Computer Algebra and Stochastic Analysis

Some Possibilities

E. Valkeila
Computing Centre, University of Helsinki
Teollisuuskatu 23, SF-00510 Helsinki, Finland

valkeila®@cc.helsinki.fi

The possible applications of computer algebra to stochastic analysis are dis-
cussed. We show some variants of the change of variables formulas for differ-

ent kinds of stochastic processes. The computer algebra program we use is
Macsyma.

1 INTRODUCTION

1.1. Suppose that f is a real function with a derivative f, and f(0) = 0. Then
we have from elementary analysis that

(1.1) f(t) = /(ﬁ fr(s)ds.

J ()

Now we want to replace ds in (1.1) by dW,, where W is the Wiener process.
Recall that the paths of W have unbounded variation but finite quadratic varia-

formula for the Wiener process) says that then we have the following expression
for the process f(W,;):

- t |
0 - J ()

The first integral in (1.2) is a stochastic integral, which can be defined using
the fact that the paths of W have bounded quadratic variation, and the second
integral is the usual Lebesgue-Stieltjes integral. Below we show how computer
algebra can be used to generate the right-hand side of (1.2). We shall also study
the analogue of (1.1) for counting processes, i.e. for processes with piecewise
constant increasing paths with unit jumps.

We assume that the reader is familiar with the Ito formula and the change ot
variables formula for counting processes. Below we concentrate on the compus-
tational or algebraic aspects of stochastic analysis. We have no discussion at all
of technical matters such as the construction of stochastic integrals, or questions
like “is some expression a martingale or only a local martingale?” etc.

229

We recommend [6] or [8] to be consulted on su ch questions.

1.2. Kendall [3.4] has systematically worked on computer algebra and stochastic
analysis. In Section 3 we describe his work in greater detail. We list some appli-
cations of computer algebra to statistics and probability. Ruskeepaa [10] used
Macsyma to compute the exact prediction formula for certain AR(1)-processes.
Rehak et al. [9] list the following examples: cumulants of a distribution, deter-
ministic and random oscillators excited by a random force, random vibration of
a sunply supported beam and equations with white noise random coefficients.
They use Macsyma. Keady [2] explains how computer algebra can be used
in maximum likelihood estimation. Kendall [5] states that his computerized
stochastic analysis can be applied to simulation of continuous semimartingales.

1.3. This paper is organized as follows. In the next section we give a brief
description of the capabilities of computer algebra programs. In the third section
we show how the two kinds of formulas can be programmed using Macsyma. In
the last section we try to illustrate how the two Ito formulas can applied to some
problems.

2 ON COMPUTER ALGEBRA

2.1. Computers can be used to do symbolic computations. Over thirty years
ago the computer was first used to perform algebraic calculations, e.g. to dif-
terentiate simple expressions ([1]). Today there exist programs like Macsyma,
Maple, Reduce and Mathematica, which are very useful for a working math-
ematiclan and scientist. In the next section we list some common features of
these programs.

2.2. The existing computer algebra systems usually are provided with the fol-
lowing tools:

e Lixact computations on integers, rational, real and complex numbers with
unlimaited accuracy.

e Operations on polynomials in one or more variables and on rational frac-

tions. In short, the obvious rational operations, calculating the g.c.d.,
factorizing over integers.

e Calculations with matrices with numerical and/or symbolic elements.

e Simple analysis: differentiation, expansion in series, Padé approximations,
etc.

e Manipulation of formulas: various substitutions selection of coefficients

and of parts of the formulas, numerical evaluation, pattern recognition,
controlled simplifications.

These allow the user to do complicated calculations within some minutes (see

11], Chapter 3). In contrast to calculations done manually, computer algebra
calculations are more reliable.

230

Based on the above tools the systems also offer:

culus.
The systems usually have the following features and possibilities:

e Use the system as a programming language, graphical facilities, generation
of program code as parts of numerical programs.

2.3. Below we show a computer algebra session. The (Ci) lines are input
command lines and the (Di) lines are the output. We use Macsyma at the
University of Helsinki Computing Centre implemented on a VAX 8800 computer.

(C7) S:0 $

(C8) FOR I THRU 37 DO S:S + 1 / (I *x*2);

(D8) DONE

(C9) S; 46196589536413702085491232689909
(D9) e ——————— e

28546916554875489385168794240000
(C10) DIFF(SIN(X)*COS(X),X);
2 2
(D10) CO0S (X) - SIN (X)
(C11) TRIGSIMP(COS(X)**2-SIN(X)**2);
APPL_DISK: [Macsyma_DIR.Macsyma_412. SHARE] trgsmp.fas;1lbeing loaded.
2
(D11) 2 COS (X) - 1

On lines (C7)-(C9) we compute the sum ¥37, i72?. Note the recursive definition
of the sum and exact computations. On lines (C10)-(C11) we compute the first
derivative of the function f(z) = sin(z) cos(z) and simplify the result. We refer
to [1] for a more detailed introduction to computer algebra. For a tutorial in
Macsyma we refer to [12].

