The Reconstruction Problem for Dynamic Data

Structures, an Overview !

Michiel Smid
Fachbereich Informatik, Universitat des Saarlandes
D-6600 Saarbriucken, West-Germany

The reconstruction problem is the following: given a searching problem, de-
sign an efficient main memory data structure that solves this problem, together
with a shadow administration, to be stored in secondary memory, such that
the original main memory structure can be reconstructed in case of e.g. a
system crash. The problem is illustrated by considering a specific example of
a searching problem, the union-find problem. Furthermore, a general tech-
nique is given to implement any shadow administration efficiently. Finally, the

technique of deferred data structuring is applied for solving the reconstruction
problem.

1 INTRODUCTION

The theory of data structures and algorithms is concerned with the design and
analysis of structures that solve searching problems. In a searching problem, we
have to answer a question (also called a query) about an object with respect
to a given set of objects. A data structure for such a searching problem stores
the objects in such a way that queries can be answered efhiciently. The design
of data structures has received considerable attention.

A large part of the research is focussed on designing structures that are stored
in the main memory of a computer, on which all standard computations can be
performed, and which is usually modeled as a Random Access Machine (RAM).
(See [2].) The memory of a RAM consists of an array, the entries of which can
store pieces of information, such as names, integers, pointers, etc. Each such
array entry can be accessed at constant cost, provided the address of the entry
1s known. The main problem is to structure the relations of the basic pieces of

information, using a small amount of space, such that queries can be answered
fast.

Wl

1The research that is reported here, was done while the author was with the Department of
Mathematics and Computer Science of the University of Amsterdam, The Netherlands. This
work was supported by the Netherlands Organization for Scientific Research (NWOQO), and by
the ESPRIT II Basic Research Actions Program under contract No. 3075 (project ALCOM).

149

Until about 1979, many of the main memory data structures that were de-
signed were static, i.e., it was not possible to insert and delete objects. Excep-
tions were data structures that can handle dictionary operations. The oldest
are the AVL-trees, introduced in 1962 by Adel’son-Vel’skii and Landis [1]. In
these trees one can search, insert and delete objects in a number of steps that
1s logarithmic in the number of objects that are stored in the tree. In 1979, the
research on general dynamization techniques was initiated by Bentley [4]. This
research consists of designing techniques to transform static data structures into
dynamic structures, i.e., structures that do allow insertions and deletions of
objects. Many techniques are available nowadays that can be applied to large
classes of searching problems. As an example, there exists a general theory to
dynamize data structures that solve so-called decomposable searching problems.
In a decomposable searching problem, the answer to a query with respect to
a set of objects can be obtained by merging the partial answers to the query
with respect to a partition of this set. Any static data structure that solves a
searching problem satistying this general constraint, can be turned into a dy-
namic structure. The reader is referred to Overmars [12] for a detailed account
of dynamization techniques.

Another part of the research is concerned with the problem of designing struc-
tures that are stored and maintained in secondary memory. This problem often
occurs in database applications, where data structures are too large to be stored
in main memory, and therefore have to be stored in secondary memory.

Secondary memory 1s modeled as an array that is divided into blocks. In
secondary memory, no computing is possible, and the only allowed operations
are to replace a block by another one and to add a new block at the end of
the file. All computations take place in main memory, and the blocks that
store information that is needed during a computation are transported to main
memory. If a block is changed during an operation, it 1s transported back to
secondary memory. For each block we need in a computation, we have to access
secondary memory, which takes a considerable amount of time in practice.

Therefore, the main problem is to partition the data structure into parts of
a small size, such that each operation needs information from only a few parts.
Then, by storing each part of the partition in one block in secondary memory,
we can perform operations at the cost of only a few disk accesses and a small
amount of data transport.

The best-known example of a data structure for secondary memory applica-
tions is the B-tree, introduced in 1972 by Bayer and McCreight [3]. If a B-tree
stores n objects, and if 1t is stored in blocks of size m, then the operations search,
insert and delete can be performed at the cost of O(log n/log m) accesses to
secondary memory in the worst case.

In most studies that have appeared so far, it is assumed that the objects are
represented by only one data structure that is stored either in main memory or
in secondary memory, and all operations are performed on this one structure.
In many situations, however, we need to represent the data more than once—
possibly on different storage media-—and have a multiple representation of the
data.

In the author’s Ph.D. Thesis [14], such multiple representation problems are

150

investigated. In this paper, we consider one such problem: The reconstruction
problem. After a system crash, or as a result of errors in software, a data

structure that is stored in main memory can be destroyed. Another case, in
which a main memory structure can be destroyed, is the regular termination

of an application program that uses the structure. In case of an application
that is executed on a system that is also used by other persons, the copy of
a data structure in main memory will be destroyed between two runs of the
application program. In both cases-—system crash or regular termination —the
data structure has to be reconstructed from the information stored i secondary
memory. This information is called the shadow administration. So besides the
data structure in main memory, we represent the data in a shadow administration
that 1s stored in secondary memory.

This leads to the problem of designing for a given searching problem, a dy-
namic data structure that solves this searching problem, together with a shadow
administration from which the data structure can be reconstructed in case of
calamity.

This shadow administration does not have to support the same operations
as the main memory data structure. Only insertions and deletions have to be
performed, whereas on the main structure itself also queries are carried out.
Furthermore, we only require that the shadow administration contains enough
information that makes it possible to reconstruct the main structure.

The reconstruction problem was suggested by Ghica van Emde Boas-Lubsen,
after she heard a talk by Litwin about trie hashing functions. Leen Torenvliet
and Peter van Emde Boas investigated this reconstruction and optimization
problem for these functions in [20]. A few years later, Peter van Emde Boas,
Leen Torenvliet and Mark Overmars together decided that it ought to be possible
to study this reconstruction problem in a more general setting. They wrote a
research proposal, that was eventually accepted by the Netherlands Organization
for Scientific Research (NWOQO). The project was carried out by the author at the
University of Amsterdam, in close collaboration with the above three persons.

Although the reconstruction problem arises in practice, no other research con-
cerning this problem has been carried out besides |20] and the author’s Ph.D.
research.

Solutions to the reconstruction problem have applications in the following
areas:

e The theory of data bases.

e Computational geometry. Since in this area often data structures are
used requiring more than linear space, it 1s sometimes possible to 1mprove
asymptotically upon the storage requirements.

e Multiprocessing. A system in which several processors at distinct times
execute distinct tasks, and communicate through message passing, might
be even more sensitive to crashes than a uniprocessor system. 1o protect
a computation against failure of processors, checkpoints are built in on
several places of the computation. If a checkpoint is reached, the complete
state of all processors, and their interconnection pattern, is transported to
secondary memory. If the system crashes, the computation can be contin-

151

ued at the last reached checkpoint. It is clear that much time and space
can be saved by efficiently storing the information from each processor.

