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1 INTRODUCTION

Consider an experiment where a component or some material is put on test at
time 0. The material degrades over time and when the amount of de eradation
reaches a critical boundary w, failure occurs. Let T denote the time when failure
occurs and let F{)(t) = Pr(T < t) denote the failure time distribution. The ob ject
IS to construct a model for Fj, (1) and to estimate the parameters in this model.

Bhattacharyya and Fries [2] consider a model where the degradation of the
material over time is represented by a Wiener process with positive drift. The
failure time of the material is represented as the first timne the Wiener ProCcess
crosses a critical boundary w > 0. This failure time has an inverse Gaussian
distribution. Doksum and Héyland [7] extend this model to variable stress ac-
celerated testing, that is to cases where the stress on the material is imcreased
to obtain early failures. They show how the distribution of the failure times
of material subject to normal stress is related to the distribution of the failure
times of material subjected to accelerated stress and estimate the parameters in
the failure time distribution corresponding to normal stress. In this paper an
extension of this stressed degradation Wiener process model and its possible use
In survival analysis is discussed. More precisely, (Normand and Cleary 110]), it
Is suggested that the immune system of a person infected with the HIV VIrus
decays or degrades over time and that this degradation can be measured by T4
and T8 cell counts as well as the T4/T8 ratio. Moreover, the degradation rate
may Increase with increased stress, or it may become (temporarily) decreasing
alter treatment. The proposed Wiener process model corresponds to assuming
that changes in stress correspond to a transformation of the time ¢ of the degra-
dation Wiener process V' (¢). Thus an HIV infection is regarded as speeding up
degradation by changing the Wiener process V(t) to W(t) = V(7(t)), where 7(t)
1s some unknown positive function which is to be estimated.

In the case of stressed material in reliability engineering, the stress is known
at each time point and failure time data corresponding to accelerated stress is
available. The failure time is modeled as being the first time the degradation

‘From talk given in the Biostatistics Colloquium, Harvard University, February 4, 1991.
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process V(7(t)) crosses a critical boundary w. The object is to estimate the
parameters of the failure time distribution of material subject to normal stress
using the observed failure times of data subject to accelerated stress. In the case
of HIV infected individuals, typically only the values of the degradation Wiener
process V(7(t)) at certain time points is known and the object 1s to estimate
7(t). An interesting case not discussed in this paper is where both degradation
process values and crossing (failure) times are observable.

The function 7(t) has an interpretation as a cumulative (or integrated) degra-
dation rate (CDR). In the case of covariate information (e.g., age, gender), the

e.g.

p
7(t) = 7o(t) exp{z cij0;}

j=1

where 79(t) is a baseline degradation rate (the degradation rate when the covari-
ates have no effect), {c;;, j = 1,...,p} are covariate values for individual 2 and
f:,...,0, are degradation model regression parameters.

9  THE WIENER PROCESS MODEL IN RELIABILITY ENGINEERING AND AIDS
RESEARCH

2.1 Reliability engineering

Degradation of material (equipment, components, cables, insulation, etc.) to a
large extent determines the failure time of the material. Thus it makes sense
to model the distribution of failure time in terms of the process of degradation.
One way this can be done is to construct a model where failure occurs when

degradation has built up to a point where it reaches a critical boundary w. See
Figure 1.

degradation level

w = critical boundary

time t
0 Failure time T

FIGURE 1. The degradation process V(t) and time to failure T
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Here the degradation process V (1), t > 0, is taken to be a Wiener process with
drift parameter n > 0 and diffusion constant o2 > 0, that is V' (¢) has independent
increments, V(0) =0, E[V(¢)] = nt, t > 0, and Var|[V(to) =V (t1)] = (t2 —t,)0?,
0 <t <t2. The time T to failure of the material is modeled as the first tlme
the degradation process V' (t) crosses the critical boundary w > 0. Here is a
well-known result (e.g., Chhikara and Folks 3]).

IT'HEOREM 2.1. (Schrodinger (1915)). T has density

o A A (= p)? |
fo (%) \/ 53 Xl A bt >0, 11> 0, A >0,

where p = w/n =(boundary)/(drift parameter) and A\ = w?/o?.

