatial averages and cur-
rent second order spatial averages. It was experimentally verified [26], that the
selection of modified points should be random, otherwise the resulting texture
1s not homogeneous.

6.8 The autocovariance and histogram model
This second order statistical model is defined by a set of histogram and autoco-
variance parameters (16):

B(d) = MNch Z — 1) (Yria — 1) (16)

'}"...__
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The first synthesis step is equal to the first step of 6.2. The second one is also
random location pixel modification so as to minimize the mean square error
between the template feature vector and the feature vector computed on the
synthesized texture field, but the feature vector is now concatenated from the
texture histogram and the autocovariance function [4].

7 AUTOREGRESSIVE MODELS

Autoregressive or simultaneous autoregressive (SAR) models from the class ot
simultaneous models have several favourite properties, which cause their wide
application in image analysis. Simultaneous models are basically generalizations
of 1D time series models into 2D. Such a generalization is not quite straightfor-
ward because unlike in 1D time series, where the existence of a preferred direction
(time) is assumed, no such preferred ordering exists on the discrete lattice. Other
eroups from the class of simultaneous models are simultaneous moving average
(SMA) and simultaneous autoregressive and moving average (SARMA) models.
These other models have complicated parameter estimation. For example, es-
timation of ARMA model parameters is a nonlinear problem even in 1D, and
some approximations have to be used. The advantage of SAR models is their
close relation with Markov random field models (MRF) see Section 8. For every
SAR model there exists a unique conditional MRF with an equivalent spectral
density function, but the converse is not always true (except for the Gaussian
case [6]). The conditional MRF model is generally characterized by more param-
eters than the equivalent SAR model (if it exists). SMA and SARMA models
are not subsets of MRF models. The SAR model can be written as follows:

Y, = Z asYr_s + €, (17)
s&l,

where e, is a white Gaussian noise with zero mean and a constant variance o2,
and is uncorrelated with data from [7,.. If I, is a symmetric neighborhood, we
assume that symmetrically opposite neighbors have equal parameters. Other-

wise, the parameters may not be identifiable [6]. We can rewrite a SAR model
in the matrix form:

Y, =~vX, +e,, ‘ (18)

where

W’E:[aqj...,aﬁ]7 (19)

L

and X, 1s a corresponding vector of Y,._,. If we replace Y, in (17) by Y, (}7; ;=
Y:; — 1), the joint probability density of process (17) can be written as

p(Y) = (2ma?) " MN/2|¥| exp{—1/20"2(Y — U)o Tw (Y — U)}, (20)

where V¥ is defined in (49) and is for a torus lattice I a block circulant matrix,
each block being again a circulant matrix and U is defined in (48). We can
synthesize an image described by SAR from the equation

Y = A"Y(E - B), (21)
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where the noise vector

E:-[el,...,eMN]T (22)

has an arrangement corresponding with Y. B is a vector with border conditions
and A 1s an M N x M N block Toeplitz type matrix of a, coefficients with unit
diagonal. If we assume zero boundary values (B = 0), symmetric coefficients
(ar—s = ar4+s) and regularity of A, then A is regular, symmetric and positive
definite. Under this condition the solution of (21) can be obtained iteratively by
the conjugate gradient method [14, 33] (Fletcher-Reeves version of the method).

7.1 Woods iterative synthests

Woods has proved [62], that a random field which can be described by (17),
where {er} are independent random variables with bounded absolute moments

(possibly non-Gaussian), can be generated using the following iterative proce-
dure (23),(24):

y, "D = N7 a7 1, (23)
se& 1,
Y,,,,(TL+1) — )/'r‘a (24)

and the stability assumption ) ., |as| < 1. Equation (24) is used if r is from
the boundary area. Equation (23) for the non-boundary area is initialized by

0 . . .
Y\ — e,r. L'his iterative procedure converges to the mean absolute solution of
(17), with the boundary condition Y, = Y?oundary

7.2 The autoregressive model with conditional expectations
Let us assume now to have chosen a partition of a neighborhood I,., we will
denote by I’ the z-th such a subset of I, and [ the number of these subsets.

