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1 INTRODUCTION

Efron’s bootstrap (Efron [6, 7]) and its many variants are becomin g fundamental
tools of statistical inference, as evidenced by the work of Hall 13], for example,
and by the surveys of Hinkley [15], and Diciccio and Romano 5|, and a number
of interesting theoretical problems remain. One line of work still somewhat
In 1ts infancy concerns viewing the bootstrap as one procedure in a class ot
methods involving random weighting of observations. Here. we survey various
random weighting methods and discuss what is known about their consisten cy
and rates of comsistency for estimating sampling distributions. We derive a
and we compare this to Efron’s bootstrap.

First to review Efron’s original proposal. suppose that data X, X»,..., X,
form a random sample from an unknown distribution F on the real line and
that we wish to do inference about an unknown real-valued parameter T(F)
where T itself is known. (We concentrate on the mean T(F) = [xzdF(x).)
Typically, T'(F') is estimated from the data by S5, (F,) for some function S,
(often S,, = T) where F,, is the empirical distribution of the data; 1.e. the
distribution putting point mass 1/n at each realized X;. It is reasonable to
base interence about T'(F') on the distribution H, (-, F) of S, (F,) — T(F) or
some scaled version of this difference, but H,,(-, F') is unknown because F is
unknown. The usual approach in classical statistics to cope with this problem

appropriate limit theorem from probability theory. An alternative is a bootstrap
solution, which is always possible in principle; use H, (-, F,) as a surrogate for
the unknown H, (-, F'). This is the conditional distribution of Sn(Fy) — T(F},)

L

given the data where F), is the empirical distribution of a bootstrap sample: i.e. a
sample of size n from F),. Generally, H, (-, F},) cannot be computed analytically
and therefore must be approximated by Monte Carlo methods.

It 1s well known that the empirical distribution of an individual bootstrap
sample can be expressed in terms of the original data and an independent vector

of multinomial weights:
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(11) Fn(t) - ZMTLJ]-[XZ < f]a —00 <1 <0
L f

where

(1.2)  (Mp1,Mpa,...,Myn) ~ Mult,{n,(+,2,..., )}

The vector in (1.2) can be simulated by throwing n objects into n equally likely
cells. The bootstrap estimate H, (-, F;;) hinges on the conditional distribution
of F,, and hence on the particular multinomial distribution above, among other
things. This bootstrap estimate is a special case of estimates based on objects

| - 1 «
(1'3) Gn(t) = ;1" ZYn,il[Xi < t], —0o0 < 1T < 00

1=1

where the vector Y,, = (Y,.1,..., Yn n) has some conditional distribution given
the data. This conditional distribution is determined by the statistician and
may be tailored to the particular problem at hand. For instance, by making the
distribution of weights different from the multinomial above, perhaps allowing
it to depend on the data or on the function T, we may get estimates of H,, (-, F')
as good as or better than the standard bootstrap estimate. In this paper, such
a random weighting scheme is referred to as a wetighted bootstrap.

2 WEIGHTED BOOTSTRAPPING OF MEANS

In estimating the mean T'(F) = [ xdF(z) by the sample mean T'(F,,) =n~"'X},
X; =: X,, inference may be based upon H, (-, F'), the distribution function of

(2.1)  Vn(T'(Fn) - T(F))/o

where 02 = o?(F) is the variance of X; assumed to be finite. When F is a

normal distribution with unknown mean and variance, H,(-, F') is known. In
general, H, (-, F') is unknown, in which case we can either use asymptotic theory
or appeal to a bootstrap procedure. From (1.1), the corresponding bootstrap
distribution H, (-, F},) is the conditional distribution (given data) of

(22) \/ﬁ(T(Fﬂ) W T(Fn))/dn — n.....l/g Z Mn,z(Xz — Xn)/arz
1=1
which is a centered and scaled weighted bootstrapped mean

l <
(2.3) X, = -ﬁ-zyn,ixi with Y, ; = M,.,.