It has been estimated that the most frequent application of computer algebra
is in automatic code generating [11].

3 STOCHASTIC ANALYSIS WITH THE COMPUTER

3.1. The main tool of stochastic analysis is the change of variables formula. We
recall formula (1.2):

o 1 [:
F(W,) -__.-_-_,-/ fr(Ws)dWs + -5/ fez(Ws)ds.
0 “ V0

If expectations can be taken on both sides of this equality, we have the following

¢
(3.1) Ef(W;) = %E/ frz(Ws)ds.
/o

231

[t is possible to prove that (3.1) is true for stopping times T instead of the
fixed times t. This explains why we are usually more interested in the term
""t » | . 3 . » v o g

[0 fre(Wy)ds than in the first term on the right-hand side of (1.2).

3.2. Next we show how one can program the formula (1.2) into Macsyma. This
is done by the following lines:

ito(F) :=block([wl,w2],
wl:ratsimp(diff(F,’x)),
w2:ratsimp(diff(F,’x,2)/2),
ito_list : [subst(‘‘W(t)’’,x,F),
ev(subst(0,x,F)),

subst (¢ ‘W(t)?’’ ,x,wl),

subst (“ ‘W(t)’’,x,w2)]) $

The above program is relatively simple. We use the existing Macsyma-commands
for differentiation and then simplify the expression using the simplification com-
mand ratsimp. Then we return the result into the list ito_.list with four

elements: f(W;), f(0), f.(W;) and f,..(W;). The user calls this program by
typing the command ito(f(x));, where f is a function of x. The following
lines are almost an exact output of the corresponding Macsyma-session. Before
this, we have loaded the contents of the above small program from disk to our

Macsyma-session.

(C8) ITO(X*%*3);

3 2
(D8) (W(t) , 0, 3 W(t) , 3 W(t)]
(C10) ITOCLOG(1+X*%2));
2
2 2 W(t) W(t) -1
(D10) [LOG(W(t) + 1), O, —========== = —==————————————]
2 4 2
Wit) + 1 Wit) + 2 W(t) + 1

From the above we have the following formulas:

t {
W = / W2dW, +3/ W.ds
0 0

and

LW w2
log(W24+1)=2 | —2—dW, — s — - ds
og(Wi +1) /Owg-i—l f0W§+2W2+13

It took 50 milliseconds of cpu-time to compute the first formula and 170 mil-
liseconds to compute the second formula (see [7], 17-19). Note also how the
computer input and output above looks. We expect that during the next few
years this will be greatly improved, perhaps by using other programs as filters
for the input and output.

The above stochastic calculus can be extended to a continuous semimartingale
of the form X; = [a(X,)ds + [, b(Xs)dW,, with X, = 0. The corresponding

232

program is listed in the Appendix. We illustrate the use ot this program by
proving the Girsanov formula, which in this case means that if X satishies

1 [t 1 ,
2 Ja 2 Jo

then the process et is a martingale.

(C20) DIFF_ITO([%E**X -B*x*x2/2 ,B]);

X(t) X(t)

(D20) [/E , 1, B %E , O]

Note the use of the function on line (C20): the argument is a list with the
function f. drift coefficient and diffusion coefficient. The result tells us that
the drift term is equal to 0, so the process is a martingale if the integrability
conditions can be checked. To remind, the output in (D20) corresponds to the
following equation

t
et =1 ‘|‘/ b(X)e*=dWs,
O

so the result is a list similar to that above.

As noted before, Kendall [3,4,5] has already used computer algebra for stochas-
tic analysis. He has used the computer algebra program Reduce. Our approach
is quite direct—we program some functions and then the user can call these
functions to perform the computations. Kendall defines stochastic differentials
using a so-called Ito multiplication table (dtdW; = 0, (dt)? = 0 and (dW})? = dt)
and then builds his computerized stochastic calculus on this information.

We shall give a simple example for multidimensional diffusion processes in the
last section.

