Process Alg

G.J. Akkerman*

Department of Philosophy, University of Utrecht,
Heidelberglaan 2, 3584 CS Utrecht, The Netherlands

J.C.M. Baeten?
Department of Software Technology, CWI,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands
and

Programming Research Group, University of Amsterdam

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

We discuss the application of term rewriting analysis to theories of commu-
nicating concurrent systems. Turning such a theory into a canonical term
rewriting system vyields decidability and is essential for implementation. We
do this for the theory ACP with a silent step in the setting of branching
bisimulation. It i1s necessary to consider rewriting modulo equalities.

The article has the following structure: After the introduction and a list of
definitions, we consider in section 3 Knuth-Bendix completion. In section 4,
we consider a Peterson-Stickel complete term rewriting system which has the
same term algebra as the fragment of AC P’ it corresponds with. In section
5, we prove termination of this rewrite system.

1980 Mathematics Subject Classification (1985 Revision):
68Q45, 68Q55, 68Q65, 68Q50.
1987 CR Categories: F.4.3, D.2.10, D.3.1, D.3.3.

1 INTRODUCTION

In this section, we motivate our investigations, list our two main sources, and
give a brief overview of the process algebra system that we consider.

*When we started this article, and wrote much of it, the first author was employee of the
Software Engineering Research Centrum, Utrecht, The Netherlands.
Author’s current address: G.J. Akkerman, Faculty of Technical Mathematics and Informatics,
Delft University of Technology, P.O. Box 356, 2600 AJ Delft, The Netherlands

tThe second author received partial support from ESPRIT basic research action 30086,
CONCUR, and from RACE project 1046, SPECS. This document does not necessarily reflect
the views of the SPECS consortium.

Author’s current address: J.C.M. Baeten, Department of Mathematics and Computing Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

207



1.1 Motwation for a term rewriting analysis

In this subsection, we explain why we did a term rewriting analysis of ACP”". The
foremost reason for doing a term rewriting analysis is that it yields a canonical
term rewriting system. A canonical term rewriting system 1s a term rewriting
system that is strongly terminating and has unique normal forms. Canonical
term rewriting systems can be used for the following purposes:

1. It can be verified by inspection whether a certain class of function symbols
(called defined functions) can be eliminated from a term by means of the
rules of the rewriting system. (See [10, 15].)

2. It can be used for proving that certain algebras are conservative extensions
of others. (See [15].)

3. 1t yields a decision procedure for equality of terms: Two terms have the
same interpretation in every model of an algebra if they have the same
normal form.

4. A canonical term rewriting system yields a well defined implementation of
the algebra for closed terms.

1.2 Origins
We apply the completion method of [17] to the process algebra system ACPT7 of
15]. One of the authors has considered this subject earlier, in [1]. The version

of ACPT considered in that report resisted completion. We now succesfully
consider a modern version of ACPT7.

1.3 Algebraical preliminaries
In this section we consider some notions from abstract algebra.

1.5.1 Term algebras. In this paper we consider the closed term algebra and open
term algebra associated with an axiom system:

o The closed term algebra (or just term algebra) is constructed by consid-
ering the set of all closed terms over the signature of the axiom system,
and partitioning them in equivalence classes, where terms are in the same
equivalence class if and only if they can be shown equal by means of the
equations.

e T'he open term algebra is constructed in the same way, but starting from
the set of all terms, including those containing variables.

An equation is considered valid in the open term algebra if its left hand side and
right hand side are in the same equivalence class, and valid in the closed term
algebra if for every ground substitution instance of the equation, the left and
right hand side of this instance are in the same equivalence class.

1.3.2 Conservative extensions. An axiom system FE; is called a conservative
extension of an axiom system FE if it allows all deductions of E;, and does not

allow any new deductions on old terms. Usually consideration is restricted to
ground terms only.

298



r+y=y+ax Al | or=uo  BI

r+(y+z2)=(+y)+z A2 |z(r(y+z2)+y =x(y+z) B2

r+ax=ux A3

(x +y)z =22+ y=z A4

(zxy)z = x(yz) Ab

r+o6=ux A6 alb = ~v(a,b) if v(a.b) | CF1

oxr = A7 alb = 6 otherwise CF2

|y = x|y +y|| x + x|y CM1 | ax|b = (alb)x CM5

a|| x = ax CM2 | albx = (al|b)x CM6

ar| vy = a(z|y) CM3 | axlby = (alb)(x|y) CM7

(x+y)llz=z]|z+ylz CM4 | (x+y)lz =2z|z+yl|z CMS8
* - rl(y + 2) = 2|y + 2|z (M9

TABLE 1. Considered fragment of ACPT.