It can also be shown that u = E(T), A = Var(¢) /1= and that T has distribution
function

2 A

I

¢

Fo(t) = @ \/5\/;“\/XWL + @ \/X\/g__\/;___l._
7 Vi p Vi

The distribution Fj is called the inverse Gaussian distribution with parameters
poand A. It is an exponential family distribution and when it is used to model
the distribution of failure time data the results are very elegant, e.g., Chhikara
and Folks [3]. In particular, maximum likelihood estimates can be obtained
explicitly and the distribution theory of these estimates can be given in terms
of chi-square and F' distributions.

One criticism of the above Wiener process model is that the degradation pro-
cess V' (t) is not monotonely increasing in time t. One partial answer 1s that
if maintenance is performed when a weakness is observed in the material, this
would lead to improvement and thus V(¢) could be decreasing at some time
points.

Step-stress tests

Next we consider step-stress accelerated life tests. Here each unit being tested
under increasingly severe stress in order to obtain more failure data which can
be used to estimate the failure time distribution Fy(t) = Pr(T < t).

More precisely, each unit is tested at a certain constant stress level s (usually
normal stress) in an initial time interval to.t1), to > 0. If the unit has not failed
in the first interval, then at time ¢, the stress is increased to s; and kept at that
level throughout the interval [t1,¢2). If the unit has not failed by time t, the
stress 1s increased to s9, and so on until the k" time interval ti_1,tr) where
the stress is s;_;. By taking t, = co, we will have failure with probability one.
We model the resulting degradation process W (t) as follows: In the first time
interval W (t) equals the Wiener process V(tg + aqft — to]) where V(t) is the
original degradation Wiener process and o depends on sg. If sy is the normal
stress level, then agp = 1 and W (t) = V(¢) in the first time interval [tg,¢;). We
introduce the notation

Wo(t) = V(to ~- Cl{[t — to]), 5

> 1g.



Thus in the first interval the degradation process 1s
”/r(f) — H/?()(t) — V(t() -+ Cl/.()[ﬁ — It()]), l € [t(), ﬁl).

Note. that if s is larger than the normal stress level, then ap > 1 and the time
index ¢t has been accelerated by the constant « (depending on sg).

In the second time interval [t1,%2), the degradation process has the same dis-
tribution as in the first, except the time index ¢ has been accelerated by the
constant oy depending on s;. We define

VVl(t) — ‘/V()(lfl + (1 [t — tl]), t > 1.
Then, for the second time interval, the level of degradation 1s
VV(f) — IVVl (f) —_— I/V()(tl -+ (ll[t — tl]), L € [tl,tg).

Next, for the third interval [to, t3) with stress level so, the same type of modeling
as for the previous intervals leads to

W(t) m— Wg(t) — Wl(tg -+ ()&Q[t — tg]), [ € [tg,tg),
where we have defined

Wo(t) = Wity + aslt — ta]), t > ta.

degradation level

W(t)

0 tO tl t time t

FIGURE 2. Step-stress degradation level W (t).
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In general, we define

Wz‘(t) — ‘/Vi.._l(t?j + [t — t?j]), t > l‘z

and we model the degradation level in the (i + 1)st time interval as having the
same distribution as a time accelerated version of the process in the it interval.
That is

I/Vz(t) — W’riml(ti + Ofa,;[t - t,]), [ € [ng ffj+l.]., 'Ifg < ti+1¢ | = 0., .o ,l{? — 1.

See Figure 2.

Note that W;(t) can be expressed in terms of W;_(t), which can be expressed
in terms of W;_2(%), and so on back to V'(¢). This observation and little algebra
leads to

PROPOSITION 2.1. Let g1 =0, 3; = H;.'m()c‘fja e =0,...,k, and

21

T(t) =to+ Bi(t —t:) + » Bj(tjqr —t), t € [tiytiz1), i=0,...k— 1.
§=0

Then W (t) = V(7 (t)).
PROOF. t € [to,t1) = W(t) = V(to + apt — to]) = V(7(¢t))
t € [t1,t2) = W(t) = Wi(t) = Wo(t: + ai(t—t1))
= V(to +aplt1 + a1 (t — t1) — to])

— V(to ~+ /’31 [t — tl] + ﬁ()[tl T t()]) — V(T(t))
Similarly, for t € [tq, t3)

|

W(t) Wl(tl ~+ C}fg(t — tg))

V(to + Bilte + aa(t —ta) — t1] + Bolt1 — to])

= V(to + B2[t — t2] + Bolt1 — to] + Biltz — t1]) = V(7(2)).