=]

In (2.2), o, is an estimate of o, for instance the sample variance

O',% == O'Q(Fn) — fn""l Z(Xz — )’Zn)Q
1=1
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weans different than the

i

: get a weighted bootstrapped mean different than (2.3) is simply
» change the bootstrap sample size. The weight vector Y, = (Y, ... .Y, ) is
still multinomial, but based on m(n) throws into n equally likelv cells instead of
{ww after (1.2)).
QU ille’s [20] jackknife is another wampﬁw example of such a weighted boot-
Md mean. Here the weight vector Y, = (Y, ..., Y, ,,) itself can only take
n possible values with equal probability - these values being the n-vectors
having ones in n — 1 spots and a zero in one spot.
he Bayesian bootstrap is yet another example. In an attempt to show the
ly (from a Bayesian perspective) of Efron’s bootstrap, Rubin (1981) in-
the Bayesian bootstrap - the direct Bayesian analogue of Efron’s original
The Bayesian bootstrap amounts to simulating a posterior Dirichlet
g 'f" erguson |9]) under a limiting improper prior on the distribution func-
approximating the posterior distribution of the quantity in (2.1 ). the
:;?7 ar E’Mi}«ii} tstrap involves simulating the weighted bootstrapped mean

pr—_ F )a e 3 A W - e
} nw\ i W”h }”ﬁ — H“_fm MMMMMM 1:g U“ e L g ] ),!

where [/p.. is the order statistic of & independent uniform (0.1) random
V%yﬁﬂfﬁ__f“}gﬁﬂ which are mdmwndmn of the data. Here. U/,,_1o =0and U,,_.,, = 1.
The ights are thus scaled one-spacings of n — 1 uniform random variables.
For n _EV%""‘H gg;a_nu)k% §17.6 I, the 1 (i"lggh’( vector }” of the BaV@;ﬁ?MM bﬁﬂt%“&p 18
qual in distribution to a vector of n independent exponential random variables
normalized by their mean. Specifically,

|19} studies weights like those in ( 2.5 ) W h ere no parametric assunil pt 10NS are
placed on the V;. Rather, it is assumed V; > 0, E'V; = 1 and the so called L, 1
integrability condition

Indepen dem and ident ically distributed weights are another possibility, which
iling, Denke N ch,,?ynskl [4] have investigated in the context of U-
statistics wn h ﬁ’ml@k having less than second moments. In Section 5, we propose




a distribution for iid weights which gives an asymptotically accurate approxima-
tion to H, (-, F') when T'(F) is the mean.

All the weight vectors described in this section are exchangeable; i.e. the joint
distribution of their components (given the data) is invariant under permutation.
A study of the class of bootstraps under exchangeable weighting schemes has
been started by Mason and Newton [17].

Generalizing the Bayesian bootstrap in a different direction, Newton and
Raftery |18 describe a weighted likelihood bootstrap for approximate simulation
ot Bayesian posteriors. The motivation is not to estimate the sampling distribu-
tion of a mean, however certain weighted bootstrapped averages are involved in
the theory. An observation’s contribution to a likelihood equation is randomly
welghted as a way to simulate a posterior in a parametric or semiparametric
model.

3 CONSISTENCY OF WEIGHTED BOOTSTRAPPED MEANS

Let X1, Xa,...~ F with 4 = EX and ¢® < co the variance of X;. A weighted
bootstrapped mean is called consistent if

(31) SUup | P (\/H(kno'“;f:?n) S t | Xla SR X'n) — P (\/,?i(-xurn““)_ --<— t) |---+ 0’

o
— OO < L < OO

almost surely, as n — 0o, where 0% < oo is the marginal variance of the weight
Yn,: assumed to be independent of n and i, and Y, is the average of these
welghts. Consistency of Efron’s bootstrap was first established by Bickel and
Freedman [1] assuming 0 < 0° < oo, while the most general consistency results
available for the real line are described in Csérgé and Mason [2]. Lo [16] proved
consistency of the Bayesian bootstrap. In the more general context of the Efron-
type bootstrapped empirical process indexed by functions, consistency has been
studied by Giné and Zinn [10]. Praestgaard [19] develops analogous results for
weighted bootstraps with weights Y,, ; = nV; /X ;Vj tor iid V; > 0 satisfying the
L2 1 integrability condition (2.6) and having mean 1.