33 Next we turn to the other kind of processes. We say that the process 1S
cadlag, if its paths are continuous from the right and has left limits. The process,
denote it by IV, is a counting function: Ng = 0, AN € {0,1} and N is a constant
between the jumps. Then, if f is a C; - tunction, we have

(3.2) f(N) = f(0)+ [fo(Nao)dNs+ D (AF(Ns) = folNem)AN:),

where f, is as above and AX; = X — X,_ is the jump at time t for a cadlag

function. The following is an alternative formula for f (N):

(3.3) f(N:) = f(0)+ > AF(Ns).

s<t

The problem is to write such a representation for f(/N;) that one can compen-
sate f(IN:) to a martingale or write a multiplicative decomposition for f(Ng).
The following lemma shows a typical situation in this context. If B is a tunc-
tion with bounded variation, denote by £(B) the Dolean exponent & (B) =

233

exp(Bi)Ili<:((1 + ABy)exp(—ABy)). Recall that the compensator A of N is
the unique predictable process s.t. N — A is a martingale.

LEMMA 3.1 Suppose that N is a counting process with compensator A. Then. of
we have for f(N;) the following representation

¥
f(Ny) =1+ C‘/ J(Ny-)dN5,
()

where ¢ is a constant, then f(INy) has the following representation
(3.4) f(Ne) = fF(No)E(cA)E(emn),
where m = (1 + AA) 1o (N — A).

PROOF. See [6] Theorem II.5.1.1. for a more general result, from which (3.4)
follows.

To illustrate the use of Lemma 3.1, assume that the compensator A is a deter-
ministic function. Then we have from (3.4) (assuming again that integrability
conditions are checked):

Ef(Nt) = f(0)E(cA).

As an example we compute the Laplace transform of a counting process N with
a deterministic compensator A. '
First we compute the expression for exp{ AN, }:

(C36) POISS1 (%E**x(L*X));
L N(t) L L N(t-)
(D36) [7E , 1, (JE - 1) Y%E]

S0 the equation for f(NVy) = exp{AN;} is

f(Nl‘) =1 +/(; f(Ns—-)eXp{)\ _" l}st

and the Laplace transform is
EGXP{ANt} — 875(6}{1:){)\ — I}A)
The Macsyma - program for this is listed below:

poiss1(F) :=
blocl([wl,w2,w3,wd,w5],

wl : subst (i+1,x,F),

w2 : subst(i, x, F),

w3 (wl-w2),

w4 : radcan(w3/w2),

wd : subst (“‘N(t-)’’,i,w2) *w4,
comp_list : [subst(‘‘N(t)’’, i+1,wl),
ev(subst(0,x,F)),

w5]

)3

234

After differentiating the function we try to simplify the sum containing the ; umps
to a form where we can apply Lemma 3.1. This is not always possible. So it is
sometimes usetul to try to simplify the second sum in (3.2). Our second program
for counting processes exploits this idea. The program is listed in the Appendix.
We give an example of its use in the next section.

4 EXAMPLES

4.1. First we consider the multi-dimensional diffusion process case. It is clear
that the more computations we have, the more useful computer algebra is in
stochastic analysis. We give only a simple example. Suppose that we want to
compute

{

t t
(4.1) AW, m/ A dW, —!—/ WedAs,
0 0

where a is a continuous function with bounded variation and W is the Wiener
process. We assume that A; = j(; asds. Then, if we consider the process X; —
(Wi, Ar)', it is a two-dimensional diffusion process with coefficients c, = (0,a:)’
and 8 = (1,0)" so that X, = f(; o ds + j(f BsdWs. Then we obtain (4.1) by
applying the function f(xi,z2) = 125 to X. The computer output 1s:

(C11) AA: [0,A];

(D11) [0, A]

(C12) BB: [1,0]:

(D12) [1,0]

(C13) F:X1%xX2;

(D13) X1 X2

(C14) MULTI_ITO ([F,AA,BB]) ;

(D14) [X1 X2 , 0, DX1 X2, AX1]

On lines (C11)-(C13) we give the information for the coefficients a and 3. The
result is a list (multi_ito_list) containing four elements: the function, initial
value, martingale part, and trend part. Here we have X1 = W, X2 = A; and
AX1 = a;W;. So again we are facing the limitations of the input /output. Note
that we write the ‘differential’ in the martingale part. This should be read as
DX1 = dWy, since we have only one Wiener process here. For more serious use
of computerized stochastic analysis we refer to [3] and [4].

4.2. We conclude by giving an example of formula (3.2). Assume that the
counting process N has independent increments, so the compensator A is an
Increasing deterministic function, but not necessarily continuous. We compute

the moments ENF for k = 2 and k = 3.
Recall the integration by parts formula

. ¢
Ut‘/t i UOVO +/ Usdes —+ / VQMdUS T [U’ V]t
0 0

for functions U and V' with bounded variation, where [U, V], = D e AUGA.
Returning to our problem, here is the computer output:

235

(C24) POISS (X*x*2);

2
(D24) [N(t) , 0, 2 N(t-), N(t)]
(C25) POISS (X*%x3);
3 2 N(t) (3 N(t) - 1)
(D25) [N(t) , O, 3 N(t-) , —=———————————mm]

Put my(t) = EN}. We have m;(t) = A; and from (D24) (since A is determin-
istic, and by Fubini)

t t
mo(t) = 2/0 mi(s—)dAs + m(t) = '2/0 Ag_dA, + Ay

1.e.
(42) TTLg(t) — Af -+ At — [A, A]t
From (D25) we have that

t ¢
_ | _ 3mo(t) — mq(t
0

and this gives

If A is continuous, we have the familiar formulas ma(t) = A7 + A; and m3(t) =
A} + 3A% + A;.