The general case follows by induction.

Note that a; parameterizes the change in the degradation distribution from the
interval [t;_1,¢;) to the interval [t;,t;11), while §; = I _oa; parameterizes the
distribution of the degradation level of the (i + 1)t interval [t;, t;41). B; is con-

nected to the ‘degradation rate’ which is defined as follows.

DEFINITION 2.1. Let W (t), ¢t > 0, be a stochastic process for which LE(W(t))

exists. Then we write §(¢t) = £ E(W(t)) and call §(t) the degradation or decay
rate for W (¢t).
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For the process W(t) = V(7(t)), it is clear that 6(t) = n7'(t) = n8;, i € [ti, tig1)
and /J; 1s a multiple of the degradation rate in the interval [t?;.,, t;+1). We give
some examples of parameterizations.

ExXAMPLE 2.1.

(d) Y, = exp{fi’(s,; — S;......,l)}:, Si—1 < 8. Note that when Si—1 — 84, then (X; = 1
and §;_1 = ;. This should be the case since when the stress levels are the
same, the degradation process parameters should be the same. For this
v;, #; has the very simple form

/UL — H;m()aj o— exp{@(se — S(_’))}.

Thus 5; only depends on the increase in stress from the first to the (i 4+ 1)st
interval not on intermediate values of stress.

(b) i = (8i/5i-1)".
Again /31'_.1 = /i when Si-1

i

S;. Now
B = (Si/So)g = exp{f|log s; — log sol}.

Generally changing stress

Next we consider the case where the stress function s(t) rather than being a step
function with value s; in the interval ti,ti+1), can be an arbitrary non-negative
(measurable) function. We again model the degradation process as

W(t)=V(r(t)), 7>ty >0

where 7(t) is some function depending on s(¢) and t, is the starting point of the
experiment.

An interesting special case is ty = 0. That is, we are starting the experiment
with new units where the degradation level is W (tg) = V(0) = 0. In this case
T(to) = 7(0) = 0.

PROPOSITION 2.2. Suppose that to = 0 and that 7(t) is continuous and increas-
ing with 7(0) = 0. If V(t) is a Wiener process, and if T is the first time V (7(t))
crosses the boundary w > 0, then T has the distribution function Fo(T(t)), where
Fo 15 the inverse Gaussian distribution of Theorem 2.1.

PROOF. See Doksum and Hdéyland [7].

Note that if 7(¢) is differentiable, with derivative 3(¢), then the degradation in
rate 1S
o(t) = - EW () = ng(t).
dt

Now if we take (3(s) to be a step function with value 3; on the interval [t;, ¢;11),
then 7(¢) is exactly the function in Proposition 2.1 and we have obtained the
step-stress accelerated failure time model as a special case of the current general
framework. Conversely, we can think of the general case as a limit of the step-
stress case with the widths of the intervals {¢;,¢;11) tending to zero.



EXAMPLE 2.1 (continued).
Let s(t) denote the continuous stress level at time ¢. Consider the step-stress
model with

(a) a; = a(t;) = exp{O[s(t;) — s(ti-1)]}, i=1,... k.
Then Il <ia(t;) tends to exp{@[s(t)—s(ty)]} as the widths of the intervals
i, ti+1) tend to zero. Thus we get a general model with 3(¢) = expq{f|s(t)—

S(to)]} and T(t) = jot B(S)d‘s.

(b) ap = aft;) = [s(t;)/s(ti—1)]".
Then Il ,<ta(t;) tends to [s(t)/s(tg)]? and we gat a general degrada-

tion process model W(t) = V(r(t)) with 8(t) = [s(t)/s(to)]? and 7(¢) =
Jo B(s)ds.

T'wo recent books that treat accelerated life testing models different from the
ones considered here are the books by Viertl [11] and Nelson [9].