Consistency of exchangeably weighted bootstrapped means on the real line has
been studied in Mason and Newton [17] using an interesting connection with the
theory of rank statistics. When the weights Yni1,.-..,Ynn are exchangeable, and
if (Rn1,---,Rnn) is a random permutation of the integers from 1 to n (taking
each permutation with equal probability 1/n! and independent of the data and
the weights), then

(32)  VAlXn = Xa¥o)/(onen) B = 3V, Rui(Xi — Ra)/(0e0)

where o is as above and

| " _
2 Z V)2
en o n - 1 iml(Ynjz n) |

Having introduced a third level of randomness through the ranks R, ; we can con-
dition down not only on the data X,..., X,,, but also on the weights Y, 1,. ..,
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fa.,ct tdkes the foxm of a sta,ndcu dl/od 1111(}c~u mnl\ smtlstu ( See H.(_g (?‘.‘k mld Sldak
112], for example) for which much asymptotic theory exists. Using a theorem of
Hajek [11], Mason and Newton [17] develop sufficient conditions on the weights
and the data which ensure consistency of the welghted bootstrapped mean. For
weighted bootstraps using iid weights, the Lindeber e-Levy central limit theorem
can be imvoked to prove consisten Cy.

Further developments along this line have been obtained by kI
son [8]. As a part of a larger study of weighted approximations to exc hang_,ocﬂ)lo
processes, they extended the results of Csorgd and Mason 2] to general weighted

bootstrapped empirical processes in the Mason and Newton [17] context.

.....

4  ASYMPTOTIC EXPANSIONS AND RATES OF CONSISTENCY
All the weighted bootstrapped means surveyed in Section 2 provide consistent
estimates for the distribution function of X n — & under fairly general conditions.
Whether any particular weighted bootstrapped mean is useful in practice de-
pends on properties which go beyond consistency. The property which we are
going to discuss here is the rate of consistency. This involves Edgeworth expan-
sions. To illustrate this we will first consider the nonparametric bootstrapped
mean X, given in (2.3), which we denote X* to facilitate comparisons.

Recall that for a non lattice random variable X, with finite absolute third
moment and variance o* > 0, the one term Edgeworth expansion for the distri-

bution of \/n(X, — 1)/o is given by

(4.1) sup | P(V/n(X, —p)/o < t) — Ena(t) |= o(1/v/n),

- X < T <00

where
En1(t) = B(t) — —=o(t)(+* — 1)8,
with

B=E(X1—p)?)/c’

being the skewness of X, and ® and ¢ being the cdf and density respectively of
a standard normal random variable. Singh [23] has shown that under the same
conditions, the conditional distribution function of X*, given the data, when
properly centered and normalized has the Edgeworth expansion, almost surely
as n — OO

(42) Sup | P(\/ﬁ()?:; o Xn)/o'*n <t I Xla” -aX'r‘L) 7, 1( ) l"""’"" 0(1/'\/—)

— OO <t < OO

where

En1(t) = B(t) — \/—cb(t)( — 1)Bn({Xi}),

with
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_ 1 — ,
O'é = “;L“Z(Xz — X;n_)z

1=1
and

o 1] — .
B?z({Xz}) — = Z(X, — Xn)‘j/O‘i,

n

'
My PR
Y —

being the sample variance and sample skewness respectively.
Notice that £, 1 and £ | are of exactly the same form except that 0 in &, ;
gets replaced in £, by its empirical counterpart 5,({X;}). That is, centered

n,l .
population moments get replaced by centered sample moments. For this reason,
&, 1 1s called a one term empirical Edgeworth expansion. For the bootstrap error

ra(t) = P(Vn(X, —p)/o < t) = P(Vn(X, — Xn)/on < t| Xi1,..., Xp),

we get from (4.1) and (4.2), uniformly in ¢, almost surely as n — oo,

* ____,______}___ ‘IN(+2  1)\( [ | .
ra(0) = TR0 — D(B(X:)) - B) +0(1/V).
so that because 3, ({X;}) — 3 almost surely,

(4.3)

almost surely as n — oco. For the error of the normal approximation

ra(t) = P(Vn(X, — p) /o < t) — ®(t)

we have by the Berry-Esseen theorem

(4.4) sup | 7 (2) [= O(1/v/n),

— X < T < OO0

the rate being optimal in general. The two asymptotic results (4.3) and (4.4)
indicate that for large sample sizes n, the distribution of the bootstrapped mean
should often provide a closer approximation to the distribution function of the
sample mean than the asymptotic normal distribution.

Thus we have seen that an Edgeworth expansion of the conditional distribu-
tion function of a bootstrapped mean as the one in (4.2) is crucial for gaining
information about the rate of consistency of the procedure. This information is
obtained by comparing this Edgeworth expansion to that of the distribution of
the sample mean given in (4.1).