1.4 Process Algebra

In this section, we will describe the axiomatization of process algebra that we
consider. See table 1. This is a fragment of AC'P™ which can among other
variants of process algebra be found in [5].

The axioms describe the possible behaviour of a process in terms of choices
“+” and sequences (denoted by a usually invisible infix dot, as in ax for a -x) of
actlons Those actions are 1n the axioms referred to by action variables “a”, “b”
and “c,” ranging over some set A of actions. The specification is pammetrized
over this set A of actions together with a partial communication function -y :
Ax A— A. We take 6,7 € A, and we assume that for all a,b,c € A, alb = b|a,
a|(blc) = (alb)|c, a|T = 6 and a|d =

For the meaning of the axioms in table 1, the reader is referred to [3].

Missing in table 1 are the axioms for dy and 7;. We do not consider those
function symbols because their axiomatization depends on the actions in H and
I being actions from A, and this does not fit our analysis using open terms.

A successful term rewriting analysis for ACP was carried out in [3] (although
the treatment of rewriting modulo commutativity and associativity was inexact)
and used to establish basic results about the theory. In [4] however, it appeared
that such an analysis for the theory with Milner’s silent step 7 1s not possible,
due to the fact that the second and third 7 law of Milner cannot be ordered (i.e.,
given a direction). Therefore, in [4] graph rewriting techniques and a notion
of saturation were used instead, to establish the basic theorems for ACP with
silent step. In [9] an alternative formulation of the laws for the silent step
was proposed (having as semantics the so-called “branching bisimulation”) and
advantages over Milner’s approach discussed. The question arises whether ACP
with branching bisimulation allows a successful term rewriting analysis. In [5] it
is claimed that this is indeed the case. The present article provides a full proot
of this fact. A similar claim for CCS with branching bisimulation was made 1n

7]

299



2 DEFINITIONS
In this section we define our concepts. We hope that most of our readers already

are tamiliar with the concepts involved, otherwise it would be useful to consult
11].

DEFINITION (SYMBOLS) We assume a set of uninterpreted symbols.

DEFINITION (SIGNATURE) A signature is a pair (F,V) of two disjoint sets of
symbols. Symbols in F' are called function symbols. Symbols in V are called
variables. We assume the existence of a function arity: F — N.

DEFINITION (TERMS) The set T'(F, V') of terms over F,V is defined as the small-
est set such that V C T'(F,V) and if t;,... ¢, € T(F,V) and arity(f) = n then
f(ty, ... ty) € T(F, V). We will usually denote T(F,V)byT.

DEFINITION (EQUALITY OF TERMS) We use “=" to denote syntactical equality
on terms.

DEFINITION (OCCURRENCES, REPLACEMENT) Occurrences are finite sequences
of integers. The set of occurrences O(t) of a term ¢t is defined by: O(v) = ()
tor v € V and O(f(t1,...,tn)) = {Q)}U{Uj—, @) T O(%)}, where u v denotes
the concatenation of sequences u and v. For u € O(t) the subterm #/u at u
in ¢ 1s defined by t/() =t and f(t1,...,¢,) /(i ur,ow) = ti/(uq, ..., u;). We
define O(s,?), the occurrences of s in t as {u € O(t)|t/u = s}. For u € O(t)
replacement ¢lu < s| of the subterm in ¢ at u by s is defined by tl() «— s| = s
and f(tl, ‘. ,t*,,,,)[(i)ﬂ‘u A S] — f(tl, S ,t?j_.,l,ti[*u, A 3]:, t.zj_I_l, .« e ey tn).