Now the autoregressive model with conditional expectations can be put in the
following form [21]:

{
Y, = a;B{Y,|Y,Vse€l}+e, (25)
=1

or in the matrix form (18),(19) , where X, i1s now
X, =[E{Y,|Y,Vs e I'},... E{Y,|Y.Vs € I'}]". (26)

The main disadvantage of synthesis model (25) is the necessity to identify and
store a large number of parameters. If we denote the cardinality of I as ¢;, then
the number of model parameters is Zﬁ:m1 K% + 1.

7.8 Optimal model selection

The selection of an appropriate autoregressive (AR) model is important to obtain
good results in modelling a given random field. If the contextual neighborhood
is too small we cannot capture all details of the random field. On the con-
trary, larger than necessary contextual neighborhoods can introduce problems
with numerical accuracy and can be too time consuming. Apart from visual
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comparison, which is subjective, we can choose the appropriate model using
pairwise hypothesis testing [6, 13|, Akaike’s information criterion (AIC) [39],
or the Bayesian approach. The main disadvantage of the hypothesis testing ap-
proach 1s that the resulting decision rule is not transitive and also not consistent.
The AIC method gives transitive decision rules but not consistent ones [40]. The
approximate Bayesian decision rule for the AR model was given in [40]: choose
the AR model k if

k = argmin{D, }, (27)
J
where
Dj=-> In(1-%Cr +%Q,QF) + MN Ino? + my In(MN), (28)
a’mej

Yk, and o} are iterative estimations of corresponding parameters. C, is equal to

Sy except for the replacement of sin by cos, my is the number of neighbors in
the k-th model, Q, = S,.S! + CTC,T , and S, 1s dehined as follows:

Sy = [sin(2r(MN)"V2(r —1)Ts),.. )7 Vs € I,. (29)

7.4 Autoregressive model parameter estimation

Similar to the Gaussian Markov random field model (GMRF) case (Section
8.6.1.), the maximum likelihood (ML) estimates require numerical optimization
methods due to the log-likelihood function, which is nonquadratic in v. The
ML estimate for ¢ is also (33). To avoid computationally expensive numeri-
cal methods, it is possible to use the least square method (LS), the maximum
pseudo-likelihood (MPL) method or some approximation method like 7.4.2.

7.4.1 The prediction error variance minimization. Let us define model prediction
as Y, = E{Y,}, then

i

Y, = ")/XT. (30)

The parameters are now adjusted to minimize the variance of the prediction
error:

E{(Y, - Y;)’}. (31)
T'he LS solution can be found in the form:
¥ = EB{X, X} E{X, Y} = DX X7 S X,y (32)
1 ‘
2 __ A 2
g = MN TZ(X/T - ¥Xr)". (33)

T'he drawback of the LS estimator (32) is its inconsistency for nonunilateral
neighborhoods [40].

7.4.2 The iterative estimation method. The principle of this method [40] is to
avoid numerical optimization of the nonquadratic ML function using quadratic

.
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approximation of the determinant in (20) and the toroidal lattice assumption.

rrrrr

estimates.

7.4.3 Estimation of the SAR model with conditional expectations. To estimate

.....

The solution [21] is similar to (32),(33):
Y= [E{X,. X} 'E{X,Y,} =W~V (34)
where

N E{Y,.|Y.Vs € I'}E{Y,|Y.,Vs € [I}p(Y.Vs € L UTZ), (35)
KQVSEI;:UI}{

and

v; = E{E{Y,|Y,Vs € I'}Y,.}

Z YTE{)/;‘ly’SvS & f;;}p(yfm Y, Vs € I;) (36)
Y, Y Vsel?

|

The only complication in comparison with (32),(33) is knowledge of joint density
function in (35),(36), which has to be estimated from given real texture data.
Conditional expectations are computed as follows:

K -1
E{Y;|Y.Vse I} = » Y,p(Y;|Y.Vs € I}). (37)
Y, =0

Parameter estimation is computationally time-consuming, especially for larger
contextual neighborhoods. Also, the memory requirements of model (25) are
higher than for the simpler model (17).