For the weighted bootstrapped mean with exchangeable weights, the rank
statistics approach towards consistency, as sketched in Section 3, is also useful
for obtaining Edgeworth expansions. A recent result of Schneller 122] on Edge-
worth expansions for linear rank statistics is especially easy to apply. This is
his Theorem 2.12. However, because of his technical condition (2.15), originally
due to van Zwet [25|, this approach via his theorem 2.12 just fails to include
the original Singh [23]| theorem quoted in (4.2) above. In order to satisfy his
condition (2.15) one either has to impose conditions on the welghts which do
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not hold for the multinomial weights of X*. or conditions on the distribution of
X1 which are stronger than X; being non-lattice.

For weights of the type given in (2.5) when V|, V5, ..., form a sequence of pos-
itive random variables, one can obtain rather readily from part (a) of Theorem
2.12 of Schneller [22] the following result. Assume that V.V, are iid positive
random variables such that for some s > 24/7

E|V,—EV, |*< o0,

and further suppose that | V| — V5 | has a density which is bounded near zero.

Also let X1, X»,..., be iid with finite third absolute moment, mean ., positive
. ‘2 . ) | | r

variance o< and third central moment p3. Then almost surely as n — o

(45)  sup | P(Zy < t] Xuyoo Xa) = ®(1) = gheo(t)(12 — DA = o(1/y/).
where Z,, 1S
(46)  Zn = VA(X, — X, V) /(onen),
the weights Y,, ; = nV;/¥;V;, and
A=EWV, —EV)/(Var(Vy))?

18 the skewness of V;. In particular, whenever A = 1 and X, is non-lattice,
combining (4.5) with (4.1) yields

sup | P(Z, <t | X1,..., Xn) = P(Vn(X,, — p)/o < t) |= o(1/v/n),
t

almost surely as n — oo.

If V7 is chosen to be Gamma (1,4), then A = 1. This agrees with a result of
Weng [26] who proved the analogous result for the Gamma (1,4) case when, in
Zn, the €2 as in (3.2) is replaced by 4, the variance of a Gamma (1,4) random
variable.

Moreover, one can obtain from Schneller’s theorem in much the same way,
under the same conditions on X1, Xs,..., and Vi, V5, ..., (but with Y] not nec-
essarily assumed to be positive), the same result for weights of the form

(4.7) Yo =V

This suggests taking a closer look at weighted bootstrapped means of the form
1 TL
vY _ Y.
Xn T n ; YZX'L

where Y; are iid weights which are independent of the sample.

Notice that given the sample Xi,...,X,, the mean X'X 1S a weighted sum
of i1d random variables with nonrandom weights. This means that Edgeworth
expansions for the distribution of the centered mean conditioned on the sample
can be readily derived by straightforward modifications of classical proofs for
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sample skewness as before and
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)7 )/ oy
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- (3. ({X: 3" = B)+0(1/

ttice. Consequently if 3¥ = 1, then we have

() |= o(1//n)
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pansions in the next s

depends on the data.

r} (1) can be obtained if Edge

about the errors r*(¢) and £
gher orders are taken into account. We stu ly these ex-

>ction and we derive a distribution for iid weights which

5 A TWO-T

ERM EDGEWORTH EXPANSION FOR XY

Firstly, we consider the two-term expansion for th@ sample mean X,,. If 02 >
0, E(X}) < ~ and Cramér’s condition




En2(t) = @(t) ——=§(t - 1)o(t)3(X,)

1 1 /40 VY A ( X
— L2 (83 = 3t)o(t)r (X))

— 7 (1 = 106 + 150)p () 3( X )?
with (X)) again being the skewness of X, and

o

being the kurtosis of X;.

The two-term Edgeworth expansion > 5(t) for Efron’s bootstrapped mean X*

has the same form with 3(X;) replaced by the sample skewness

Tt

1 1 _ .
2 ){2 = —— — - X 3
Br({Xi}) = == D (Xi = X))

Te

] —

and x(X;) replaced by the sample kurtosis

Therefore, we get the following two-term expansion for the bootstrap error:

() = =6(t? = Do(t{B.({Xi}) — B(X1))
+5 55 (8% = 3)o(t) {kn({Xi}) — K(X1)}
+5e w5 (87 — 108° + 158)p(£){Bn ({ X })? — B(X1)?}

+o0 (-}1-) a.s.uniformly in — oo < t < oc.

