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This paper contains the text of the author's Gold Medalist Address at the
Annual Meeting of the Statistical Society of Canada. Toronto, 4-6 June, 1991.
In it, the partial resolution by Leslie, van Eeden [14] of a conjecture of Dufour
[7] concerning a characterization of the exponential distribution is presented.
The importance of the characterization in 3 hypothesis testing problem is
pointed out and several related characterizations are mentioned. The method
of proof is outlined for the special case where the distribution function is

absolutely continuous. Full details of the proofs are given in Leslie, van Eeden
[14].

1 'THE CONJECTURE
Dufour [7] states the following conjecture concerning a characterization of the
exponential distribution:

Let Xy,...,X, be independent. identically distributed non-negative random
variables and let Y; ,, < ... < Y,,,»n be their order statistics. Let, for i = 1,...,n,
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where Yy, = 0. Further let, for some r € {2,...,n — 1},
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Then X, is exponentially distributed if W, ,, is distributed as the order statis-
tics of a sample of size r — 1 from a U(0, 1) distribution.

That this conjecture characterizes the exponential distribution follows from
the easily verifiable fact that W, ,, has this uniform-order-statistics distribution
if X is exponentially distributed.
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2 USE OF THE CHARACTERIZATION IN GOODNESS-OF-FIT TESTING
Suppose, in the setting described in Section 1, one wants to test the hypothesis
H, : X; has an exponential distribution with scale parameter ¢ > 0, where 6
is unknown and the available data are Y7 ,,,..., Y, . Then, under Hqy, W, ,, has
a distribution which is independent of 8 and, as seen above, this distribution is
the distribution of the order statistics of a sample of size r — 1 from a U(0, 1)
distribution.

So, if the conjecture is true, then the hypothesis Hy 1s equivalent to the hy-
pothesis

Hg . W?r',n o~ U()(l’ — ].).,

where ~ stands for is distributed as and U (r — 1) denotes the order statistics
of a sample of size r — 1 from a U (0, 1) distribution. The hypothesis Hj can be
tested by using the Kolmogorov statistic, or any other goodness-of-fit test for
the uniform distribution (see e.g., d’Agostino, Stephens [6]).

However, if the conjecture is false then such a test has, as a test of Hy, power
equal to its size for at least one alternative (i.e. non-exponential) distribution.

3 SOME KNOWN CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION

There are many characterizations of the exponential distribution and several
books on characterizations of probability distributions contain sections on the
special case of the exponential (see e.g. Kagan, Linnik and Rao [11], Galambos
and Kotz [9]). The book by Azlarov and Volodin [4] specializes in characteriza-
tions of the exponential distribution, particularly those based on properties of
the order statistics and those using the geometric distribution.

New characterizations of the exponential appear regularly in the literature.
An example of a recent one is the following by Kopocinski {12] and Steutel and
Thiemann [17]:

If X is a non-negative random variable then [cX] and ¢X — [cX | are indepen-
dent for all ¢ > 0 if and only if X is exponential.

However, given the nature of the characterization in the conjecture, 1 will
restrict myself to a review of some of the known characterizations of the ex-

ponential distribution which are based on properties of order statistics and/or
ratios of partial sums.

A) Fisz showed that, if X; and X5 are i.i.d. and non-negative with P(X; < x)
strictly increasing on (0,00), then Y55 — Y7 2 and Y; 2 are independent if
and only if X, is exponential.

B) For the case where X1,..., X, are i.i.d. and non-negative, X, is exponential
if and only if

1) Dy, (=nY1 ) ~ Xy. This can easily be seen by direct computation.

i11) D; , ~ X1 for some ¢ € {2,...,n}. This result holds when X; has an
absolutely continuous distribution function which is strictly increas-

ing on (0,00) and its failure rate is monotone. It is one of several
characterizations by Ahsanullah [1,2,3].
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1it) Y — Yi, ~ Y;_; .~ for some i and some pair (71, 72) of j,s with
1 <2< )1 < j2 <n. This holds when X, has a continuous distri-
bution function which is strictly increasing on (0, - 2) (Gather [10]).
Ahsanullah proved this characterization under the additional ASSUIN P-

tion that X, has a density and monotone failure rate.
tw) for n > 3,

X X1+ X

;E B ? | n | . )
S XY X
1=1 =1

T'his characterization can be found in Seshadri, Csérgé and Stephens
16], in Csorgd, Seshadri and Yalovski [5] and in Mencm,, Seshadri
15]. For n = 2 the uniform distribution of X, /(X, + X,) does not
characterize the exponential distribution. This was shown by Kot-
larski [13]. He notes that when X; and X, are i.i.d. with density
(1 +¢*)73/2 on (0,00), then X1/(X, + X5 ) is U(0,1). Also, when
1/X; is exponential, X /(X + X3) is U(0,1).

C) If, in the conjecture, one takes r = n it becomes

Sl Y S —1l.n : X
( ik s e e e i L ~ U(.) (72; — 1) b X1 15 eXp()I'l(%IltlEll.
S 1 ¢) S 7,1

T'his characterization can be found in Seshadri, Csorgd and Stephens [16]
and in Dufour, Maag and van Eeden [8] It holds f()r n > 3 For n = 2

distribution for 57 5/.55 5.