The rest of this paper is organized as follows. In Section 2, we introduce the
models of main and secondary memory. In Section 3, we introduce a realistic gen-
eral framework that we use to describe solutions to the reconstruction problem.,
and we introduce the complexity measures to express the efficiency ot solutions.
In Section 4, we consider a specific example of a problem, the union-find prob-
lem. For this problem, we design an efficient main memory data structure—in
fact, this structure is optimal in a very general class of data structures—in such a
way that a copy of it can efliciently be maintained in secondary memory, thereby
leading to a good solution to the reconstruction problem. In Section 5, we give
a general technique to implement any shadow administration in such a way that
updates and reconstruction can be performed at low costs. In Section 6, we apply
the recent idea of deferred data structuring to the reconstruction problem. This
leads to another approach in the reconstruction procedure: after a crash, the
data structure is reconstructed ‘on-the-fly’, i.e., we immediately proceed with
performing queries and updates, and we reconstruct the data structure during
these operations. It should be mentioned that Sections 4 and 6 contain results
that are also interesting in other areas besides the reconstruction problem. We
finish the paper in Section 7 with some concluding remarks and some directions
for future research.

2 STORAGE AND COMPUTATION MODELS

The medium in which all computations take place, and in which also data can
be stored, is called main memory. We model main memory as a Random Access
Machine (RAM). The memory of a RAM consists of an array, the entries of
which have unique indices. The contents of such an array entry can be obtained
at constant cost, provided its address, 1.e., its index, 1s known. We express
the complexity of a computation in main memory in computing time, which is
the usual measure—in terms of words—to express the length of a computation.
(In the theory of algorithms and data structures it is customary to express
complexities in terms of words, not in terms of bits.)

Our second storage medium is secondary memory. Just as for the RAM,
secondary memory consists of an array. Now, this array is divided into blocks
of a fixed size. This block-size can be chosen arbitrary. Each such block has a
unique address, and 1t 1s possible to access a block directly, provided its address
i1s known.

A data structure is stored in secondary memory by distributing it over a
number of blocks of a predetermined size. In secondary memory no computing
1s possible. Therefore, to perform an operation—a query or an update—on a
data structure, we send information from secondary memory to main memory—

where computing is possible—and vice versa. The following update operations
are possible in secondary memory:

e We can replace a block by another block, or a number of (physically)
consecutive blocks by at most the same number of blocks.

152

We can add a new block, or a number of new blocks., at the end of the file.

Hence, we can only update complete blocks. It is also possible to transport
(complete) blocks from secondary memory to main memory. To transport a
block to secondary memory, we have to know the address where the block will
be stored. Similarly, a block can be transported to main memory only if its

tities. In practice, these two quantities dominate the time for the operation. The
first one—which is in general the most time consuming —is the number of disk
accesses—also called seeks-—that has to be done: For each segment of consecu-
tive blocks we transport, we have to do one disk access. Hence, we can transport

store the structure in consecutive blocks. Also, it takes one disk access to trans-
port a structure that is stored in secondary memory in consecutive blocks, to
main memory. In this latter case, it is sufficient to know the address --in sec-
ondary memory——of the first block of the segment that stores the structure: We
transport all blocks ‘to the right’ of this first block, in which some information
is stored. (Here we assume that blocks that do not contain information of the
structure, are empty.)

The second quantity is the transport time: We assume that an amount of
n data can be transported in O(n) transport time from main memory to sec-
ondary memory, and vice versa. In general the constants in this estimate for the
transport time are incomparable to the constants 1in computing time.

We already said that in practice the time for one disk access is high. In order to
get an impression, for a typical standard computer, one disk access takes about

15 milliseconds, whereas data transport between main and secondary memory
1s performed at a rate of 3 Mbyte per second. Therefore it is essential to limit
the number of disk accesses as much as possible.

3 A MODEL FOR THE RECONSTRUCTION PROBLEM

To study and analyze solutions to the reconstruction problem, we use the fol-
lowing conceptual model. We remark here that this is not the best way of imple-
menting the techniques. Our approach is easy to analyze and does not increase
the complexity in order of magnitude. We store the following information:

e DS is a dynamic data structure, stored in main memory.

e SH is a shadow administration from which the data structure DS can be
reconstructed. This shadow administration is also stored in main memory.

e In secondary memory, we store a copy C'S H ot the shadow administration
SH.

e Finally, there is extra information I /N F', that is used to update the shadow
administration SH and its copy CSH. This extra information is not
needed to reconstruct the data structure, and, hence, it may be destroyed
in a system crash. Therefore, it is only stored in main memory.

In practice SH often is not necessary and changes can be made immediately
in CSH. The distinction between SH and C'SH makes it easier to estimate

time bounds.

153

Let DS be a dynamic data structure, and let SH, CSH and INF be the corre-

sponding additional structures. To perform an update we carry out the following
steps:

1. The data structure DS is updated.
2. The structures SH and INF' are updated.
3. The copy CSH in secondary memory is updated.

Steps 1 and 2 take place in main memory. Therefore, all standard operations
are allowed for these two steps of the update procedure. The complexity of these
steps 1s expressed In computing time.

In step 3, data in secondary memory has to be updated. The structure CSH
1s distributed over a number of blocks in secondary memory. After the update
of SH, we know which parts of C'SH have to be updated. We update CSH
by replacing all blocks in which some information has to be changed by the
corresponding updated parts of SH. The complexity of this operation is given
by the number of disk accesses that has to be done; the amount of transport
time which is proportional to the amount of data that is transported: and the
amount of computing time needed to collect the information that is transported.

After a system crash, or as a result of program errors, the contents of main
memory (i.e., DS, SH and INF') will be destroyed. To reconstruct the struc-
tures, we transport the copy C'S H of the shadow administration to main memory.
T'his copy takes over the role of the destroyed shadow administration SH. Then
we reconstruct from S H the structures DS and INF. After the reconstruction,
we proceed with query answering and performing updates.

The reconstruction procedure takes a number of disk accesses, O(Scsy(n))
transport time, where Scsy(n) is the size of CSH, and an amount of computing
time.

In most cases, the copy CSH of the shadow administration is stored in sec-
ondary memory in consecutive blocks, always starting at the same block. This
block is called block 0. We assume that the system knows the address of block
0; 1t 1s not destroyed in a system crash. Then, the number of disk accesses in
the reconstruction procedure is equal to one.

An important issue in the reconstruction procedure is how we store the cCopy
C'SH in main memory. Note that data structures contain pointers, which we
consider to be indices of memory locations. In order to guarantee that these
pointers ‘point’ to the correct objects, each indivisible piece of information of
C'SH should be stored in exactly the same location in main memory as its
corresponding piece of SH was, before the information was destroyed. In general,
this is not possible, because the crash may also have destroyed physical parts of
main memory where the information was stored. In this case, we can of course
store the information in another part of main memory, in such a way that all
addresses are shifted by the same amount.

We assume for simplicity, however, that a crash only destroys the pieces ot
information; the memory locations themselves are not destroyed. Hence, these
locations can be used after the crash to store information again.

154

We store in secondary memory with each piece of information of ('S H. the
address of its corresponding piece in main memory. In this w ay, the size of the
structure C'S H is at most twice as large as the size of SH. Note that now the
structure C'SH is not an exact copy, since it contains more information. To
reconstruct the structures, we transport ('SH to main memory, and we store
the information in the same positions as SH was, usin ¢ the addresses. Then
all pointers indeed have the correct meaning, and we can reconstruct 1S and
INF. It follows that the computing time needed to reconstruct the structures
is Q(Scsp(n)), since in main memory an amount of S¢-q (n) mformation has

4 AN EXAMPLE: THE UNION-FIND PROBLEM

The union-find problem is one of the basic problems in the theory of algorithms

and data structures. In this problem we are given a collection of n disjoint sets
Vi, Va,..., V,, each containing one single element, and we have to carry out a

sequence of operations of the following two types:

1. UNION(A, B, ('): combine the two disjoint sets A and B into a new set
named C.
2. FIND(x): compute the name of the (unique) set that contains r.