The two-term expansion for the weighted bootstrap error, if E(Y}*) < oo and
Cramér’s condition for Y7 is satisfied, is given by

(1) = 12 - Do {B.({X.PA(YL) - B(X1)}

+ 27 (82 = 30)p(1) {Rn ({Xi D R(Y1) — K(X1))

FLL (85 — 108 + 156)6(6){ 8, ({ X: N2B(Y1)? — B(X1)?)

+0 (%;) a.s. uniformly in — oo <t < o

where we use the notation 3,({X;}) and [(X;) for the sample skewness of
X1,...,X, and the skewness of X; respectively. Moreover, x(Y7) is the kurtosis
of Y]_ and

) 1 1 n _

0-4 m
T 7:"""‘1



The reason for having & comes from the fact that x,(cX) = ¢/ ;(X) for the j th

cumulant of X. Therefore, if the weights Y; satisty 3(Y;) = 1 as before and in
addition

(51) R?l({XI})h“(Yl) — Kn ({XI })7
then we have for every fixed ¢ that

(5.2)  n{rr(t)+rY ()} 2 N(O,r(t))

D e e -
as n — 00, where — denotes convergence in distribution and N(0,r(¢)) is a

centered normal random variable with variance r(¢) > 0. Since third order
terms in the expansions of r*(¢) and r) (¢) are of the order 1/n3/2, from such
expansions, which we will not detail here, we obtain for some real constant c(t)

(5:3)  n¥Hri(t) =y (O} — ()
in probability as n — oco. Multiplying (5.2) and (5.3) yields
O * " | D
n>2{r(t)* =7y (t)*} = N(0,7(t)e(t)?)

as n — oo and hence (if r(t)c(t)? > 0) that

(5.4)  P(Iri(t) > Y (1) ]) >

o

Thus, under appropriate regularity conditions for three-term Edgeworth expan-
sions to hold, and if the weights are chosen so that 3(Y;) = 1 and (5.1) are
satisfied, we see that the weighted bootstrapped mean and Efron’s bootstrapped
mean are asymptotically equivalent in the sense that the error for one version
is greater than the error for the other with (asymptotic) probability 1/2. Now,
condition (5.1) is clearly impossible for the weights Y; which are independent
of the observations X; so that we have to allow for weights with distributions

depending on X;,..., X,. Formally, we have to consider the modified weighted
bootstrapped mean

1 T
Y | |
1=1

where now for each n the weights Y,, 1,...,Yn n are 1id given the observations
Xi,...,X,, l.e. under the conditional probability P(- | X1, .. . Xy ). For these
weights, we can indeed obtain the appropriate expansions of X! . We give the

details here only for the two-term expansion, the three-term expansions being
analogous.

THEOREM 5.1. If with probability one
{l le 14: Tl 2 ].}

is uniformly integrable under P(- | X1,...,X,) and
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lim sup sup l E{eitle | X1, - -aXn} ~< 1,

Itl—-—-}OQ szl
then with probability one

X 1}: T }_/ﬂ X 1) | 1
Sup \ (\/~ — g t ‘ Xla . ‘7Xn) o ﬂn,‘.!(t) ‘: ¢ (M)

— oo <t< oo gy Op, n

where 05, = Var(Yn1 | X1,...,X,) and

531:2(75) — (I)(t o mj_ﬁ%(tg T 1)¢(t)[3n({-xi})6(}?“1 ‘ le Tt X‘n)

- S—

?]’.L “‘2’%“3 o 3t)¢(t)’:in({XL})F"(Yn-,l l Xla JEIEE -*Xn)

_%i(t‘ﬁ — ].0753 -+ 1515)(25(75)6“({)(2'})Q/B(le l Xl? "t "‘X”)

with B(Yn1 | X1,--., Xn) and k(Yn1 | X1,...,X,,) being the skewness and kur-
tosis of Y 1 under P(- | Xq,...,X,).