8 MARKOV RANDOM FIELD MODELS

The Markov random field (MRF) is a family of random variables with a joint
probability density on the set of all possible realizations Y of the lattice I, subject
to following conditions:

p(Y)>0, VY, (38)
(positivity condition), and
p(Y:|YsVs € I) = p(Y;|YsVs € 1), (39)

(Markovianity in a strict sense [41], or local Markov property). We limit our-
selves here to homogeneous and symmetric neighborhood systems I,.. A hierar-
chy of MRF models can be defined using such a neighborhood system, as in the
following figure, where numbers on the place of contextual neighbors indicate
the order of the model (up to fifth order) relative to x [6]:
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The neighborhood systems I, of the n-th order MRF model then contain all
neighbors of x with position numbers 1,2,...,n. We define a clique to be a set
of points that consists either of a single point, or has the property that each point
in the clique is a neighbor of all the others. For example for the first-order MRF
there are cliques {(z, 7))}, {(¢,7—1),(¢,7)},and {(z—1,7),(¢,J)}. A corresponding
sufficient statistic for the MRF requires 2( K —1)?+ K —1 independent parameters
(an isotropic MRF requires (K — 1)* + K — 1 parameters).

The Hammersley-Clifford theorem [6] states that Y is a MRF with strictly
positive distribution and neighborhood system 1, if and only if the distribution
of Y can be written as a Gibbs distribution with cliques induced by the neigh-
borhood system I,.. The function G, .., in (42) may be non-null if and only
if the sites r,s,...,u form a clique. Subject to this restriction the G-functions
may be chosen arbitrarily. For a given neighborhood system a Gibbs density
function can be expressed in the form

p(Y) = exp{—-Q(Y)}/Z, (40)

where the normalization constant 1s

Z =Y exp{—-Q(Y)}. (41)
Y

The global energy function (or Gibbs energy function) is, according to the
Hammersley-Clifford theorem:

QY)= > @

Veliquese |,

=Q0)+ )Y GY,+ ) G .Y, Ye+ .. 4Gy uYer .. Yo (42)

Local conditional densities, for example for the first-order model, can be deter-
mined from (42):

p(Y‘rly(r)) — exp{“Yf*GT’* - Z G?“SY’FY;'}/ZH? (43)
SEI,

Z=> exp{-Y,G, - » GV, Y.} (44)

r SEIT‘

Boundary pixels in a finite image have less neighbors than the interior pixels.
T'his missing data problem is solved using two approximations. The free bound-
ary condition assumes the interaction potential between a boundary pixel and
1ts missing neighbors to be zero. The second approximation assumes a toroidal
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lattice that results in a random field which is wrapped around in a torus struc-
ture [12]. Unlike 1D time series, where we can differentiate between past and
future data and accordingly between causal and non-causal models respectively,
no preferred direction is assumed in 2D data. Therefore 2D causal models seem
somehow artificial, but their advantage lies in the possibility of recursive param-
eter estimation for some models.

8.1 The Gaussian Markov random field model

It the local conditional density of the MRF model (45) is Gaussian, we obtain
the GMRF model:

p(Yr|YsVs € I) = (2n0?) /2 exp{~1/20"2(Y, — fi,)?}, (45)
where the mean value is
E{Y’T‘|YS‘VS S I} — ﬁfr* — WUy -+ Z g (1/7-—5 — /1/7'---5)3 (46)
sEr,.

and the joint probability density function is
p(Y) = (2mo®) =M 2wV 2 exp{—[(Y = U)T¥(Y - U)]/(20%)}, (47)

where the (M NN x 1) mean vector consists of single location means

E{Y} = U = [#1,1, .. aNM,N]Tv (48)

o

and the matrix ¥ has unit diagonal elements [6] and off diagonal elements are
coefficients a,. ¥ is symmetric, but is also required to be positive definite.
Coeflicients of symmetric sites have to be equal i.e. a,_s = a,5. The covariance
matrix is defined by

