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The camera placement problem concerns the placement of a fixed number
of point-cameras on the integer lattice of d-tuples of integers in order to
maximize their visibility. We survey some of the combinatorial optimization
and algorithmic techniques which have been developed in order to study this
and other similar problems in the context of lattices and more generally, in
combinations of lattice systems and tilings.

1 INTRODUCTION

Visibility and illumination problems are among the most appealing and intuitive
research topics of combinatorial geometry. In many cases (though not all) their
analysis requires nothing more than basic topics from geometry, number theory
and graph theory and as such they are very well suited for a wide audience [2].
In recent years there has been particular emphasis on the algorithmic component
of visibility problems in polygonal configurations; as such they have come to be
studied under the area of “art gallery (watchman) problems” which in turn lies
at the intersection of combinatorial and computational geometry [16].
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FIGURE 1. |n/3]| guards are sufficient and sometimes necessary to cover an n-wall
art gallery.

Art gallery problems, theorems and algorithms are so named after the cele-
brated question first posed by V. Klee in 1973: “What is the minimum number
of guards sufficient to cover the interior of an n-wall gallery?” The problem was
solved soon thereafter first by Chvatal and subsequently also by Fisk (see Fig-
ure 1). Since then art gallery problems have successfully emerged as a research
area that stresses complexity and algorithmic aspects of visibility and illumina-
tion in configurations comprising “obstacles” and “guards”. In fact by creating
rather idealized situations the theory succeeds in abstracting the algorithmic
essence of many visibility problems (like in partitioning theorems, mobile guard
configurations, visibility graphs, etc.) thus significantly facilitating the study of
their computational complexity.

In the present paper we focus on visibility with respect to the d-dimensional
integer lattice A : a point y is wvisible from point z if the line segment from z to
y contains no points in A, other than x and y. In particular we are interested in
the following art gallery problem.

The s-camera placement problem: Given an integer s, deter-
mine a collection S (of camera locations) contained in A and of car-
dinality s, such that the density of lattice points which are visible
jrom at least one pownt of S is as large as possible.

1.1 Some definitions

Before providing an outline of the main themes of investigation we remind the
reader of some basic definitions and simple facts. By A we denote the d dimen-
sional integer lattice consisting of d-tuples of integers and by A,, the set of lattice
points in A having absolute value < n/2. Very important for our subsequent
optimization analysis is the notion of density of a set of lattice points. By density
ot the set X C A we understand the limit (if it exists) of the ratio | X N A, |/n?,
as n goes to infinity.

Let P = {2,3,5,...} be the set of prime numbers, p ranges over P. Two
lattice points x and y are p-visible if they are distinct modulo p; two points z, y
which are p-visible for all primes p € P are visible in the geometric sense, i.e. the
line segment joining x and y avoids all the lattice points but z,y (see Figure 2).
For all X C A, X/p denotes the quotient set of X by the relation of equality
modulo p. An element of X/p is also called a coset of X /p.
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FIGURE 2. Points z and y are visible; points z and ¢ are p-visible for p # 2.3

FIGURE 3. Two guards are enough to cover lattice of pairs of integers < 5/2.

1.2 Related literature

Interesting visibility problems have been studied on integer lattices |5, 10]. Of
these we single out two which are relevant for our study.

Rumsey [20] shows that for any set S of lattice points, the density of the set
of lattice points visible from each point of .S is given by the infinite product
S/p

nd ] (1)
p

1

pE

(In fact, Rumsey gives a characterization of the sets S for which the density
formula (1) is true.) The above formula was previously obtained by G. Leujeune
Dirichlet for the case |S| = 1 (“the probability that d integers chosen at random
are relatively prime is 1/{(d)”, where ((z) = >_ - ;n" %, |z] > 1, denotes the
Riemann zeta function, [11, page 324]) and by Rearick [18, 19] for the case where
S| = 2 and the points of S are palrwise visible.