DEFINITION (CLOSURE UNDER CONTEXTS) We say that a relation R : T X
1" i1s closed under contexts if whenever t; = S1y-+-5bjm1 = 81,0, Rs;,t; 11 =
Sz_l_l-, . o .y trn‘ — Sn aﬂd CLT’Zty(f) — n therl f(tlj ¢ . ey trn)Rf(Sl, ¢ e ey ST’L)*

DEFINITION (TERM REWRITING SYSTEM, AXIOM SYSTEM) We define both a
term rewriting system and an azxiom system as finite sets of pairs of terms. The
difference between them is their intended use. We express this intended use by

writing a pair of terms (s,t) in a term rewriting system as s — ¢. and the same
pair in an axiom system as s = ¢.

DEFINITION (SUBSTITUTION) A substitution is a total function o from V to
I'. Substitutions are extended to maps from T to T by o(f(t1,...,tn)) =

flo(t1),...,0(tn)). We say that a relation R on terms is closed under substitu-
tron if tor all terms s and ¢ and all substitutions ¢ whenever sR# also o(s)Ro(t).

DEFINITION (EQUATIONAL TERM REWRITING SYSTEM) An equational term rewrit-

ing system (ETRS) is a pair (R, F) where R is an term rewriting system, and
E an axiom system. '

260



DEFINITION (EQUALITY AND REWRITE RELATIONS) The one step equality rela-
tion =g of an equational term rewriting system (R, E) is defined as the smallest
symmetrical relation on terms containing F that is closed under substitutions
and contexts. The equality relation =g of a term rewriting system is defined as
the reflexive transitive closure of the one step equality relation. The one step
rewrite relation — 5 of a term rewriting system R is defined by: s —p t if there
exist an occurrence u € O(s), a substitution o and a rule | — r € R such that
s/u = o(l) and t = s|lu «— o(r)]. The one step rewrite relation is the smallest
relation on terms containing R that is closed under substitutions and contexts.

1}

DEFINITION (UNIFICATION, MATCHING) We say that a substitution o is an F -
unifier of the two terms s and t if o(s) =g o(t). We say that two terms s and ¢
are E-unifiable if there exists an E-unifier of s and . We say that a substitution
o E-matches s to t if o(s) =g t.

DEFINITION (REWRITING RELATIONS MODULO) The one step rewrite relation

1 L 1 _ e R Ry ic the comnacition {lr 2\ |3
—g/p 15 defined as =g . — . =g. (Here R;.R; is the composition {(z, y)|Tu

(xRiu A uRoy} of the relations R; and R>.) The rewrite relation — p /E 1S
defined as the reflexive transitive closure of ~—}}:{ - Notice that this relation

allows equality steps between the rewrite steps.

DEFINITION (NOETHERIAN) A relation — is called Noetherian (or well- founded)
if there are no infinite sequences s; — s5 — .

DEFINITION (CONFLUENCE OF A PAIR OF TERMS) We call a pair (81, 82) of
terms confluent for a relation — if there exists a term ¢ such that s; —* ¢ and
so —* t. (Here we use R* for the transitive closure of R.)

3 KNUTH-BENDIX COMPLETION CONSIDERED BRIEFLY.

Note: In this section, we will use the word rewriting for a reduction, because
we will use the word reduction for the transformation of a problem to another
(simpler) problem.

In this report we consider the confluence of a term rewriting system presenting
ACPT. A well-known technique for constructing (often infinite) term rewriting
systems for an equational theory is Knuth-Bendix completion. We will consider
Knuth-Bendix completion in its original form [16, 12], and in its variant by
Peterson and Stickel [17]. Let us first consider confluence.

A term rewriting system is confluent if for every pair of divergent reductions
t —" t1 and t —* ta, the resulting pair of terms (¢,,¢2) is confluent. Knuth-
Bendix completion is based on a technique for finding divergent reductions t —*
t1 and t —™ t5 for which there are no convergent reductions. This technique for
finding such divergent rewritings is based on the following two reductions:

o First, the problem is reduced to the consideration of all divergent pairs of
one step rewritings, under the assumption that the rewriting relation is
well-founded.

261



Next, this problem is reduced to the consideration of all one step rewritings
irom terms obtained by overlapping two left hand sides of rewrite rules.

Since there are only finitely many (most general) overlappings of the left hand

and in fact yield a counterexample if they fail.