E{(Y-U)'(Y -U)})=0c"20"1 (49)
The argument in the exponent of p(Y') can be put in the following form:

QYY) = Z ?fj + a1.0 Z i;:i,ji}z’—l-‘l,j + g, Z E,jﬁ,j+1 + ... (50)
where

i}%,j = Yz‘,j — K- (51)

The GMREF is parametrized by v = {u,0°,a10,a0.1,...}. The GMRF can be
expressed as a stationary noncausal 2D autoregressive process described by the
difference equation

Yij = pij + Z ak 1 (Yiokj—1 = Ri—k,j—1) T €55, (52)
k}ZEIt,J

where ay; = a—j i, pi; 1s the mean value of Y; ;, e; ; 1s a stationary Gausslan
noise with zero mean and autocorrelation given by

[ o? if (k,1) = (0,0),
Re(k,l) = ¢ —oc?ar,; if (k1) € I, (53)
0 otherwise.
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Se(i,j)=0c*/[1 -2 Z A g(OS{Q’H‘(k‘&/M-{-lj/N)}] (54)
(k,l)el;

where [* , 1s the nonsymmetric half-plane of I; ; and 2D Fourier transformation
Tv .

F{Yi;}= D> ) Yieexp{—(=1)"22r(ki/M +1j/N)}. (55)

Vik, )&l

It can be shown for toroidal lattices |12, 62] that the discrete Fourier transfor-
mation F{Y } is a white Gaussian field.

p(F{Y}) =

[2r M NSy (i, 5)] /2

<exp{=Y_ Il F{V} |2 2MNSg (i, )]} (56)

4

Th@s GMRF can be generated from Y = F~{Y}+U, where the mean vector U is
defined in (48) and Y is generated from the Gaussian generator N (0, NM Sy (4, 5)).
A modnﬁed possibility for generating a GMRF on a toroidal matrix M x M
can be found in [11]. For GMRF models which have an equivalent AR model,
we can use Woods iterative algorithm 7.1. GMRF models which do not have
an equivalent AR model, can be generated by modified Woods algorithm, but
nothing is known about its convergence properties, because the convergence
theorem [62] is not valid any more. For the optimal GMRF model selection we

can use a modification of the Bayesian method 7.3., where m, is now a number
of asymmetrical half neighborhood parameters, and

Dy = ~ Z In(1 ~ 27xC,) + MN Ino} + my In(MN).
rel

8.2 The mutually compactible Gibbs random field model
We shme consider a contextual window consisting of three neighbors I, =

{(6,0),@ = 1,7),(¢i — 1,5 — 1),(4,§ — 1)} and a constant mean global energy
furlctmn '

E{Q} = ZQ(Y = E., (57)
where the global energy function is defined as
M N
= ZZQ@j(Y%j,Yiml,,j,mwl,jmlj}’ﬁz,jﬂ)- (58)

i=1 j=1
It is convenient to define the local transfer function (LTF) o, ; as

ai,j(”v y;ﬂaa }4,;*;“ Y:')) — exp{mQhJ ()/l? Y”’n? K’T«? YO)}' (59)
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DEFINITION 1. A set of sites A is called the primary sublattice of lattice I if
ACT,{(mn):1<m<Mymnm=1}C A {(m,n):m=1,1<n< Nat CA
for some (M4, N4) with 1 < M4 < M,1 < Ny < N, and if (m,n) € A, then
{(3,k), (i —1,k), (s — 1,k —1),(i,k— 1)} C A.