An interesting (and in general still open) art gallery problem was posed by
Moser [15] in 1966: given a set P of points in the plane how many guards located
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at points of P are needed to see the unguarded points of P? Abbott [1] studies
the case P = A,, and shows that the minimum number f(n) of guards which
are necessary in order to see all the points of A, (see Figure 3) verifies the

Inequalities

nn < f(n) < 4Inn.
2Inlnn

T'he lower bound result follows by applying the Chinese remainder theorem and
the Prime number theorem. For the upper bound Abbott constructs recursively
a sequence ri,rs,...,x; such that for each 7, ;41 i1s a point = 1n the set A,, for
which the set-theoretic difference V,,(x) \ (Vi (z1) U --- U V, (x;)), where V,,(x)
1s the set of points of A,, visible from z, 1s of maximal size and shows that
k = O(Inn) iterations of this procedure suffice in order to cover all the vertices
of the lattice. His method however gives no “qualitative” information on the
location of these points on the lattice. Nevertheless, he also shows using work
of Erdos [4] that there exists a constant o > 0 such that, for d = 2, every
point of the lattice A,, is visible from the set { (1,0)} U {(0,5) |7 =0,1,...,k },
where k = O(In” n). It is straightforward to see that his methods can easily be
extended 1 order to yield similar results for the d-dimensional lattice A,,.

2 CAMERA PLACEMENT PROBLEM

The camera placement problem in multidimensional lattices is the following. We
are given s cameras C',..., (s which are supposed to be located on the points
of the d-dimensional lattice A. We are interested in determining a set S =
{A1,..., A, } of positions (lattice points) for these cameras in such a way that
if camera (' is positioned at location A, for 7 =1, ..., s, then the density of the
lattice points visible by at least one of the cameras is maximized. More formally,
we want to find conditions on the set S of possible camera locations so that the
quantity

which is obtained from (1) using the principle of inclusion/exclusion is maxi-
mized. Configurations which attain the optimal density will be called optimal.

EXAMPLE 1 Figure 4 displays two 5-camera configurations: {1,2,3,4,5} and
{a,b,c,d,e}. One of the questions we will study in this paper is which of these
camera configurations has optimal visibility.

T'he camera placement problem can be thought of as a “qualitative” version
of Abbott’s problem already stated in the introduction. Despite the fact that
Abbott’s (and hence Moser’s) question still remains open we expect that our
investigations will also contribute to a better understanding of this problem.
Indeed, since the density u(S) depends only on the relation of p-visibility on the
cameras, we expect to deduce some qualitative information on the locations of
the cameras that achieve the O(logn) upper bound of Abbott’s theorem.

In the present paper we outline some of the optimization results developed for
the solution of the camera placement problem. No proofs will be given here, but
the reader interested in more detailed accounts is advised to consult [17, 12, 13].
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FIGURE 4. Two 5-camera configurations {1,2,3,4,5} and {a,b,c¢,d,e}.

2.1 Reduction to a non-linear integer optimization problem

The difficulty of the optimization problem previously stated is due not only to
the way we specify and manipulate the locations of the cameras, but also on the
formulation of u(S) as an alternating sum in identity (2). In the sequel it will
be necessary to reformulate the problem as a non-linear integer optimization
problem. To accomplish this we introduce, for Q subset of P, the Q-density
of the configuration S as the density, denoted by u(Q,.S), of the set of lattice
points p-visible for all p € Q from at least one point of the configuration S. It
can be shown that for any prime p the Q-density of the configuration S is the

mean of the Q \ {p}-density of the p® sub-configurations S \ ¢ where ¢ ranges
over the cosets of A/p

p?u(Q,9) = >  w(@\{p},5\¢). (3)

ceEA/p

As a first consequence of this expression we get that a necessary optimality
condition 1s that ‘

For all p € P, |S/p| = min{s, p*}. (4)

T'his means that the cameras of an optimal configuration must be located in
different cosets of A/p, for p® > s, in such a way that condition (4) is satisfied.

The difficulty of the problem is now to determine the “optimal” repartition
of the cameras in the cosets of A/2,A/3,...,A/p, where p; = 2,p> = 3,...,p,
is the (finite) increasing sequence of prime numbers less than s'/¢. To each
configuration S (satisfying (4)) we associate the family of integers (a.) indexed
by the elements ¢ = (¢1,...,¢.) EC:=A/2 x --- x A/p, defined by

a. =|SNciNexN...Nepl

It turns out that this family of numbers determines the density «(S). Con-
versely, it can be shown that given a family of numbers (a.).cc there exists a
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configuration S of s = > a,. points, which satisfies (4), and to which the family
(a.) is associated by the above described procedure.
To clarify these definitions we give in the sequel two examples.