This theory of Knuth-Bendix completion sketched above has to be modified
If we allow a sequence of rewrite steps interspersed with equality steps. The
required modifications are not obvious if some rewrite rules have a variable that
occurs more than once in its left hand side. We will use a variant of Knuth-
Bendix completion by Peterson and Stickel, because this variant can indeed
be viewed as a modification of Knuth-Bendix completion. (Other, more general,
variants exist, e.g., [14] and [2], but in as far as those deviate from the framework
of Peterson and Stickel, they develop more theory, and require, e.g., a test for
coherence.) Peterson and Stickels completion differs in the following respects
from Knuth-Bendix completion:

Unification in the overlap test is done modulo associativity and commuta-
tivity.

Termination of the rewrite rules must be proven modulo associativity and
commutativity. (That is, there must be no infinite descending chains of
rewrite steps interspersed with equality steps.)

T'he set of rewrite rules has to be increased: For every rule [ — r where [
15 governed by a both associative and commutative function symbol (say
+), we require that a rule I +  — r 4+ = be added, where x is a variable
not occurring in [ or . We notice that addition of such extensions is
equationally sound, but it may give rise to new overlaps.

4 RESULTS
A natural term rewriting system associated with ACPT would have the equa-
tions of AC'P” oriented from left to right. Unfortunately, that rewrite system
would not be confluent. In this section, we motivate the construction of a rewrite
system by means of a sequence of divergent reductions. We will start by consid-
ering some divergent reductions of AC'P7 considered as a rewrite system. Later
we will also consider a divergent reduction based on the rules we added to ACP™.
All term rewriting systems that we consider have the same term algebra as
our fragment of ACP": No equations were deleted, and only equations valid in

the term algebra of our fragment of ACP™ were added, as can easily be proved
by means of structural induction.

Note: It is not at all clear whether the steps that we took to resolve the diver-
gences are the only reasonable ones, though we cannot think of others that work.
(Just orienting the outermost terms to rules did not seem very promising.)

We will now present the sequence of divergences based on the new rewrite
rules that they led to:

262



1 r4+r=x |14 b =0
2 T = T 15 Tl =6
3 r+06=u 16 x| (ty) = x|y
4 | T =2 17 alb = ~v(a,b)
5 Sla = 6 18 r((ty) + y) = xy
6 rla = & 19 rlly = x|y + yl| * + x|y
7 (ry)z = x(yz) 20 (tx)|y = 6
8 a|| x = ax 21 zl| (ty +y) = x| v
0 r(Ty) = xY 22 (ax)|b = (alb)x
10 (x+y)z=x2z+y=z 23 r(t(y+2)+y)=a(y+ z)
11 bx =6 24 x| (T(y+2) +y) ==z (y + =)
12 (@+yllze==z|z+yllz]| 25 (az)| y = a(z|ly)
13 (z+ylz=zlz+ylz |26  (ax)|(by) = (a]b)(z|y)

TABLE 2. The associated rewrite system.

4.1 Rules [9] and [18]

Rules [9] and [18] are consequences of other rules:
e Rule [9]: z(ry) =""1 (z1)y =2 zy.

e Rule [18]: z((ty) +y) =B 1 z((r(y + 6)) +y) =F 2(y + &) =Bl ay

The other rules present in table 2 but not in AC'P™ are not equational conse-
quences of the rules used thus far, but are valid in the (closed) term algebra.
(And the other rewrite rules can be used for proving this by structural induc-
tion.) They were added to avoid the problems noted below.

4.2 Rule [1/]

Because: x|y =B 1 (z+68)|y =[*3! (z|y) + (6]y) Since the two outermost terms of
this deduction form an equation of two terms in normal form, and this equation
1S not present as a rewrite rule or the converse of one, we must add rules to
rewrite at least one of both terms. In this case, we decided to add rule [14]|. The
terms resulting after application of these rules are then equal by rule [3]

4.3 Rules [4] and [157

Because: ay ="' al| y =271 ()| y =127 a(r]ly) =1 a(r| y+y| T +y|r) =
a(Ty +y|| 7 + y|r) As before, we must add rules to rewrite at least one of both

terms. In this case, we decided to add rules [4] and [15]. The terms resulting
after application of these rules are then equal by rule [18]

Remark:

Let us note explicitly, that for resolving this equation, which was produced by
equations obtained from left linear rules only (viz. rules [2], [8], [19] and [25]), we
need rule 18], which is not left linear, (or its converse, which is nonterminating).