The union-find problem has many applications, and many algorithms use the
problem in some way as a subroutine. Examples are algorithms for comput-
g minimum spanning trees, solving an off-line minimum problem, computing
depths in trees and determining the equivalence of finite automata. (See [2].)

The problem has received considerable attention. See Tarjan [19] and La Poutré

In this section we are interested in the single-operation time complexity of the
union-find problem. Blum [7] has given a data structure of size O(n), in which
each UNITON operation can be performed in O(k+log, n) time, and each FIN D
operation in O(log, n) time. Here k is a parameter, possibly depending on n.
He also gives a very general class B of data structures, that contains many im-
plementations of known algorithms for the union-find problem:

The class 5. Data structures in class B are linked structures that are con-
sidered as directed graphs. The algorithms that use these data structures for
solving the union-find problem should satisfy the following constraints:

1. For each set and for each element, there is exactly one node in the data
structure that contains the name of this set or element.

2. The data structure can be partitioned into subgraphs, such that each sub-
eraph corresponds to a current set. There are no edges between two such
subgraphs.

3. To perform an operation FIND(x), the algorithm gets the node v that
contains xr. The algorithm follows paths in the graph, until it reaches the
node that contains the node of the corresponding set.

4. To perform a UNION or a FFIND operation, the algorithm may insert or
delete any edges, as long as Condition 2 is satisfied.

159

For structures in class B, the following theorem holds.

THEOREM 1 (BLuM [7]). Let DS be any data structure in class B. Suppose
that each UNION operation can be performed in O(k) time. Then there is a
FIND operation that needs time

o log n
" \log k+log log n /-

In this section, we give a variant of Blum’s structure that gives a better trade-off
between the times for UNION and FIN D operations. This structure depends
on a parameter, and for many values of this parameter it is optimal in the class
5.

T'he data structure consists of a number of trees, and has the property that for
a UNION operation we only have to visit the roots of two trees, together with
their direct descendants. Furthermore, a FIND operation does not change
the structure. This property implies that we can efficiently maintain a CoOpy
of the data structure in secondary memory, leading to a good solution to the
reconstruction problem.

4.1 The union-find data structure
Let V be a set of n elements for which we want to solve the union-find problem.
T'hat is, we want to maintain a partition of V under a sequence of UNJTON and

FIND operations, where initially each set in the partition contains exactly one
element. We store sets in UF'(k)-trees, that are defined as follows.

DEFINITION 1. Let k be an integer, 2 < k < n. A tree T is called a UF(k)-tree,
1f

B

. the root of T" has at most k sons,
2. each node in T" has either 0 or more than k grandsons. (Here, a grandson
of a node v is a son of a son of v.)

Each set A in the partition of V is stored in a separate U F (k)-tree, as follows:
The elements of A are stored in the leaves of the tree. In the root, we store
the name of the set, the height of the tree, and the number of its sons. Each
non-root node contains a pointer to its father, and the root contains pointers
to all its sons. Note that the root contains at most k pointers. A UF(k)-tree
storing a set of cardinality one, consists of two nodes, a root and one leaf.

THE FIND-ALGORITHM. To perform an operation FIND(x), we get at con-
stant cost the leaf that contains element z. Then we follow father-pointers, until

we reach the root of the tree, where we read the name of the set that contains
.

1'HE UNION-ALGORITHM. To perform the operation UNION(A, B, C), we get

at constant cost the root r resp. s of the tree that contains the set A4 resp. B.
We distinguish three cases.

156

CASE 1. The trees containing A and B have e qual height, and the total number
of sons of r and s is < k.

Assume without loss of generality that the number of sons of < 1s less than or
equal to the number of sons of . We chan ge the father-pointers from all sons of
s Into pointers to r, and we store in r pointers to its new sons. Nex t, we discard
the root s, together with all its information. Final v, we adapt in r the number
of its sons and the name of the set. It is clear that the resultin o tree 1s agaln a

UF(k)-tree.

CAsg 2. The trees containing A and B have equal height, and the total number
of sons of 7 and s is > k.

In this case, we create a new root t. In this new root , we store pointers to r

and s; the name of the new set ('; the hei ght of the new tree, which is one more
than the corresponding value stored in r: and the number of SO , which 1s 2. In

the old roots r and s, we discard all information. and we add pointers to their
new father ¢. Again, the resulting tree is a UF(k)-tree.

CAsE 3. The trees containing A and B have un equal height.

Assume without loss of generality that the tree of B has smaller hei eght than
the tree of A. Let v be an arbitrary son of . Then we chan ge the tather-pointers
from all sons of s into pointers to v. The root s, to gether with all its informa-
height of the tree and the number of sons of r does not chan ge. Again, it is not
difficult to see that the resulting tree is a U F(k)-tree.

LIHEOREM 2. Let k and n be integers, such that 2 < k < n. Using UF(k)-
trees, the union-find problem on n elements can be solved, such that

1. each UNION takes O(k) time,
2. each FIND takes O(log, n) time,
3. the data structure has size O(n).

PROOF. We saw already that the U NION-algorithm correctly maintains U F'(k)-

we are, since all information for deciding this is stored in the roots. Cases 1 and
3 of the UNION-algorithm take O(k) time in the worst case. Case 2 can be
handled in O(1) time.

The size of a UF'(k)-tree is linear in the number of its leaves, which shows
that the entire data structure has size O(n).

The time needed for a FFIN D operation is bounded above by the height of a
UF(k)-tree. The problem is that Definition 1 does not imply that the height of a
UF(k)-tree is bounded above by O(log, n). In fact, the reader is encouraged to
construct a U F'(k)-tree having a height that is proportional to n /k. Of course,
we only have to give an upper bound on the heights of the trees that are made
by the UNION-algorithm. It can be shown, that the trees that are made by
the UNION-algorithm, have height at most 1 + 2[log, n]. (For a proof of this
tact, see [14,15].) Therefore, each F'IN D operation takes O(log, n) time in the
worst case. [

157

It 1s clear that the given data structure is contained in Blum’s class 3. There-
fore, Theorems 1 and 2 yield:

COROLLARY 1. The data structure of Theorem 2 is optimal in Blum’s class
B of structures for the union-find problem, for all values of k satisfying k =
(2((log n)¢) for some ¢ > 0.

4.2 An efficient shadow administration

In this section we show that by using the data structure of Theorem 2, we can
obtain an efficient solution to the reconstruction problem:.

We store a copy of the data structure in secondary memory as follows. We
reserve a number of consecutive blocks of some predetermined size (see below),
and we distribute the structure over these blocks. Together with each indi-
visible piece of information, we store in secondary memory the address of the
corresponding piece in main memory.