ExamMprLE 2 Consider the two configurations of Figure 4. For {1,2,3,4,5}, the
equivalence classes modulo 2 are {2,4}, {1,3,5}, while the equivalence classes
modulo 3 are {1,4}, {2,5}, {3}. For p = 5, the equivalence classes modulo
p are the singletons. For {a,b,c,d,e}, the equivalence classes modulo 2 are
{a,e}, {b}, {c}, {d}, while for p > 3, the equivalence classes modulo p are the
stngletons.

EXAMPLE 3 In the configuration {1,2,3,4,5,6,7,8,9} of Figure § the équifua-
lence classes modulo 2 are {1,7},{4,9},{3,5},12,6,8}, while for p > 3, the
equivalence classes modulo p are the singletons.

Equipped with this new way of specifying a configuration of cameras we give
now a new expression for the function «(S) to be maximized. We introduce the
reduced density function, defined on the subsets £ of S by

u(E) :=uP\{p1,---»pr}, E),

and the family of reduced configurations B. C S defined by

=7

BC — S\ U C;.
1=1

Then by a repeated application of (3) we get that the visibility of the configura-
tion S is the mean of the P\ {p, ..., p,}-density of the m? := p¢ ... p% reduced
configurations, i.e.

m®u(S) = Zu’(Bc). (5)

c&C

It turns out, under the assumption that the configuration S satisfies (4), that
the reduced density function u'(E) depends only on the size |E/| of the set E and
it can be verified that u'(e) := »/(FE), where e = |F|, is absolutely monotone.
Using the standard notation of the calculus of finite differences

Alf(z) = flz+1) = f(z), A"Lf =AlA"f)

this means that (—1)"T'A™u'(e) > 0 for all integers n > 1. Furthermore, the

cardinal b, of the reduced configuration B, can be expressed as a function of the
family of integers a. by the relation

bc: = E | A’

h(c,c’)=r

where h(c,c’), the Hamming distance, is defined as the number of 7 such that

c; # c;. We have reformulated our optimization problem in terms of the following
non-linear integer optimization problem
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FIGURE 9. For each s < 9 the configuration {1,...,s} is optimal.

max < S (7 (bI) by = E a.,j, E a; = s, ay € IN (6)
VA=A h(l,J)=1 €T
Jel
where 7 = [1..p%] x --- x [1..p%] is a set of multi-indices, h is the Hamming

distance and the function v’ is an absolutely monotone function.

The concavity of v’ (A%u’ < 0) and the fact that the terms b; sum to a constant
(= s [[.Z;(p¢ — 1)) suggest that for an optimal configuration the numbers by
must “differ from each other by a minimum amount”. A classical measure of
this deviation is the sum >, b% of the squares of numbers b;, which we will call
the variance of the configuration S.

The previous considerations enable us to conjecture that an optimal configura-
tion must be of minimal variance. All our subsequent considerations are guided
by this conjecture which we confirm for the case of “almost all” configurations
of s < 5% cameras. Moreover we have the following characterization.

THEOREM 4 The variance of a configuration S s minimal if and only if for
every square free integer n and every ¢ and ¢’ € A/n the cardinals of cNS and
¢ NS differ by at most one.

In other words, configurations of minimal variance are precisely the ones whose
cameras are “equally distributed” with respect to the equivalence classes modulo
n, for n square free integer. In addition it is easy to see that configurations of
minimal variance must satisfy condition (4).

2.2 Optimization for s < 5% cameras

The previous transformations make it possible to give elegant characterizations
of optimal configurations of s < 3¢ cameras.

THEOREM 5 A configuration S of size < 3% is optimal if and only if its variance
1S minimail.
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FIGURE 6. Optimal Configuration of 27 cameras in dimension 3

Thus, a configuration S of size < 2¢ is optimal if and only if its cameras are
pairwise p-visible for all primes p, while a configuration S of size < 3¢ is optimal

if and only if its cameras are pairwise p-visible for all primes » > 3, and for all
c,c' € A2 ||[SNel—-|SN{|| L 1.

EXAMPLE 6 Again, consider the configurations displayed in Figure 4 and men-
tioned in Eixample 2. The first configuration {1,2,3,4,5} is not optimal because

cameras 1,4 are not 3-visible. On the other hand, configuration {a,b,c,d,e} is
optimal.