[t remains to find a distribution of Y,, ; given X, ..., X, for which the terms up
to order — in the expansions of r¥ (t) and r’(t) match up. Without loss of gen-
erality we can assume that Y, ; has conditional mean 0 and conditional variance
1. To match up the 1//n terms, we must also have G(Y,1 | X1,...,Xn) = L.
The remaining condition (5.1), now formulated for the weights Y;, ; depending

on Xq,...,X, is equivalent to

c (1,4

because o2 < n~!' 3. (X; — X,)*. Therefore, for any c € [1, 4] we have to find a
random variable Y. such that

(55) E(Y.)=0 EY2)=1 BY}=1 EY})=c

Because E((u1 + u2Ye + u3Y2)?) is a nonnegative definite quadratic form In
w1, U2, us, and therefore its matrix must have a nonnegative determinant, the
first three moment constraints above imply that E(Y;*) > 2. Thus the above
term-matching can be accomplished only for observations Xq,..., X, for which

4
"}{ Z(X'L T Xn)4
1=1
or equivalently
n=! Z(Xz — Xn)4 2
. =y 000> =
(5.6) — > 3

A sufficient condition for (5.6) to hold at least asymptotically with probability
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one 1s the unimodality of the underlying distribution. If the distribution of X
Is unimodal about g, i.e. if the distribution function is convex on (—oo, 1t) and
concave on (i, > ), then it follows from the Choquet-representation of unimodal
distributions. ¢f. Dharmadhikari and Joa g-dev [3], that

R I ff g v{ ( ,‘Y 1 T /{ [ ) 1 } Z -;:- > :"‘5
7t e) ot

and so (5.6) is satisfied with probabilit y one for all large n.
The random variable defined below satisfies (5.5) for ¢ € |2,4].

H1-VEc=3) . :

T'his random variable is discrete and therefore does not satisfy Cramér’s condi-
tion, so we can satisfy (5.5) by taking an appropriate convex combination of S,
from above and the random variable T} having probability density function

o5 —3<t< -2
o —2<t< -1
B —1<t<0
(58) pt)=< & 0<t<1
5 1<t<?2
s 2<t <3

b/

0 else

which satisfies (5.5) with ¢ = 4.

6 A SIMULATION STUDY OF A WEIGHTED BOOTSTRAP

The considerations of Section 5 lead us to the following weighted bootstrap
procedure. Given a data set Xy, ... , Xn, cOmpute

0.4

cpn =4 —-3——=>"——
’ n=t ) (X — Xp)H

2

It ¢, < 2, then generate a multinomial vector of weights (Y, 1,...,Y,, n) as in
(1.2). If ¢,, > 2, generate Y,, ; iid from the mixture

ry

v .- J S2i with probability 2-—¢, /2
) T4,!i x ) CT’L/2_2
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where S ; are independent copies of S, from (5.7) and T}, are independent
copies of T from (5.8).

In a small simulation experiment, we have carried out this special weighted
bootstrap and compared it with Efron’s bootstrap. For four different cases
(Figures 1 through 4 respectively) nsim = 1000 data sets of sample size n were
generated. The data are independent Gamma (1, a) random variables, i.e. with
shape parameter a and scale parameter 1. Note that for a Gamma (1, a) random
variable with a > 0,

a
Cn —a.s. 4 — —— > 2.
a+ 2

For each data set, both Efron’s bootstrap and this special bootstrap were per-
formed, each based on nboot = 10000 sampled weight vectors. To summarize
these 1000 pairs of bootstrap distributions, we look only at boxplots of 5 quan-
tiles of these distributions. The results are intriguing; in many cases, the median

interest than the median quantile from Efron’s bootstrap, although the variabil-
1ty 1s generally larger. As an aside we mention that in connection with non-
parametric function estimation, Hardle and Mammen [14]| have introduced the
idea of wild bootstrapping which is somewhat in the same spirit as the strange
bootstrap studied here.

Case: N=30, a=.1
Simulation: nboot=10000, nsim=1000

19+ e
True quantile:  ------esemeememeneeeeeee.

Efron boostrap: left boxplot
HMN bootstrap: right boxpiot

- . c{:

- w.ﬂﬂrl‘#‘ - A = 32 2 X
oy
.

quantile

L 1

0.05 0.25 0.50 0.75 0.95

probability
Figure 1.
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quantile

Case: n=50, a=.1

Simulation: nboot=10000, nsim=1000
i+ T
, True quantile:  --emeeememeecncieanenn.
| Efron boostrap:  left boxplot

HMN bootstrap:  right boxplot

O

o)

>B+
+

0.05 0.25 0.50¢ 0.75 0.95

probability
Figure 2.
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