Since the root of a UF'(k)-tree has at most k£ sons, the total size of this root,
together with all its sons and all the information stored in these nodes (i.e.,
pointers, name of the set, height of the tree and number of sons), and all their

there is a constant ¢’ such that the size of the entire data structure, together
with all the addresses, is at most ¢'n.

We reserve in secondary memory [(¢'n)/(ck)| consecutive blocks of size 2ck,
starting at block 0. The copy of the data structure will be stored in these blocks.
We call a block free if at least half of the block is empty. The following lemma
can easily be proved.

LEMMA 1. Among the reserved blocks, there is always at least one free block.
Initially we have n trees, each of them having one root and one leaf. We store

blocks. For each tree, the root and its son, together of course with all their in-
formation and their positions in main memory, are stored in the same block.
We store in main memory in the root of each tree, the address of the block in
secondary memory that contains the copy of this root. Finally, we maintain in
main memory a stack containing the addresses of the free blocks. By Lemma 1.
this stack i1s never empty. The stack will only be used for updating the struc-
ture 1n secondary memory; it is not used for reconstructing the data structure.
I'herefore it may be destroyed in a crash. Note that the amount of space in main
memory remains bounded by O(n).

Since a F'IN D operation does not change the data structure, such an operation
does not affect the shadow administration.

A UNION operation is first performed on the structure in main memory
according to the algorithm of Section 4.1. Then the shadow administration in

secondary memory is updated. We take care that at each moment the following
holds:

158

INVARIANT. For each UF(k)-tree, the root and all its sons, together with all the
information stored in these nodes, and all their positions in main memory, are
stored 1n the same block in secondary memory.

Clearly, this invariant holds initially. (In the sequel we shall not state each
time explicitly that if we put information in a block, we also store with it its
position in main memory. It is clear how this can be done.)

T'HE UNION-ALGORITHM. The operation UNION (A, B, (') is performed as fol-
lows. Let r resp. s be the root of the tree containing the set A resp. B.

CASE 1. The trees containing A and B have equal height, and the total number
of sons of » and s is < k.

Assume without loss of generality that the number of sons of s is less than or
equal to the number of sons of . In the block containing » we remove this root
and all its sons. (Note that we can read the address of this block in the root r
that 1s stored in main memory.) If this block becomes free, we put its address on
the stack. In the block containing s we do the same. Next we take the address
of a free block from the stack, and in that block we add the root, together with
1ts sons, of the new tree. If this block remains free we put its address back on
the stack. In main memory, we store in the root of the new tree, the address of

the block containing its copy.

CASE 2. The trees containing A and B have equal height, and the total number
of sons of r and s is > k.

In the block containing r we remove this root, together with all the informa-
tion stored in it. If the block becomes free, we put its address on the stack. In
the block containing s we do the same. Then we add the new root, together
with its sons 7 and s and all the information that these three nodes contain, to
a free block, the address of which we take from the stack. If this block remains
free its address is put back on the stack. In main memory we store in the new
root the address of the block containing its copy.

CASE 3. The trees containing A and B have unequal height.

Assume without loss of generality that the tree of B has smaller height than
the tree of A. In the block containing r we change the name of the set from A
to C. In the block containing s, we change the pointers of the sons of s, and we
remove the root s together with all its information. If this block becomes free
we put 1ts address on the stack.

THE RECONSTRUCTION ALGORITHM. To reconstruct the data structure, we
transport the entire file to main memory, and we rebuild the stack of free blocks.
Then each indivisible piece of information of the data structure is stored in the
array location where it was before the information was destroyed. This guaran-
tees that each pointer ‘points’ to the correct position in main memory. Now we
can proceed performing UNION and FIND operations.

The following theorem summarizes the result.

159

i

THEOREM 3. Let k and n be integers, such that 2 < k < n. For the data

: i

it

structure of Theorem 2, solving the union-find problem on n elements, there
exists a shadow administration

1. of size O(n),
2. that can be maintained after a UNION operation at the cost of at most
three disk accesses, O(k) computing time and O(k) transport time.

The data structure can be reconstructed at the cost of one disk access, O(n)
transport time and O(n) computing time.

. The data structure of this section nicely illustrates how shadow administrations
""" can be implemented. It also shows that the copy in secondary memory is stored
g in such a way that all pieces of information are mixed up together. For example,

the pointers of the main memory structure do not have any meaning in secondary
memory. This does not matter, since we only require that the shadow admin-

Istration contains information from which the original main memory structure
B can be reconstructed.
] The structure of this section cannot be applied in a scenario where the data

structure 1s too large to be stored in main memory. In that case, the structure
1s maintained in secondary memory. The reason that the structure cannot be
applied in this situation is that then the pointers must have a meaning in sec-
ondary memory. The maintenance of the correct meaning of these pointers will
take a lot of disk accesses.

9 A GENERAL TECHNIQUE

In this section, we give a technique to implement any shadow administration.
Let DS be a dynamic data structure and let SH and INF be a corresponding
shadow administration. (See Section 3 for the notation.) We denote the size
of SH by Sgu(n), the size of INF by S;yr(n), the total update computing
time of SH and INF by U.(n), and the computing time needed to reconstruct
the structures DS and INF' from SH by R.(n). Let C(n) be the amount of
data that is changed in an update in SH. We assume that all these complexity
measures are smooth and non-decreasing. (A function f is called smooth if
F(O(n)) = O(f(n)).)

We show how to implement these structures, such that the entire shadow ad-
ministration can be updated in one disk access, O(U.(n)) computing time and
O(C(n)) transport time. These bounds are amortized bounds. Also, the total
size of the additional structures is bounded by O(Ssg(n)+S;nr(n)), and recon-
struction takes one disk access, O(Sgy(n)) transport time, and O(R.(n)) com-
puting time. Hence, this technique is especially interesting if C(n) = o(U.(n)),
l.e., if the amount of data that is changed in the shadow administration is much

smaller than the time needed to find these changes. We will need the following
lemma.

LEMMA 2. The complexity measures introduced above satisfy

160

EELFL 1Y

1. C(n) <U.(n).

2. Sqy (TL) < N X C(TL).

PrROOF. To update SH, we spend at most U.(n) time. In this update, the
amount of data that is changed can never be greater than U,.(n). Therefore,
C(n) < Uc(n). We can build the structure SH. b y performing n nsertions imto
an initially empty structure. In this way, the total size of the changes is at most
C(1)+C2)+ -+ C(n) < n x C(n). Durin g these insertions, we have built
a structure of size Sgp(n), and hence an amount of at least Sy (n) data 1s
changed. This proves that Sgy(n) < n x C(n). C '

5.1 Implementing the shadow administration

1T'HE STRUCTURES. Let m be the initial number of objects represented by the
SH and I N F in main memory. In secondary memory we store-—in consecutive
blocks, starting at block O-—the copy CSH of SH. This copy CSH contains
with each piece of information the address of the corresponding piece in main
memory. We also store in secondary memory an initially empty list UF. (UF
stands for update file.) This list is positioned in the block ‘next to’ C'SH.

T'HE UPDATE ALGORITHM. Consider a sequence of Sgy(m)/(2C(m)) updates.
Each update in this sequence is performed, in main memory, on the structures
DS, SH and INF'. After an update of the structure SH, we send the addresses
of all changed entries of SH, together with the new contents of these entries, to
secondary memory. (Note that main memory consists of an array. The struc-
ture SH 1s stored in the entries of this array. Each such entry has a unique
address.) These changes—of total size O(C(n)), where n is the current number
of objects—are stored in a new block at the end of the list UF. The structure
C'SH is not affected during the updates.