To obtain (4.4) from (4.3) we use (4.2) and integration by parts (done man-
ually, not by computer). We feel that teaching the computer to perform the

above computations involves considerable difficulty and so there is still much
work to do.

REFERENCES

1. J.H. DAVENPORT, Y. SIRET, E. TOURNIER (1988). Computer Algebra—
Systems and Algorithms for Algebraic Computation, Academic Press, New
York.

2. G. KEADY. SENAC and Other Symbolic Front Ends for Subsequent Nu-
merical Computation: Nonlinear Systems and Optimization Case Studies,
University of Waikato, Research Report Series, II no. 11.

3. W. KENDALL (1988). Symbolic computation and the diffusion of shapes of
triads. Adv. Apll. Prob. 20, 775-797.

4. W. KENDALL (1990). The diffusion of Euclidean Shape, In: Disorder in

Physical Systems, ed. by Grimmet, G. and Welsh, D., Oxford University
Press, Oxford, 203-217.

5. W. KENDALL (1990). Computer Algebra and Stochastic Calculus. Notices
Am. Math. Soc., 37, 1254-1256.

236

6. R.5. LIPSTER, A.N. SHIRYAEV (1989). Theory of Martingales, Kluwer, Am-

sterdam.
7. Macsyma Reference Manual, Symbolics 1988.
8. P. PROTTER (1990). Stochastic Integration and Differential Equations—A

New Approach, Springer.

9. M.L. REHAK, F.L. DiMmAGG1O, H. BENAROYA, [. ELISHAKOFF (1987). Ran-
dom vibrations with Macsyma. Computer Methods in Applied Mechanics and
Engineering 61, 61-70.

10. H. RUSKEEPAA (1988). Exact predictors for a generalized AR(1) process
with an AR(1) parameter. Commun. Statist.-Theory Meth., 17, 875-885.

11. Future directions for research in symbolic computation, SIAM Reports on
tssues in the Mathematical Sciences 1990.

12. Macsyma User’s Guide, Symbolics, 1988.

APPENDIX

The program for diffuston processes

diff_ito(fns) :=block([wl,w2],

wl :ratsimp(fns[3]*diff (fns[1],’x)),

w2:ratsimp(fns[3]**2 * diff(fns(1],’x,2)/2+fns[2]*diff (fns([1],’x)),
ito_list : [subst(’’X(t)’’,x,fns[1]),

ev(subst(0,x,fns[1])),

subst(’’X(t)’’ ,x,wl),

subst(’’X(t)’’,x,w2) 1) $

The program for counting processes

Below is the program for the counting processes to compute formula (3.2). We
try to write the formula > _ . (Af(Ny) — fo(Ns-)ANy) in a closed form. We
use the simplification function closedform for finite sums, which is contained in
the nusuml package of Macsyma.

poiss(F) :=
block([la,wl,w2,w3,w4d],
a : subst(i-1,x,diff(f,’x)),
wl : subst(i,x,F),
w2 : subst(i-1,x,F),
w3 : (wl-w2) -al,
w4 : closedform(sum(w3,i,1,n)),
polss_list:
[subst(’’>N(t)’’,x,f),
ev(subst(0,x,F)),
subst (?’N(t-)’’,i-1,a),
subst (°’N(t)’’,n, wd)]
)$

237

The program for multi-dimensional diffusion processes

multi_ito(fns):=block ([wO,wl,w2,w3,w4,i,n,xx,dx],
n : length(fns[2]),
xx : makelist(concat(x,i),i,1,n),
dx : makelist(concat(dx,i),i,1,n),
for 1 : 1 thru n do
wili] : ratsimp(diff(fns[1], xx[i])),
for 1 : 1 thru n do
w2[i] : ratsimp (diff(fns(1],xx[i], 2)/2),
w3 : ratsimp(sum(wilil*fns[3][i]l=*dx[i],i,1,n)),

w4d :ratsimp(sum((willi]*fns[2] [i] + w2[i]l*fns[3] [i]1**2), i,1,n)),
wO : fns[1],

for 1 : 1 thru n do

wO : ev(subst(0,xx[i],w0)),
multi_ito_list : [fns[1],
w0,

w3,

wd])$

233