DEFINITION 2. The GRF defined over a rectangular lattice I, and whose joint
probability measure is given by egs. (40),(58),(59) is called a mutually com-
pactible Gibbs random field (MC-GRF) [32], if its restriction Y4 over any pri-
mary sublattice A of lattice I is also a GRF with a joint probability measure

Ji,j(n,jvyzwlﬁjamwl,jwlaY;.,.j--l)a (60)
LA = 0ij(Yij, Yie1;,Yic1-1,Yij-1)- (61)

(2,7)€A

THEOREM 1. A necessary and sufficient condition for a GRF to be a MC-GRF
18

Zaij (il’l',t, 2 y) — kij) (62)
T

Jor1 <1< M,1 <35 < N and for every triplet (t,z,y), where k;; is a constant
independent of (t,z,y).

THEOREM 2. A GRF whose LTF satisfies (62) for every (i,7), is statistically

equivalent to a unilateral MRF. A random field 1s statistically equivalent to a
MC-GRF if and only if it is statistically equivalent to a unilateral MRF.

DEFINITION 3. The GRF Y is called a GRF with a homogeneous LTF if

O—i,l(}/i,layiml,l) — U’U()/‘i,lv S/Ti-—l,].)a fO'T' 2 = 21 373]\4 (63)
O-l,j(Yl,jayl,jml) — Jh(YI,jayl,jwl)a | fO?ﬂ .} — 2733"'3N (64)

and

T4i,3 (}/ti:,ja }/'i-—l,ja )/‘iml,,j—-la }/Ti,jml) — O.(YTi,ja Sf?ﬂwl,ja 1/z'n-w—l,j--------lv }/*i,j-—-l)a

for 1=23,...,M, and 5 =2,3,...,1V. (65)

THEOREM 3. A GRF defined over a rectangular lattice I s a translation invart-
ant GRF if and only if it s a MC-GRF with a homogeneous LTF such that:

Y o11(2)on(v, 2) = o11(v), (66)

D o(2)au(y, 2) = o (y), (67)
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d o,(y,2)o(x,t, 2,y) = ou(z,t), for every x,t,2 € [4 and (68)

o (fﬁ ;g)a (;Ii'., t, z. y) = o}, (;I', y) * (69)

¢

Simulation of a translation invariant GRF is therefore based on simulation of a
translation invariant MC-GRF. Simulation of a MC-GRF is a simplified task due
to the causal type of model, the free boundary condition and the special form of
global energy function (58). Therefore we can lexicographically generate a MC-
GRF from a set of known LTFs. Simulation starts from specified values of o, o},
The initial probability o;; is computed from (66),(67), then the probability
o(z,t,z,y) is calculated from (68),(69). It has to solve 2(K — 1)K?* equations
with (K — 1)° unknowns. In the case of a translation invariant and isotropic
GRF, the following additional constraints should be satisfied:

o (v,2) = op(v,2) = 0.(v, 2), (70)

o.(v,2) = o0.(z,v), and (71)

o(x,t,z,y)o.(t,2) = o(t,x,y, 2)ou(z,y) = o(t, 2,y,x) o (z, ). (72)
8.3 The binomial Markov random field model
We shall assume the conditional probability of point r having class k to be
binomial:

_ _ K—-1\ , - ,.

p(Y, =k|Y,Vs e I,) = ( . )9‘”(1 ) (73)
where

0 = exp(T)/(1 + exp(T)). (74)

In the binary case (K = 2) the conditional probability is:
p(Yr = klY,Vs € I,) = exp(kT) /(1 + exp(T)). (75)

A first-order model has the following form for T:

Tl_ — a1 "|‘ aJQ(Y:m.,nml '+' Ym,n-l-l) + a3(y;n-—-1,n + Y?'n.—l-l,?’l)' (76)

second-order model is

T:z -— Tl + (L“-l(yjmml,frzw—l +- Yrr*z+1,n+l) + QS(Knml,n-{»l + Y;’n+1,n--—1)a (77)

etc.
Simulation of BMRF can be done for example using the Metropolis algorithm
see Section 8.4. First we generate a random field from a uniform random gen-

erator, then by the Metropolis algorithm the random field will converge to our
specified BMRF.
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8.4 The Metropolis algorithm
Given the state Y* of a MRF, another random configuration X is chosen. The
ratio o = p(X)/p(Y'?) is computed. If @ > 1, then Y'*! = X otherwise the tran-

Y?! by exchanging values of two randomly chosen pixels. The disadvantage of
this method is its sensitivity to the initial configuration [12]. In the ‘single-flip’
[30] algorithm, X is obtained from Y*' by changing the value of one randomly
chosen pixel.