After Sy (m)/(2C(m)) updates have been performed in this way, we trans-
port a copy—that 1s called C'SH again—of the up-to-date structure SH, to-
gether with the addresses in main memory, to secondary memory. This copy
C'SH is stored in consecutive blocks, starting at block 0, and it replaces the old
structures C' S H and UF'. If the size of the new copy C'SH is less than the total
size of the old CSH and UF, we make the blocks at the end of the file, that
contain the old information, empty. We also initialize in secondary memory an
empty list UF' in the block ‘next to’ the new CSH. Then we continue in the
same way, now with a sequence of Ssy(m’)/(2C(m')) updates, where m’ is the
number of objects at this moment.

THE RECONSTRUCTION ALGORITHM. To reconstruct the structures, we trans-
port CSH and UF' to main memory, where we store C'SH in the correct loca-
tions using the addresses. Then pointers in C'SH indeed ‘point’ to the correct
objects. Next we carry out the at most Ssgyg(m)/(2C(m)) updates using the
list UF'. (This list gives us the addresses of the entries in C'SH that have to
be changed, and the new contents of these entries.) After these updates, the
resulting structure C.SH contains the up-to-date shadow administration. Hence

161

1t can take over the role of SH. Finally, we reconstruct from SH the structures
DS and INF. Then all information is reconstructed, and we can proceed with
and performing updates.

ANSWETINg (Jueries

THEOREM 4. Let SH and INF be a shadow administration for the dynamzic
data structure DS, with complexity Ssy(n), Synp(n), Ud(n), R.(n) and C(n).
We can implement these structures such that the resulting shadow administration

1. has size O(Sgy(n)+ S;np(n)),
2. can be updated in one disk access, an amortized computing time of

wt
e

O(U. (n)), and an amortized transport time of O(C'(n)).

The structures DS, SH and INF can be reconstructed in one disk access,
O(Ssu(n)) transport time and O(Sg H(n) + R.(n)) computing time.

PROOF. First note that all information in secondary memory is stored in con-
secutive blocks, always starting at block 0. In particular, there are no gaps.
Therefore, the amount of space used in secondary memory is proportional to
the total size of the structures CSH and UF. The size of CSH , together
with the corresponding addresses in main memory, is equal to O(Ssy(m)),
where m is the number of objects at the beginning of the sequence of up-
dates. During this sequence, n—the current number of objects—satisfies n <
m + Sgp(m)/(2C(m)). It follows from Lemma 2, that n < 3m /2. Similarly,
n > m/2, and hence n = ©(m). Since our complexity measures are assumed to
be smooth, we have C'(n) = ©(C(m)). Hence in each update we add O(C(n)) =
O(C(m)) data to the list UF. It follows that the size of UF ic bounded by
(Ssu(m)/(2C(m))) x O(C(m)) = O(Ssu(m)). Therefore, the total amount of
space used in secondary memory is bounded by O(Sgy(m)) = O(Sspg(n)). The
amount of space used in main memory by the shadow administration 1S bounded
by Ssu(n)+ Sryr(n). This proves the bound on the space complexity:.

It follows from the given algorithm that the number of disk accesses in an
update is equal to one. The amortized transport time for an update is bounded

by

)y (Ciny o OBsu(m’)) 1\ _ _
O (G() + SSH(m)/(QC(m))) = O(C(n)),

where m' is the number of objects at the end of the sequence ot updates. (Note
that n = ©(m) = O(m').) Similarly, the amortized computing time for an
update is bounded by

O (U(.(n) + — 2 ___) = O(Uc(n) + C(m)) = O(U.(n)).

Here we have used Lemma 2.

In the reconstruction algorithm, it takes one disk access and O(Ssy(n)) trans-
port time and computing time to transport C'SH and UF' to main memory and
to store CSH in the correct positions. Each update from the list UF takes
O(C(m)) computing time. It follows that all updates from UF together take
an amount of computing time that is bounded by O((Ssu(m)/C(m)) x C(m))

162

= O(Ssg(m)). Finally, it takes R. (n) computing time to reconstruct the struc-
tures DS and INF from the u p-to-date structure ('SH. Hence, the entire
reconstruction algorithm takes one disk access, O(Sq, (1)) transport time and
O(Ssu(n) + R.(n)) computing time. C

REMARK. The amortized bounds in Theorem 4 can be made worst-case. by
spreading out the transport of the cop v ot SH over a number of updates. Then,
the number of disk accesses for an update res p. reconstruction increases to two
resp. three. See [14]. So this result gives an efficient implementation of any
shadow administration. Especially the u pdate algorithim is interesting: it takes

.......

only two disk accesses and a small amount of tran sport time, even in the worst
case.

We illustrate Theorem 4 with an example. Consider the union-find data stric-

structure SH is not needed because it is an exact ¢o py ot DS.)

/

It is clear that the size of the shadow administration is bounded by O(n).
It tollows from Theorem 2 that this shadow administration can be u pdated
atter a UNITON operation in O(k) computing time. H ence, U.(n) = O(k) and
C(n) = O(k). (Note that a FIND operation does not change the structure.)
Finally, R.(n) = O(n).

Applying the worst-case version of Theorem 4—see the above remar k—gives
an implementation of this shadow administration of size O(n), that can be up-
dated after a UNION operation in two disk accesses, and O (k) computing and
transport tiume 1n the worst case. Reconstruction takes three disk accesses, and
an amount of O (n) transport and computing time.

T'his result is similar to that of Theorem 3; only the number of disk accesses
differs. Note that the implementation of Section 4.2 will be easier in practice
than the one of the present section. (Clearly, considering a specific shadow
administration will in general lead to a better result than by applyving a general
technique that works for any shadow administration.)

In [14], other applications of Theorem 4 can be found.

6 ANOTHER APPROACH: DEFERRED DATA STRUCTURINC

In the solutions we have seen so far for the reconstruction problem, we first
completely rebuild the data structure DS and the corresponding structures S H
and I N F', after a crash. Then we proceed with query answering and performing
updates. Hence, if the reconstruction time is high, it takes a lot of time before
we can proceed again. To avoid this problem, we introduce another approach
to the reconstruction problem. The idea is to maintain in secondary memory
the objects that are represented by the data structure DS. If we want to re-
construct this data structure, we transport the objects to main memory. Then
we 1mmediately continue with answering queries and performing updates. The
data structure is built ‘on-the-fly’ during these operations. With each operation.
those parts of the data structure that do not exist at that moment. but that are

163

needed in the operation, are built. These parts can then be used for future
operations.

This technique of building a data structure is due to Karp, Motwani and
Raghavan [9], who call it deferred data structuring, although they do not ap-
ply this technique to the reconstruction problem. Their motivation to design
deterred data structures is to solve a sequence of queries, where the length of
the sequence is not known. They only give static deferred data structures. The
design of deferred data structures for dynamic data sets in which insertions and
deletions are allowed concurrently with queries, is left as an open problem.