EXAMPLE 7 It 1s easy to check that all nine configurations {1,...,s8},1<s5<9,
depuicted in Figure 5 are optimal. Notice that this example in conjunction with the

five camera configuration {a,b,c,d, e}, depicted in Figure 4, shows that optimal
configurations are not uniquely determined.

EXAMPLE 8 A 27-camera optimal configuration in three dimensional space is
depicted in Figure 6.

For 3% < s < 5% the problem is much more difficult. Let Ly, ...,Lya be the 2
cosets of A/2, C1,...,C3a the 3% cosets of A/3 and let us use the abbreviations
li = |L;NS|, ¢c; =|C;NS|, a;; = |L;NC;NS|. Now recall that our optimization
problem has been transformed to the following one
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FIGURE 7. The two candidates to optimality when s = 23

Imax U (szj) | bijj = AL [, a; 5 — S, a; g c IN ( -
i,

k#i,l7#] t,7

Then we can show (and this is not easy [17]) the following conditions on optimal
configurations '

THEOREM 9 If S s an optimal configuration then
;=1 <1 and | —c¢j| <1

Furthermore there exists an integer 6 < s such that, after any permutation of
the indices which insures that the sequences l; and c; are decreasing,

q . = 6 or 6+1 of (4,7) > (io,Jo)
“J 0 or 1 otherwsise

where 19 = s mod (2%) and jo = s mod (3%).

The above characterization fails, in general, to give the exact value of §. Nev-
ertheless it can be shown that for almost all values of s (the ratio is at least
(1—(5/6)%)) we have § = 0. In that case the above constraints are equivalent to
the minimality of the variance of the configuration. So, in general, we are torced
to conduct a search for a number of configurations which are “candidates” to
optimality, one for each value of 6 between 0 and s. The following theorem shows

that this search is equivalent to a linear integer optimization problem which is
solvable in polynomial time.

THEOREM 10 Optimal configurations among the ones satisfying the constraints
expressed in Theorem 9 are characterized by the condition

E a; ; ts maxrimal.
12>10,7>70

Furthermore this last optimization problem can be solved in time O(slogs).
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For example, in two dimensions there is only one candidate to optimality for
every value of s < 5% = 25 except for s = 23 where there are two candidates:
these candidates are depicted in Figure 7. The configurations are represented by
matrices of size 2¢ x 3¢ where the columns and the rows represent the cosets of
A/2 and A/3 while the boxes represent the cosets of A /6. The various entries of
the matrix give a complete description of the repartition of the cameras in the
cosets of A/2 A/3 and A/6.

To decide between the candidates to optimality we are faced with the numer-
ical evaluation of infinite products of the form d’(k) = T] p£2.3 (1 — p_ka‘) which

converge very slowly (a power of 1/N, if we take N terms). Using a technique
developed by Vardi and Flajolet [6] efficient evaluation can be done.

3 LOCATING THE CAMERAS

In the previous section we gave a description of the optimal configurations of
size s < 5% in terms of relations, called p-visibility relations, and asserted the
existence of such configurations. However, knowing such a family, £ say, of
relations, we still have to find a configuration of locations for the cameras that
contorm to these relations. This leads us to the concept of £-configuration, which
we discuss in the sequel.

Let & = (~p)pep be a family of equivalence relations on the set C = {Cy, ... Cs}

of cameras. An s-tuple (A,..., A,) of s integer lattice points 1s called an £-
configuration if

for all 2,7, Ai=A; (modp) < C; ~, C; (8)

1s valid for all primes p. So an £-configuration is a point in Z*¢. The density of
these points is given in the following theorem.

I'HEOREM 11 The density of the set of £-configurations is grven by the infinite
product

(Pd);6/~p|
1l —a= (9)
peP P
where (z), = x(x—1)(x—2)...(x —y+1) is the descent factorial. Furthermore
an & -configuration exists if and only if the above density is non null.

Theorem 11 has some interesting consequences. It follows that an E-configu-
ration exists if and only if for p sufficiently large ~p 1s the identity relation and
for any prime p the cardinal of the quotient space |C/~,| does not exceed p?.