8.5 The Gibbs sampler

The Gibbs sampler [30] generates realizations from a given MRF using a re-
laxation technique similar to the Metropolis algorithm. The stationary config-
uration YV is arbitrary. By repeatedly visiting all sites (for example by raster
scanning) we always replace one pixel with a value generated from the local
characteristic of Gibbs distribution:

p(Y'") = p(YYS Vs £ r)p(Y.) Vs # 7)), (78)
where
p(YHYE Vs # 1) = exp{~QL(Y)}/Z. (79)

Convergence of the algorithm is assured by the relaxation theorem.

THEOREM. Assume that for each site from a lattice the visit sequence contains
this site infinitely often. Then for every starting configuration YV and every
configuration Y,

lim p(Y* = Y|Y°) = exp{-Q(Y)}/Z.

t— 00

For a proof, see [30].

8.6 MRF parameter estimation

ML parameter estimation of the MRF model is complicated by the difficulty
associated with computing the normalization constant Z. Generally we have
KMN possible realizations for which exp{—Q} has to be computed. Therefore,
except for trivial tasks, it is necessary to use some approximation method, like
for example the coding method. To overcome the difficulties caused by mutual
correlation of lattice pixels, the coding method [6] codes lattice pixels to obtain
independent lattice pixels in a given contextual neighborhood. Such a coding
for a first-order scheme for example, is:

X

X

Using such a coding system, variables associated with X and (.)-sites are ac-
cording to the Markov assumption mutually independent. A disadvantage of
this method is that the estimates thus obtained are not efficient |6, 40| due to
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a partial utilization of the data. The different coding estimates for the same
parameter can in some cases considerably differ.
ML estimate for (.)-sites is obtained from

p(Y,|VY, € X), (80)

Or

max{ (log Z + Y, G, + Z GrsYsYr)}- (81)
sel,

This maximization is nonlinear and an iterative solution 1s needed. For the case
of a small neighborhood, few possible levels and a low order model, it is possible

to approximate (81) by a set of linear equations, if we approximate p(Yr|Y(r))
by its frequency of occurrence.

8.6.1 GMRF parameter estimation. A normalization constant (41) is easy ob-

tainable for a GMRF model, so we can obtain a ML estimate maximizing either
(58) or (56). The variance ML estimate for U = 0 1s:

NIRRT
‘= —Y VY. 82
0T = T (82)
To obtain ¥ estimation we have to solve
1 X -
in{ — X In(YTWY)}.
m\.l}n{ TN In |¥| + In( ) }

This estimator is nonlinear (determinant), so an iterative solution is needed.
Another computationally attractive possibility is the coding method (83), where

M, N is the number of independent rows and columns, respectively. The likeli-
hood function can be simplified:

M N
L=pY)= H p(Y Y Vs € 1)
r=1

M N
MR - -1
= (27) MN/2 =M exp 52 Z Z as(Yr—s — u)*}. (83)

s€l,

Parameters are determined from the following equations:

o1
a .

o log L
= =0.
bo?