203



T'heretore we suspect that we cannot do a similar term rewriting analysis of the
lett linear fragment of AC'PT using techniques (given in [12]) only applicable to
left linear rules. Consequently, we think that Peterson-Stickel completion pro-
vides the simplest (but also least powerful) working approach to term rewriting
In process algebra.

4.4 Rules [16] and [20]

a(@lly + yl v+ 2ly) =0 aelly) =2 (ar) | y =P T a(ra)| y =P a(rally)
= al(relly) + (yl me) + “h%ﬂ) =2 a(r(xlly) + (yl 7o) + (2]ry)) ="
a(t(x|| y+y|| c+x|ly)+ (y|| 7o)+ (x|Ty)) As before, we must add rules to rewrite

at least one of both terms. In this case, we decided to add rules [16] and [20].
T'he terms resulting after application of these rules are then equal by rule [23]

YBLE

4.0  Commutativity of |’

G | 2

In table 2, we have already used commutativity of by having only one
version of [15] and [20]. Therefore, we assume for the moment that we have
both versions c)f each rule. We consider now the following deduction: a(z| y +
gl + ly) =10 aally) =251 () y =157 (@) (ry) =125 a(a]|(ry) =1
a(x| (ty) + (#UH + z|(ry)) =1 alely + (ry)ll = + z|(ry)) =P a(z|y +
(ylle) + z{(ry)) =% alzlly + T(yl2) + &) =Pl a(z| y + r(yllz) = a(z] y +
T(yllz + x|y + ylx)) :___--»[23] a(y||  + z|| y + y|x). (Notice that this divergent re-

uuuuuu

duction is based on the rules 16 and ‘?0 that we have added.) To resolve it, we
decide to add an equation “rly = ', expressing the commutativity of “|”.

4.6 Rules [21] and [24]

These can now be proven by the axioms presented thus far:

..... ' Rule [21] l“ (Ty+ y) [1()"’“"1 ll_LT ’T’U"‘J) — (18] Tl TY —[16] ‘Luy

o Rule [24]: z|| (t(y+2)+y) ="V x| 7(r(y +2) +y) =23 x| T(y+2) =[16]
z|| (y + =)

4.7 Main theorem

We can now state our main theorem, the confluence of our ACP”™ subset.
T'HEOREM The system in table 2 is confluent.

PROOF We verified this by computing all E-critical pairs, and checking their E-
confluence, using the implementation of Peterson-Stickel completion lescribed
in [1]. Under the assumption of well-foundedness of the rewrite relation, this

suffices. It may be appropriate to check the confluence of table 2 with another
implementation as well.

264




5 PROVING TERMINATION
First we state a definition from [6]:

DEFINITION (SIMPLIFICATION ORDERING) A transitive and irreflexive relation
> is a setmplification ordering on a set of terms 7' if for any terms ¢, ¢/, f(---¢---),
f(t’) e T

1. ¢ > t'implies f(---t---) > f(---t'---) and
2. f(---t---) >t

For the proof of termination of our term rewriting system, we use the following
theorem (from [6]):

THEOREM A term rewriting system P = {l; — r;}'_, terminates if there exists
a simplification ordering > overI' such thar l; > r; for any assignment of terms
in 1" to the variables of [;.

Since this theorem comnsiders ordinary rewriting, while we consider rewrit-
Ing modulo associativity and commutativity, we cannot immediately apply it.
However, if we require that the ordering is compatible with associativity and
commutativity of the associative and commutative function symbols, the proof
in [6] can easily be adapted to rewriting modulo associativity and commutativity.

We will now describe the simplification ordering that we use to prove termi-
nation:

DEFINITION (NUMBERS GREATER THAN 1) We define N>, as {m € Njm > 2}.

DEFINITION (EXTENDED POLYNOMIAL TERMS) We define extended polynomial
terms inductively by:

o All n € N>y are extended polynomials.
e All v € V are extended polynomaials.

e If x; and z2 are extended polynomials, then x; + x5 18 an extended poly-
nomial.

e If r1 and zo are extended polynomials, then x;.x5 is an extended polyno-
maial.

o If r is an extended polynomial, then 2% is an extended polynomial.

We denote the set of extended polynomials over V by X|V|. Assigments of N>
to V are extended to X [V] in the expected way:.