In addition, as long as we are concerned with an optimal configuration the
above expression of the density of £-configurations depends only on s. Indeed

using condition (4) on optimal configurations the product (9) can be rewritten
in the form

I (-0, v
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The size of expression (10) prohibits the use of unsophisticated random sam-
pling in order to get &-configurations. This is because the probability that
a random s-camera configuration is an &-configuration is < 1/¢((d)*~!. Thus
on the average it will be necessary to randomly sample at least ((d)*~! times
(which is exponential in s) before one succeeds in obtaining an &£-configuration.
In [17] a simple randomized algorithm for doing this has expected time com-

plexity Q') (for d fixed). This raises the question of whether any iterative
techniques starting from an arbitrary configuration will lead to an optimal one.
Simulated annealing offers such an effective technique [21] but it is not known
whether convergence to an optimal configuration can be achieved in polynomial
time.

Returning to the original problem solved by Abbott, it will be interesting to
determine the minimal size (max{||4; — A,||}) of an optimal configuration and
to determine the pattern of visible and non-visible points around the cameras.

4 SUPERPOSITION OF LATTICES

Another interesting problem concerns generalizations of the camera placement
problem to more general lattice systems, like tilings or even more generally of
point configurations obtained by superposing lattices and/or tilings (8, 9].

Preliminary investigations [14| show that the problem reduces to the following
three subproblems:

1. give a number theoretic characterization of the visibility relation among
points of the given tiling system,

2. extend Rumsey’s theorem; in particular, it is necessary to determine the
density of the visibility sets V(S) in arbitrary tiling systems,

3. Investigate combinatorial optimization techniques in order to construct
optimal configurations.

Item (1) is a nontrivial problem. Research in progress [14] shows that if
the set of points is O = A\ UE:l (GG;, where (G; are sublattices of A then for
z,y € O which are O-visible (i.e. the line segment joining = and y avoids any
points of O) we must have that ged(z — y) < 2* (The proof uses a result of [3].
Moreover, determining whether or not O is empty is an N P-complete-problem
7].) For item (2) one requires proving stronger density theorems for visibility
sets comparable to Rumsey’s theorem [20]. For item (3) a reasonable approach
1s to refine and extend the algorithmic techniques and reduction theorems we
have already developed for the case of s < 5¢ cameras. For more details see 14].
We illustrate the problems with an example.

EXAMPLE 12 Let the set of points be O = {z € A |z #0 (mod 3)}. In that
case a pownt x 1s vistble from a point a if and only if x # a (mod 3,5,7,...),
and (z # a (mod 2)) or (z = @ (mod 2) andz = —a (mod 6)). We get
then that the density of the set of points visible from each point of a finite subset
S of O is given by the infinite product

2¢ —1S5/21)(3% — 15/3| — 1) + w S
(o

p>3
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where w s the cardinality of the set of cosets ¢ of O/6 such that

VaeS c¢cs#a (mod3)
JdJa€ S c=a (mod 2)
VaeS c¢c=a (mod?2) = c=-—a (mod6).

What can we say for the camera placement problem? Much of the prewi
optimization analysis holds in this case as well. We can show that

e the optimality condition (4) holds for p = 3,5,...,

e for the s-camera placement problem (s < 5%) the optimization prot
becomes

max Z u'(by) | by = [IN(=8)] + Z JNS| »,

I€0/6 d(I,J)=2
where u' 1s the reduced density function.

Then we can gwe a complete characterization of the optimal configuratior
size s < 2% for example an optimal 2-camera configuration {a,b} is character
by a and b are visible in A and a+b =0 (mod 3).
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FIGURE 8. The Honeycomb (left), Hexagonal (right) Lattices

Another interesting class of visibility problems is also obtained when We
sume that the set of “obstacle” points (i.e. which block the visibility) and
set of possible locations of the cameras make a partition of A. Example-
such tiling systems are depicted in Figure 8 where we assume that the e are:
obstacle-points and the o are the possible locations of the cameras. We men1
the following example illustrating this problem.

EXAMPLE 13 Let F' be a subgroup of A/n, where n = py ...p, is free of sq2L«
and let F' be its complement. Let the set of obstacles be

O={zeA|dfeF (z=f (modn))}
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and the set of possible locations of the guards be
G§={x€A|Idfe F(x=f (modn))}.

In this instance it can be shown that two lattice points x,y are visible if and
only if they are p-wusible for all primes p # pi,...,p,.. Moreover the density of
obstacles wvisible from a finite set S of guards is given by the infinite product

The optimization analysis developed for the camera placement problem in A
holds here as well, except that we have to “forget” completely the p-visiblity
relation for p = pq,...,p,. This allows us to control the value of the reduced
density function and give some insight on the validity of our conjecture (minimal
variance) about optimal configurations (for more details see [17]).