From this equations we obtain:

1 Lo
MﬁéyﬁﬁmZ%MNZW”’ (84)

s&l
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ot === > (Y, - aY,.)% (85)
MN r=1 sel,
1 M N
= Hs = == Y. Q6
MN ; (86)

The final estimates of the parameters is the average value over all the possible

e

third and fourth-order nine codings, etc.) Another possibility is the pseudo-
likelihood estimator

max
skl

| | p(YrY(r). (87)
Vrel

The pseudolikelihood estimate for a, parameters has the form

Ya — [CLlOaaOla . - ] — [Z XETXr]ul Z X,T}?r-, (88)
Vrel Vrel
where
Xp = [Yfi-——-l,j + i;;'-l—l,ja ?z:,jml + }H}'i,j-l—la . (89)

Under a torus structure, the likelihood function of Y is given [20]| by

p(Yy) = [[(1/2M NSy (7)) /? exp{— > |F{Y;}]*/2M NSy (r)}.  (90)
rel rel

The ML estimates of GMRF parameters are obtained by maximizing likelihood
function (90), where F{Y,} is defined in (55) and Sy (7) in (54).
Woods [62] has given an estimate for an M x N sublattice I:

Ig={r:reIAn3sel(r—s)¢I} [ =1 - Ip,

Ya — [Z X'rTXr]ml Z XTT}F}W (91)

Vrel vrel
MR
2 _ Y, — v, XTY2. 92)

The estimate (91) was shown [40] to be asymptotically consistent.

8.6.2 ML estimation of MC-GRF parameters. The ML estimation of the LTF
of a MC-GRF with a homogeneous LTF is [32]:

Z/?;’j

on(i,j) = K —. (93)
/=1 "]

N €y,7 (94)
Uv(zaj) = K ’
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o 0.kl
ot k1) = ng’“"n a (95)

where v; ; is the number of observed transitions in the first picture row from state
j to state 7, €; ; is the corresponding number for the first column and 7; j; k.1 18 the
number of observed transitions from states (J, k,l) to state i on remaining pixels.
Estimations (93)-(95) are consistent, efficient and asymptotically Gaussian.

8.6.3 ML parameter estimation of binomial MRF'. Using the coding technique,
the log-likelihood function can be written in the following form:

M N
L= logp(Y,|Y,Vs € I,)
r=1

MN T -
= Z{log (A B 1) + (T — log(1 —expT)) (96)

. 2
r=1
. . exp I’
— 1 — 1 e j
+(K — 1 —12) log( T expT)}
oL MN o1 expT'W 6T exp T 0T
oa; ;{2(5% i 1l —expT 5a,i) ( 2 1 +expT oa; } (97)

Maximalization of (97) is a demanding task using numerical methods. Another
possibility is the MPL method, then M = M, N = N.

9 EXPERIMENTAL RESULTS AND CONCLUSIONS
Several possibilities exist for generating a given random field, but not all of them
are equally suitable for implementation in a graphical system.

The main disadvantage of random mosaic models for generating a given ran-
dom field is that they produce geometrical shapes (straight lines, rectangles,
circles) which are not appropriate to model natural textures. They can be used
for limited modelling of certain man-made textures. Periodic tessellated models
can also be useful mainly for man-made regular structure generation. It is also
possible to fill single cells with data from a random field generator. Syntactic
models at the present state of art are not possible to use for general texture gen-
eration because of unsolved grammar inference problems. Fractal models have
the advantage that they can be approximated by a single fractal function over a
range of scales and the second-order statistics are described by a single param-
eter. Such properties sound promising, so further study would be necessary to
find how credible natural textures modelled by fractals are, and in what range
real fractals are scale invariant. ,

Second order models were based on the assumption [38] (later proven to be
wrong) that the second order statistics are sufficient for a texture description.
Although such an approximation is good enough for large amount of textures, the