2.2 AIDS Research

Next we turn to the HIV data. DeGruttola, Lange and Dafni [5], Lange, Carlin,
and Gelfand (8|, Berman [1], and Normand and Clearly [10], have considered
experiments involving measurements on the immune system of people who have
tested positive for the HIV virus. In particular, the data includes T4 cell counts
at time points that are on the average 6 months apart for several hundred individ-
uals. The ratios T4/ T8 of T4 to T8 cells counts as well as covariate Information,
are also available. Now the process 1500-(T4 count at time t) can be regarded
as a degradation process which can be modelled as Wi(t) = V(to + apt — tg)),
t 2 to, where V (t) is a Wiener process as before and ¢y and (g are parameters.
T'his model implies that E[W (t)] = n(to + ag(t — to)). DeGruttola, Lange and
Datni [5] and Lange, Carlin and Gelfand [8] have suggested that the mean T4
cell count decreases linearly with a certain slope until a change point ¢ after
which it decreases linearly with a steeper slope. In our Wiener process model
this would correspond to W(7(t)) with

7(2)

|

t0+050(tmt0), o <t <c
to + aga [t — c] + aple — tg], t > ¢,

|

where a1 > 1.

More generally, we can model the degradation level at time # as V(r(t)) where
V(t) is a Wiener process with drift n and diffusion constant o2. Without loss
of generality we take 7 = 1 in which case E(W(t)) = 7(¢) and the degradation

rate 1s 5(¢) = 7'(t). In our change point example above we have

B(1)

Qo, log <t <c
Qox1, T > c.

|

Note that 7(t) involves #y which with the HIV data is not identifiable since it
depends on the unknown infection time. On the other hand, oy and o7 and the
degradation rate ((t) can be estimated from the data.
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3 HAZARD RATE AND DEGRADATION RATE MODELS
In this section we assume that 7' is a failure time and we are interested in
estimating its failure distribution F'(¢) = Pr(7T < t). One approach is to frame
parameters and questions in terms of the hazard rate A(t) = f(¢)/[1 — F(t)]
and the integrated hazard rate A(t) = j(: A(s)ds. Another approach, which
18 suggested in this section, is to think of the failure time T as the first time
a degradation process W (t) crosses a critical boundary w > 0. This leads to
the degradation rate 6(t) = -‘%E(IV (1)) as a key concept. We consider the
degradation model of Section 2 with n = 1, thus 7(¢) = [J o(s)ds.

There are analogies between hazard rate models and degradation rate models.
Here are some.

(1) A general survival distribution F(t) can be written as F(t) = K(A(t)) where
K (t) = 1—exp(~t) is the standard exponential distribution and A(¢) is the
integrated hazard rate. Similarly, any survival distribution F(¢) can be
written in the form F(¢) = Fy(7(t)) where Fy is the standard inverse
Gaussian distribution (the distribution of Theorem 2.1 with y = 1) and
7(t) is the integrated degradation rate.

(i1) A very useful form of A(t) is 8t®. This leads to the Weibull model where
F(t) = K(£t?). Similarly, a linear stress level s(t) = a + bt leads via Ex-
ample 2.1(b) to a 7(t) of the form (3t and the failure distribution Fy(Bt%).

(iii) Using the hazard rate A(t), it is easy to model the effect of covariates. Thus
the Cox regression model has

D

A(t) = Xo(t) exp{) ¢;;8;},

7=1

have no effect), {c;; : j = 1,...,p} are covariates for unit (or individual) 1,
and Oy, ..., B are the Cox regression parameters. Similarly, we can model
the degradation rate é6(¢) using the semiparametric model

p
6(t) = 60(t) exp{D> ci;6;},
j=1

where 64(%g) is the baseline degradation rate and 01,...,0, are degradation
rate regression parameters.

(iv) In the Cox regression model, the parameters 3, ... , Bp can be estimated
using the partial or marginal likelihood. Similarly, in the semiparamet-
ric degradation model in (iii) preceding, the parameters 61,...,08, can be
estimated using the partial or marginal likelihood as in Doksum [6] and

Dabrowska and Doksum [4].

(v) Censored data can easily be accommodated using the hazard rate concept.
This is also the case with the degradation rate concept. See Dabrowska and
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Doksum [4] for semiparametric models and partial likelihood and Doksum
and Hoéyland [7] for parametric models and likelihood methods.

We end with a question: The Nelson-Aalen estimate is a very natural non-

parametric estimate of A(?); what is the ‘natural’ nonparametric estimate of
()7
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