5 CONCLUSION

In the previous sections we analyzed the camera placement problem in complete
integer lattices. We have shown how to reduce the problem to a non-linear in-
teger optimization problem and used our analysis to study optimal s-camera
configurations when s < 5¢. The main challenge in this area is to derive charac-
terizations of optimal configurations for s > 5¢ cameras that lead to a polynomial
number of candidates to optimality.

We also considered the more general case of lattice systems arising from the
superposition of complete integer lattices, as well as lattice configurations aris-
ing from specific sets of obstacle and cameras. In all these cases we have the
additional tasks of providing number theoretic characterizations of visibility as
well as new density theorems. However, our optimization methodology is fairly
general and will be useful even in these more general cases.

REFERENCES

1. H.LL. ABBOTT (1974). Some results in combinatorial geometry. Discrete
Mathematics, 9:199-204.

2. V. BOLTJANSKY, [. GOHBERG (1985). Results and Problems in Combinato-
rtal Geometry. Cambridge University Press, 1985.

3. R.B. CRITTENDEN, C.L. VANDEN EYNDEN (1970). Any n arithmetic pro-
gressions covering the first 2" integers covers all integers. Proceedings of the
American Mathematical Society, 24:475-481.

4. P. ERDOS (1962). On the integers relatively prime to n and on a number
theoretic function considered by Jacobsthal. Math. Scand., 10:163-170.

5. P. ERDOs, P.M. GRUBER, J. HAMMER (1989). Lattice Points, volume 39 of
Pitman Monographs and Surveys in Pure and Applied Mathematics. Long-
man Scientific and Technical.

6. P. FLAJOLET, I. VARDI (1990). Numerical evaluation of Euler products,
1990. Unpublished manuscript.

281



10.

11.

12.

13.

14.
10.

16.

17.

18.

19.

20.

21.

M.R. GAREey, D.S. JoHNSON (1979). Computers and Intractability: A
Guide to the theory of NP-completeness. W.H. Freeman.
P.M. GRUBER, C.G. LEKKERKERKER (1987). Geometry of Numbers, vol-

ume 37 of North Holland Mathematical Library. North Holland, Second
Edition.

. B. GRUNBAUM, G.C. SHEPHARD (1987). Tilings and Patterns. W. H.

Freeman and Company.

J. HAMMER (1977). Unsolved Problems Concerning Lattice Points. Research
Notes in Mathematics. Pitman.

D. KNuTH (1981). The Art of Computer Programming: Seminumerical
Algorithms. Computer Science and Information Processing. Addison Wesley,
second edition, 688 pages.

E. KRANAKIS, M. PoccHIioLA (1990). Camera placement in integer lat-
tices. Technical Report CS R90-47, CWI, Department of Algorithmics and
Architecture.

E. KRANAKIS, M. POCCHIOLA (1990). Enumeration and visibility problems
In integer lattices. In Proceedings of the 6th Annual ACM Symposium on
Computational Geometry.

E. KRANAKIS, M. PoccHIOLA (1991). Visibility in tilings, in preparation.
W.0.J. MOSER (1985). Problems on extremal properties of a finite set of
pomnts. In Goodman et al, editor, New York Academy of Sciences, pages
02-64.

J. O’'ROURKE (1987). Art Gallery Theorems and Algorithms. International
Series of Monographs on Computer Science. Oxford University Press, 282
pages.

M. PoccHIOLA (1990). Trois Thémes sur la Visibilité: Enumération, Op-
timaization et Graphique 2D. Ph.D. thesis, Laboratoire d’Informatique de
I’Eicole Normale Supérieure, Paris, October.

D.F. REARICK (1960). Ph.D. Thesis, California Institute of Technology.
D.F. REARICK (1966). Mutually visible lattice points. Norske Vid Selsk
Fork (Trondheim), 39:41-45.

H. RUMSEY JR. (1966). Sets of visible points. Duke Mathematical Journal,
33:263-274.

P.J.M. VAN LAARHOVEN (1988). Theoretical and Computational Aspects of
Simulated Annealing. CWI Tract, No 51.

282