synthesis step 1s done iteratively and is time-consuming. Autoregressive models
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(AR) are highly flexible to model natural textures; their advantage over equiv-
alent Gaussian Markov random field models (GMRF) is their usually smaller
number of parameters. On the contrary, GMRF are more general: for some
GMRF models a finite order AR model does not exist. It is also possible to
model textures using a causal autoregressive model, which can be generated di-
rectly and for which we can easily find ML or Bayesian parameter estimates, but
in such a case we have to limit spatial correlation and introduce causal direction,
which is in most 2D cases unnatural. AR models on a toroidal lattice can be
generated using a fast Fourier transformation. There is a possibility to use more
complicated ARMA models for texture generation, but their main problem 1is
a highly nonlinear parameter estimation. A disadvantage of AR models with
conditional expectations is a large number of parameters, which gives problems
with identifying and storing them, as well as time consuming synthesis. Markov
random fields are the most flexible (it can describe the most complex random
fields from our surveyed models) from all described possibilities to model re-
alistic textures. Problems of general MRF are difficulties with evaluation of a
normalizing constant, iterative synthesis, and non-linear parameter estimation.
An exception is the GMRF, whose normalizing constant is easy to evaluate and
if we assume the toroidal lattice, then we can use a rapid FFT based synthe-
sis algorithm. MC-MRF has the advantage of easy synthesis and analysis; 1ts
disadvantage 1s a large number of parameters.

The analytical step of a texture synthesizer is not critical, because in graphical
applications it can be solved off-line. It is assumed that a graphical system will
have a database of different textures parameters and will be able to use or
modify textures from this basic sortiment. On the other hand, the synthesis
step 1s done in real time, and it is therefore necessary to generate textures as
quickly as possible. Iteration-based algorithms, like for example algorithms of
the Metropolis type are not very handy, especially for larger data fields, because
they are rather time-consuming. Another disadvantage is that although these
algorithms converge to a specified field, little is known about their convergence
rate. This problem of limited texture sortiment for a graphical system can be
solved experimentally. The GMRF generator as well as the AR generator, based
on the fast Fourier transformation, is especially advantageous because it needs
only one inverse FFT to generate the desired random field, which is much faster
than any other iterative generator. Another advantage of this method is the
possibility to use a special FFT processor to build a real time GMRF or AR
generator.

Although time is not important for the analytical step of a synthesizer, ML
parameter estimation needs numerical optimization in most of the AR and MRF
models, so we have no guarantee to reach a global optimum. In our experimen-
tation the MPL method (or Woods method) appears to be a rapid and sufhicient
alternative, at least for lower order models. The coding method of Besag uses
only a fraction of the available data and offers no clear advantage over MPL. 51m-
ilarly, the iterative estimation method (7.4.2.) was slowly converging in several
experiments. '

We have tested [33] Gaussian Markov random field generators and simulta-
neous autoregressive model generators of relatively low order (up to fifth order)
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with several exceptions of ninth order Gaussian Markov random fields to gener-
ate natural textures from Brodatz album. Our limited experimentation confirms
our belief of large flexibility and usefulness for natural texture modelling of both
models.

Figures 1-3 show different realizations of the ninth order GMRF, all were
synthesized using the Gibbs sampler algorithm. Figure 1 is wood grain and
Figure 2 calf-leather both modelled using parameters from digitized Brodatz
album of textures [20]. Figure 4 is modelled using the third order GMRF model
and the FFT synthesis method. Comparing our different simulations, we found
that the convergence rate is different for each random field. While some models
were already near their limiting random fields after 30 iterations, others needed
70 1teration steps and for others even this number was not sufficient. When we
compared GMRF results with non causal symmetric AR fields generated using
the Woods algorithm and with similar corresponding parameters we could see
thelr mutual similarity demonstrating close relation between both models.

T'he texture synthesis methods we have discussed so far are possible building
blocks for a realistic texture synthesizer, but any single mentioned algorithm
will seldom present a complete solution of our problem. Realistic modelling of
natural surfaces needs color texture synthesis and combining several texture syn-
thesis methods. It is possible to model macro features using periodic tessellated
models or simple syntactic models with micro textures generated using random
field models. Another tool for combining macro and micro features is Fourier
transformation. The resulting texture will finally be mapped onto a 3D surface.
T'his 1s possible by determining the correspondence between each sample point
on the 3D surface and its projection into a planar image. There are different
techniques [4, 29] to solve this problem. Some of them have the drawback to in-

troduce a non-controlled spatial distortion, others are limited to certain regular
3D surfaces, or need numerical optimization techniques.
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