In this section, we give one technique to dynamize a static deferred data
structure. The idea 1s illustrated by considering dynamic deferred structures for
the member searching problem. We show that deferred binary search trees—if
properly chosen—can be maintained by this generalized technique.

6.1 The static deferred binary search tree

We first recall the static solution of [9] for the member searching problem.

Let V be a set of n objects drawn from some totally ordered universe UU. We
are asked to perform—on-line—a sequence of member queries. In each such
query we get an object ¢ of U, and we have to decide whether or not g € V.

The algorithm that answers these queries builds a binary search tree as follows.
Initially there is only the root, containing the set V. Consider the first query q.
We compute the median m of V, and store it in the root. Then we make two
new nodes v and v. Node u will be the left son of the root, and we store in it
all objects of V' that are smaller than m. Similarly, v will be the right son of
the root, and we store in it the objects of V that are larger than m. Then we
compare the query object ¢ with m. If ¢ = m we know that q € V, and we stop.
Suppose ¢ < m. Then we proceed in the same way with node u. That is, we find
the median of all objects stored in u, we store this median in u, we give u two
sons with the appropriate objects, and we compare q with the new median. This
procedure is repeated until we either find a node in which the ‘local’ median is
equal to ¢, in which case we are finished, or end in a node storing only one object
not equal to g, in which case we know that ¢ & V.

The first query takes O(n+n/2+mn/4+--.) = O(n) time, since in each node
we have to find a median, which can be done in linear time 6]. During this
first query, however, we have built some structure that can be used for future
querles: In the second query, we have to perform only one comparison in the
root to decide whether we have to proceed to the left or right son. In fact, in
any node we visit that is visited already betore, we spend only one comparison.

T'his is the general principle in deferred data structuring: It we do a lot of
work to answer one query, we do it in such a way that we can take advantage
from it in future queries.

We now describe the algorithm in more detail. Each node v in the structure
contains a list L(v) of objects, two variables N(v) and key(v), and two point-
ers. Some of these values may be undefined. The value of N (v) is equal to the
number of objects that are stored in the subtree with root v T'he meaning of
the other variables will be clear from the algorithms below. (Strictly speaking,
the variable V(v) is not needed in the static case.)

164

INITIALIZATION. At the start of the algorithm there is one node, the root r.

The list L(r) stores all objects of V. (This list is not sorted.) The value of N (r)

1s equal to n, which is the cardinality of V. and the value of key(r) is undefined.

EXPAND. Let v be a node having an undefined variable ke y(v). In this case, the
list L(v) will contain at least 2 objects, and the value of N (v) will be equal to
| L(v) |. The operation ezpand is performed as follows:

First we compute the median m of L(v), and we determine the sets V; = {xr €
L(w) |z < m} and Vo = {x € L(v) | * > m}. Then we set key(v) := m and
L(v) := (). Next we make two new nodes vy and vo. Node vy will be the left
son of v, so we store in v a pointer to vy. If Vi > 1, we set L(vy) := Vi,
N(vy) =| V1 | and key(v;) undefined. If | V} |= 1, we set L(v,) = 0,
N(v1) := 1 and key(v;) := s, where s is the (only) object of V. (Of course, if
V1 = 0, we do not create the node v,.) Similarly for v..

ANSWERING ONE QUERY. Let ¢ be a query object, 1.e., we want to know whether
or not ¢ € V. Then we start at the root, and we follow the appropriate path
in the deferred tree, by comparing q with the values of key in the nodes we
encounter. If one of these key values is equal to ¢ we know that ¢ € V and we
are finished.

If we encounter a node v having an undefined variable key(v), we expand node
v, as described above. Then we proceed our query by comparing ¢ with the value
of key(v). If ¢ = key(v), we know that ¢ € V, and we can stop. Otherwise, if
q < key(v), we expand the left son of v, and we continue in the same way. If
this lett son does not exist, we know that ¢ € V. Similarly, if ¢ > key(v).

The tollowing theorem gives the complexity of the algorithm. For a proof, see
9] or Section 6.2. (The proof in Section 6.2 is a generalization of the proof in
9] to the dynamic case.)

THEOREM 5. A sequence of k member queries in a set of n objects can be
solved wn total time O(n log k) if k < n, and O((n + k) log n) if k > n.

In [9], it is shown that this theorem gives an optimal result: The number of
comparisons needed to perform k£ member queries in a set of size n is Q((n +
k) x log min(n, k)). In fact, this lower bound even holds in the off-line case, i.e.,
In case the queries are known in advance.

6.2 A dynamic solution

Consider the deferred tree of the preceding section. At some point in the se-
quence of queries, the structure consists of a number of nodes. Take such a node
V.

Suppose key(v) is defined. Then the list L(v) is empty, the value of N(v) is
equal to the number of objects that are stored in the subtree with root v, and

the value of key(v) is equal to the median of the objects stored in this subtree.
If key(v) is undefined, node v contains a list L(v) storing a subset of V-—those

165

objects that ‘belong’ in the subtree of v-—and the variable N(v) has the value
| L(v) |, which is at least two.

AN UPDATE ALGORITHM. We only give the insert algorithm. Deletions can
be performed similarly. See [13,14]. Suppose we have to insert an object x.
Then we start searching for x in the deferred tree, using the key values stored
in the encountered nodes. In each node v we encounter, we increase the value
of N(v) by one, since the object x has to be inserted in the subtree of v.

If we end in a leaf, we insert z in the standard way, by creating a new node for
it, and we set the variables L., N and key to their correct values. (A node v in
the deferred tree is called a leaf if N(v) = 1. So a node that is not expanded—
such a node does not have any sons—is not a leaf.) Note that if = 1s already
present in the deferred tree, we will have encountered it. In that case, we have
to decrease the values of the increased N (v)’s by one.

If we do not end in a leaf, we reach a node w with an undefined key value.
Since we have to check whether x is already present in the structure, we have
to walk along the list L(w). (The list L(w) is not sorted!) If x is present, we
decrease the increased N(v)’s. Otherwise, if x is a new object, we add it to the
list, and increase N (w) by one. Note that the walk along L(w) takes O(| L(w) |)
time. Hence a number of such insertions would take a lot of time. 'T'hen, our
general principle—if we do a lot of work, we do it in such a way that 1t saves
work in future operations—is violated. Therefore, after we have checked whether
x is a new object, and—in case it is—after we have added z to the list L(w), we
expand node w. So if we again have to insert an object in the subtree of w, the
time for this insertion will be halved.

Of course, we have to take care that the deferred tree remains balanced. We
will consider this problem below.

We are left with the problem of keeping the deferred tree balanced. There
are various types of balanced binary search trees that can be maintained after
insertions and deletions. The oldest are the AVL-trees, see [1]. The balance
condition for these trees depends on the exact heights of subtrees. Since in our
deferred tree several subtrees are not complete during the sequence of operations,
their exact heights will not be known. So AVL-trees do not seem appropriate
for deterred trees.

There exists, however, a class of balanced binary search trees, for which the
balance criterion depends only on the size of its subtrees:

DEFINITION 2 (NIEVERGELT AND REINGOLD [11]). Let o be a real number,
0 < o < 1/2. A binary tree is called a BB|aJ-tree, if for each internal node v,
the number of leaves in the left subtree of v divided by the number of leaves in
the entire subtree of v, lies in between o and 1 — «.