D) Finally we mention a characterization theorem of Kotlarski 13|. This result
1s needed in the proof of the partial resolution of the conjecture. Kotlarski
shows that, if 77,75 and Ty are 1ndependent then (R, = T,/13,Ry =
T>/T3) has density 2(r; + 7o+ 1)73, 7y > 0,79 > 0, if and only if Ty, T
and T3 are i.1.d. exponential. Note that the characterization Biv) above
1s a generalization of the one of Kotlarski.

None of the above characterizations can directly be used to resolve the conjec-
ture. In fact, B 2)-i¢2) are based on spacings, but not on ratios of partial sums of
spacings, as is the conjecture. Further, Biv) is based on ratios of partial sums,
but these are partial sums of i.i.d. random variables, whereas the spacings are
not necessarily i.i.d. Also, the proof of C) above does, as far as I can see, not
generalize to the case where r < n.

4 SOME RESTATEMENTS OF THE CONJECTURE

In this section several equivalent forms of the conjecture will be given.
Dufour [7] shows that

Wien ~Uy(r—1) < (Vig,...,Vr_1.,) has density
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the above density = X 1s exponential.

see Dufour [7}),

L ﬂ-%

Y1 - F(X)" 7 7de 0< vy <...<v,_; <1

r+1). S0, the conjecture can also be stated as

- ) 1S given '}i)y

ponential, where Z ~ min(X1,..., Xp-ry1) and is independent
1. Note that th@ .a-;-u-- v&m: =.b1e»s Xi/Z,t =1,...,r — 1, take
lues, but that knowing ~ Uiy(r— 1) gives us th? joint

Its of this section can be used




5 A PARTIAL RESOLUTION TO THE CONJECTURE
In Section 4 we saw that (assuming a density for X )

Wen ~ Uy (r —1)

on [0, 1]"7!, determines the density of

X 1 -va'*--- 1
AR s

where Z ~ min(X,,.... X, _, 1) and is independent of X 1»--.,X, 1. Further,
this density was obtained in explicit form. Now use (for a proof see Leslie, van
Eeden [14]) the fact that

Wr,n e U(.)(?" — 1) b— Ww_k:,nm—k i U()(? — bk — 1)., O ___‘<__ A S r — 2 S n — 2.
Then
vaa ~ U(.)(’I" — 1) =

. X X. .
the density of ( 1,..,,, it

Z - Z
r—k—1 —(r—k)
(n—r+1)(r —k—1)! Z v +n—k+1 O0<k<r—-2<n-2,
1=

where Z ~ min(X,,. .., Xn—rt+1) and independent of X, . ... X, _1—1. How this
last result can be used to obtain the partial resolution of the conjecture is best
explained for a small value of r. So, let us look at the case where r = 3. There
we have:

ng ~ U(.)(Q)
determines the density of

Xl X2 | 2
(“—Z—", - ) Oon [0, ].]

and the density of

From this, one can obtain

_ X X
P('XZ}"SUI:)J;? >U2>EP(“&S”U]_>“P<“£<U1, = sz)a

OS’U,:;<].,’Z::1,2

ie————

and, in the same way,

X X .
P(--—Z}->v1,-~§?—>vg), 0<v;,<1,2=1,2.
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Thus one can obtain
)(1 ..?(‘2
Z 7

In the general case the following result holds (see Leslie, van Eeden [14])

P (min( ) >v), 0<wv<l1.

W‘fr;n__ ~ {J (+) (7“ — 1) —

nin( X;, 1 <: < min(X;,, [ +1<:<7 -1
p (mu}( i Z“____ e < 1) > 81, min(X;,l +1<7 <7 1) S 32) _

—1
1 oo og=zi=1
(1 + -71--—--7*«}—].'51 + n-—-—fr‘+18‘3) ’ 0
2

where Z ~ min(Xy,..., X,,—,4+1) and independent of X1, ..., X;—1. So, taking
l=j~1—-1=n-—r+1 (which is possible if and only if »r — 1 > 2n/3), one
obtalns

Wrz,«-ﬁn ~ U(.)(?" — 1) =

P, Zl ZQ

on [0, 1]° ( AN,

where Z,7,,7Z> are i.i.d. and distributed as min(X;,..., X,n_r+1). Now note

that the above density of (Z,/Z,Z5/Z) is the one in Kotlarski's theorem. Still,

the theorem of Kotlarski cannot be applied because we know the density of

(21/2,22/Z) only on [0, 1]?. However, using the transformation Vi = Z/Z;, Vy =
Zo[Z1 one gets

) has density 2(1 + s + s2)7°,

Wrn ~Ucy(r—1) = (V1,V2) has, on {v; > 0,0 < vy < v1},
density 2(1 + vy + ,02)--3'

From the fact that (V4,V2) is exchangeable and has the same distribution as
(£1/Z,Z5/Z) it then follows that

Wr,n Ay U()(T — ].) ==

A
(-—-Z-}--, EZ-%) has density 2(1 + s1 + 82)“3,31,32 > 0.

Now the theorem of Kotlarski can be applied and this gives
Wirn ~Uy(r —1) = Z is exponential,

which implies that X; is exponential.

Thus, the conjecture is true for the case where X; has a density and r >
2n/3 + 1.

The first of these two conditions is not necessary. The proof of Leslie, van
Eeden [14], which is in principle the one outlined above, works without the
condition of a density for X;. Whether the conjecture is true when n > 3 and
r < 2n/3 + 1 we do not know.
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