DEFINITION (MAJORIZING) We define the ordering s > ¢ (“s majorizes t”) as
VTTL:V““”*NBQ m(s) > m(t)

Notice that majorizing is closed under substitution.

269



zlly] | 2RI
x| y] inatd
[ely] | 2]
zyl | 1=yl + 2]
e+ | ]+ Y]+ 1
a2

TABLE 1. Interpretation of the function symbols

THEOREM AC'P7 is terminating

PROOF We make the following observations:

o Using the interpretation given in table 1, we define an ordering on T by
s >t if [s] > [t].

o In table 1, associative and commutative function symbols are interpreted
i such a way that compatibility modulo associativity and commutativity
1s ensured. (Our interpretation satisfies [(z + y) + 2] = [z + (y + 2)],
2+ ) = [y + 2], and aly = ylx)

o After noting that all the basic functions 2, . + ., .- . and 2 used to con-
struct this interpretation already satisfy the conditions for a simplification
ordering, it is easy to prove that > on T is a simplification ordering.

o Some easy calculations show that for every rule [ — r in table 27, [I] > [r]
hence [ > r.

)

REMARK Remarkable about [6] is that it, when it is used as we do here, does
not depend on the well-foundedness of N>2, in the sense that e.g., R, the real
numbers greater than 2, would work just as well.

REFERENCES

1. G.J. AKKERMAN, (1987). Knuth-Bendiz Completions of Process Algebra Ax-
tomatizations. Technical Report IR-135, Free University, Amsterdam, Octo-
ber.

2. L. BACHMAIR, N. DERSHOWITZ (1989). Completion for rewrlting modulo a
congruence. Theoretical Computer Science, 67:173-201.

3. J.A. BERGSTRA, J.W. KLOP (1984). Process algebra for synchronous com-
munication. Information and Control, 60(1/3):109-137.

4. J.A. BERGSTRA, J.W. KLOP (1985). Algebra of communicating processes
with abstraction. Theoretical Computer Science, 37(1):77-121. .

0. J.C.M. BAETEN, W.P. WELJLAND (1990). Process Algebra. Cambridge Uni-
versity Press.

6. N. DErRsSHOWITZ (1979). A note on simplification orderings. Information
Processing Letters, 9(5).

266



7.

10.

11.

12.

13.

14.

19.

16.

17.

R. DE NicorLa, P. INVERARDI, M. NESI (1990). Using the Axiomatic Pre-
sentation of Behavioural Equivalences for Manipulating CCS Specifications.
In J. Sifakis, editor, Automatic Verification Methods for Finite State Sys-
tems. LNCS 407, Springer Verlag.

. F. FAGES (1984). Associative Commutative Unification. Technical Report

287, INRIA, April.

. R.J. GLABBEEK, W.P. WENJLAND (1989). Branching Time and Abstraction

in Bisimulation Semantics. (Extended Abstract.) In G. X. Ritter, editor,
Information Processing 89, IFIP World Congress, San Francisco, pages 613-
618 North-Holland, Amsterdam.

G. HUET, J.-M. HuLLOT (1982). Proofs by induction in equational theories
with constructors. Journal of Computer and System Sciences, 25:239-266.
G. HUET, D. OpPPEN (1980). Equations and rewrite rules: a survey. In R.
Book, editor, Formal Languages: Perspectives and Open Problems, pages
349-405, Academic Press.

G. HUET (1980). Confluent reductions: abstract properties and applications
to term rewriting systems. Journal of the Association for Computing Ma-
chinery, 27(4).

G. HUET (1981). A complete proof of correctness of the knuth bendix com-
pletion algorithm. Journal of Computer and Systems Sciences, 23(1).

J.-P. JOUANNAUD, H. KIRCHNER (1986). Completion of a set of rules mod-
ulo a set of equations. SIAM Journal on Computing, 15:1155-1194.

J.-P. JOUANNAUD, E. KOUNALIS (1989) Automatic proofs by induction in
theories without constructors. Information and Computation, 82.

D.E. KNuTH, P.B. BENDIX (1970). Simple word problems in universal al-
gebras. In J. Leech, editor, Computational Problemns in Abstract Algebras,
pages 263-297, Pergamon Press.

G.E. PETERSON, M.E. STICKEL (1981). Complete sets of reductions for

some equational theories. Journal of the Association for Computing Machin-
ery, 28(2).

207