Note that for our deferred trees, the size of each subtree—whether it has been

completely built already or not—is known at each moment: It 1s stored in the
variable N (v).

THE PARTIAL DISMANTLING TECHNIQUE. This technique enables us to keep
the deferred binary trees balanced. It is a generalization of Lueker’s partial re-

166

building technique. (See [10].) This generalized technique can also be applied
to dynamize other deferred data structures. '

Our data structure is a deferred BB «]-tree. Updates are performed as de-
scribed above. Rebalancing is carried out as follows. After the insertion or
deletion, we walk back to the root of the deferred tree to find the hi ghest node v
that is out of balance. Then we dismantle the subtree with root . That 1S, we
collect all objects that are stored in this subtree, and put them in the list L(v).
Furthermore, we set key(v) := undefined. Note that the value of N(v) is already
equal to | L(v) |. Finally, we discard all nodes in the subtree of v (except for v
itself). '

Such a dismantling operation takes O(N(v)) time. Hence, if v is high in the

too often.

THEOREM 6. A sequence of k < n member queries, insertions and deletions
i a set of initially n objects can be performed in total time O(n log k).

PROOF. Let f(n, k) denote the total time to perform a sequence of & member
queries and updates in a set of initially n objects, with the above algorithimns. It

is shown on page 53 of [12], that there is a constant ¢, such that during a se-
quence of < c¢n updates, the root of the deferred tree always satishies the balance

root of the tree is expanded exactly once. The total time we spend in the root

in such a sequence is therefore bounded by O(n + k) = O(n). If k; operations

are performed in the left subtree, we spend an amount of time there bounded

by f(n/2, k1), since the left subtree initially contains n/2 objects. Similarly, we

spend an amount of f(n/2, k — ki) time in the right subtree. It follows that
f(n,k) < max {f(n/2, k1) + f(n/2, k= ki)} +cin itk < en,

T 0<k, <k

for some constant c;.

Each query or update takes O(m) time if m is the number of objects. There-
fore, a sequence of k operations takes O(k(n + k)) time, since the number of
objects is always < n + k. It follows that

f(n, k) < cak?if k > en,

for some constant cs. _

It can easily be shown by induction that f(n,k) = O(n log & + k%). So a
sequence of k < /11 queries and updates takes O(n log k) time.

After /n operations, we have spent already Q(n log n) time. Therefore, we
build in the v/7-th operation a binary tree for the objects that are present at this
moment. So the v/7-th operation takes O(n log n) time. The future operations
are performed in this complete structure in the standard non-deferred way. This
proves the theorem. U

There are other techniques to dynamize static deferred data structures. These
techniques are generalizations of known methods for ‘ordinary’, i.e., non-deferred,
data structures. See [8,13,14].

167

6.5 Applications to the reconstruction problem

We now apply the technique of deferred data structuring to the reconstruction
problem. Let DS be a dynamic data structure representing a set V' of n objects.
Suppose that the structure D.S can be built in a deferred way. We take for DS
a shadow administration that stores the objects of V in sorted order.

So let SH be a sorted list that stores the objects of the set V. Let INF be
a balanced binary search tree that contains the objects of V in sorted order in
its leaves. Each leaf-—storing say object p—contains a pointer to ob ject p in the
list SH.

This structures SH and INF can be updated in O(log n) time. Clearly,
an update changes only a constant amount of data in the list SH. So in the
notation of Section 5, we have U.(n) = O(log n) and C(n) = O(1). Therefore,
applying the worst-case version of Theorem 4, this shadow administration can
be implemented in O(n) space, such that an update takes O(log n) computing
time, two disk accesses, and O(1) transport time.

Suppose all information in main memory is destroyed. Then we transport the
structures from secondary memory to main memory, we make the sorted list
S H up-to-date as described in Section 5.1. Then we build the binary tree IN F’,
using the list SH. By Theorem 4 and the remark made after it, this takes three
disk accesses, O(n) transport time and O(n) computing time. (Note that SH is
a sorted list. Therefore the tree INF' can be built in linear time.)

At this moment, main memory contains the objects in sorted order. We imme-
diately proceed with answering queries and performing updates in the structure
DS, in a deferred way. Therefore, the first operations take a lot of time, but the
operations will be executed faster and faster the more operations are performed.
The data structure DS will be reconstructed gradually during the operations.
Note that we now start with the objects in sorted order; in Sections 6.1 and 6.2,
we started with an unsorted set of objects.

As an illustration, consider the range counting problem. Here, we are given
a set V' of n points in the d-dimensional real vector space. For a given query
hyperrectangle ([x1 : y1],...,[zq : ya4]), we have to report the number of points
In V' that are in this rectangle. That is, we want the number of points p =
(P1,---,pa) in V, such that 21 < py < y1,..., 24 < pg < ¥g.

It was shown by Bentley [5], that for this problem a (static) data structure
exists of size O(n(log n)?~1), that can be built in O(n(log n)¢~1) time, and in
which range counting queries can be solved in O((log m)?) time. This structure
consists ot a ‘binary tree of binary trees’: There is a binary tree, in which each
node contains a pointer to another binary tree, each node of which contains a.
pointer to another binary tree, etc.

Using a similar technique as in Subsection 6.1, it can be shown that a static
deferred version of this structure exists, such that a sequence of k < n range
counting queries can be solved in O(n(log k)¢~! + k(log n)%) time, if the points
are ordered according to one of their coordinates. (See also 9].)

Using the partial dismantling technique of the preceding section, a dynamic
deferred solution for the range counting problem can be obtained. In fact, then
the update algorithm for the dynamic deferred structure 1s almost the same as
Lueker’s algorithm that dynamizes a range tree. (See [10].) The result is ex-

168

pressed in the following theorem.

THEOREM 7. A sequence of k < n range countin g queres, insertions and dele-
lrons in a set of initially n points in d-dimensional space, inihially ordered accord-
ing to one of their coordinates, can be pe rformed in total time O(n(log k)41 +

k(log n)%).

It we apply the technique from Section 6.2. then we build after V1 operations a
complete data structure in O(n(log n)- ') time and we proceed in the non-
deferred way. Since we have spent already an amount of O (n(log n)“=1) time
after these \/fﬁ operations, this does not increase the to tal time for the entire
sequence of operations. The /n-th operatio n, however, takes a lot of time. We
can get rid of this expensive operation, b y buillding the complete data structure
during the first \/n operations. With each o peration, we count the number of
steps we spend 1n the deferred data structure. Then we spend the same number
of steps in building the complete structure. It follows that after these v opera-
tions, the non-deferred structure is completely built. Then we use this structure
for future operations; the deferred structure is discarded.

So we have a dynamic deferred data structure for the rau ge counting problem.
Now take as a shadow administration the points re presented by the structure,
ordered according to one of their coordinates. Then after a cras h, we reconstruct
the ordered list SH of points and the binary tree INF. as described before, in

three disk accesses, O(n) transport time and O () computing time. Then we
immediately proceed with performing operations in the deferred way. Of course,

with each update, we also maintain the shadow administration. In this new
approach, the first operation takes O(n) time. The data structure will become,

the more operations are performed. In fact, by Theorem 7. we can perform
O(n/log n) operations in O(n(log n)4~!) time.

Using the old approach, in which we completely reconstruct the data struc-
ture betore we proceed with query answering and performing updates, it takes
O(n(log n)?~1) computing time before we can proceed, since the data struc-
ture has size O(n(log n)?~!). Then the first n/log n operations also take
O(n(log n)*~1) time, because each operation takes, amortized, O((log n)%) time.

Hence, in the approach of the current section, the first n/log n operations
take the same amount of time as we would have needed in the old approach. In

this new approach, however, we do not have to wait O(n(log n)?=1) time before
we can start with the operations. (Also in the \/n-th operation, we do not have

to wait O(n(log n)?~1) time until the non-deferred structure is built.)

7 (CONCLUDING REMARKS AND DIRECTIONS FOR FUTURE RESEARCH

In this paper, we have given an overview of one multiple representation problem:
the reconstruction problem. In the author’s Ph.D. Thesis, more techniques are
given for designing shadow administrations. For example, there are general
techniques to design shadow administrations for the data structures solving large
classes of searching problems, such as decomposable searching problems and
order decomposable set problems. (See also [17].) In fact, many techniques that

169

were designed for main memory data structures, can be generalized to shadow
administrations.

In the present paper, we have considered only one multiple representation
problem. Another case where data is represented more than once is investigated
in [14,16]: When we have a network of processors, each having its own memory,
there are situations in which each processor holds its own copy of a particular
data structure. Updates have to be made in all copies. When the time for
an update i1s high, this is an unfavorable situation. In this situation, we are
better off dedicating one processor the task of maintaining the data structure
and broadcasting the actual changes to the other processors. Again we have
a situation in which there is a multiple representation of the data. One data
structure should allow for updates, and a set of other structures answer queries.
Of course, the query data structures must be structured in such a way that they
can perform updates, but they get the update in a kind of ‘preprocessed’ form
that 1s easier to handle.

T'his multiple representation problem is related to the reconstruction problem.
In both cases, there is one structure on which updates are performed. After
this update, the other structures that are stored on other media are updated.
This 1s done by transporting data to these other structures. The actual update
procedure for the other structures is somewhat different for both problems. A
shadow administration is stored in secondary memory, where it is only possible to
replace complete blocks by other ones. The client structures, however, are stored
in processors on which computing is possible. This makes it possible to replace
much smaller pieces of information than just blocks of some predetermined size.

Most of the techniques for designing shadow administrations can be general-

1zed to this second multiple representation problem. For details, the reader is
referred to [14,16].

We finish this paper with some directions for future research. A first direc-
tion 1s to search for other general solutions. By restricting ourselves to special
classes of data structures, techniques might exist to design efficient shadow ad-
ministrations. Also, it would be interesting to have more examples of shadow
administrations for specific data structures. For example, in order to apply the
general technique of Section 5, shadow administrations are needed for which
C'(n)—the amount of data that is changed in an update—is small.

Another direction is to perform sets of updates, instead of performing each
update separately. Again one can study special classes of data structures, or
design general techniques.

A very important problem, that we have not considered at all, is the following
optimization problem: In the reconstruction problem, we often reconstruct the
data structure exactly as it was before the information was destroyed. The
optimization problem is to reconstruct the structure in such a way that it is ‘more
balanced’ than the destroyed structure was. For example, in case of a binary
tree, we can maintain in secondary memory the points represented by the tree.
The data structure is reconstructed by building it from these points. Of course,
this tree is rebuilt as a perfectly balanced tree. So after reconstruction, the
data structure is—in general-—more balanced than it was before the information

170

was destroyed. An interesting research direction is to stud v this optimization
problem. Again, general techniques mi ght exist, and special classes of data

structures might admit efficient solutions. An example of a solution to this
problem for trie hashing functions is given in [20].

REFERENCES

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

13

G.M. ADEL'SON-VEL'sKII, E.M. LANDIS (1962). An algorithm for the or-
ganization ol information. Soviet Math. Dokl. 3. 1259-1262.

A.V. AHO, J.E. HopCrROFT, J.D. ULLMAN (1974). The Design and Anal-
ysis of Computer Algorithms, Addison-Wesley, Reading, MA.

R. BAYER, E.M. McCREIGHT (1972). Organisation and maintenance of
large ordered indexes. Acta Informatica 1, 173-189.

. J.L. BENTLEY (1979). Decomposable searching problems. Inform. Proc. Lett.

8. 244-251.

. J.L. BENTLEY (1980). Multidimensional divide and conquer. Comm. of the

ACM 25, 214-229.

. M. BLuMm, R.W. FLoyDp, V. PrarT, R.L. RivesT, R.E. TARJAN (1973).

Time bounds for selection. J. Comput. System Sci. 7, 448-461.

. N. BLUM (1986). On the single-operation worst-case time complexity of the

disjoint set union problem. STAM J. Comput. 15, 1021-1024.

. Y. T. CHING, K. MEHLHORN, M. SMID. Dynamic Deferred Data Structur-

ing. To appear in: Inform. Proc. Lett.

. R.M. KARP, R. MoTwANI, P. RAGHAVAN (1988). Deferred data structur-

ing. SIAM J. Comput. 17, 883-902.

G.S. LUEKER (1978). A data structure for orthogonal range queries. Proc.
19-th Annual IEEE Symp. on Foundations of Computer Science, 28-34.

J. NIEVERGELT, E.M. REINGOLD (1973). Binary search trees of bounded
balance. SIAM J. Comput. 2, 33-43.

M.H. OVERMARS (1983). The Design of Dynamic Data Structures, Lecture
Notes in Computer Science, Vol. 156, Springer-Verlag, Berlin.

M.H.M. SMID (1989). Dynamic Deferred Data Structures, ITLI Prepubli-
cation Series CT-89-01, Department of Mathematics and Computer Science,
University of Amsterdam.

M.H.M. SMID (1989). Dynamic Data Structures on Multiple Storage Medza,
Ph.D. Thesis, University of Amsterdam.

M.H.M. SMID (1990). A data structure for the union-find problem having
good single-operation complexity. Algorithms Review (Newsletter of the ES-
PRIT II ALCOM Project) 1, 1-11.

M.H.M. SmMip, M.H. OVERMARS, L. TORENVLIET, P. VAN EMDE BOAS
(1989). Maintaining multiple representations of dynamic data structures. In-
formation and Computation 83, 206-233.

M.H.M. SMID, L. TOrReNVLIET, P. vAN EMDE BoAs M.H. OVERMARS
(1989). Two models for the reconstruction problem for dynamic data struc-
tures. J. Inform. Process. Cybernet. EIK 25, 131-1595.

J.A. LA POUTRE (1989). Lower Bounds for the Union-Find Problem and
the Split-Find Problem on Pointer Machines, Report RUU-CS5-89-21, De-
partment of Computer Science, University of Utrecht.

171

19. R.E. TARJAN (1975). Efficiency of a good but not linear set union algorithm.
J. of the ACM 22, 215-225.

20. L. TORENVLIET, P. vAN EMDE BoAs (1983). The reconstruction and op-
timization of trie hashing functions. Proc. 9-th International Conf. on Very
Large Databases, 142-156.

172

