EG, Integration of the Object-Oriented and the Deductive
Database Paradigms

Arno Siebes

CWi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this paper EG, a fragment of a database programming language, is pre-
sented. EG is aimed at the integration of object-oriented and deductive data-
models. Different from other proposals in this area, EG consists of a variant
of the simply typed A-calculus with subtyping, over which a Datalog-like lan-
guage has been defined. The result is a language that can be typed statically,
for which both model-theoretic and fixed-point semantics are defined. It is
shown that these two kinds of semantics coincide. Moreover, it Is shown that

an EG-program P has a minimal model, which coincides with its least fixed
point.

1 INTRODUCTION

The object-oriented and the deductive datamodel paradigms are largely com-
plementary approaches towards the development of database programming lan-
guages adequate for new DBMS application areas. One of the main themes in the
object-oriented paradigm is the structuring of the data through complex objects
and subtyping. Whereas the focus in the deductive paradigm is on knowledge,
both in the database and in queries.

There are numerous applications that could profit from the integration of both
paradigms. For example, a CAD-tool based on the integrated paradigm allows
the engineer to reason about her design [27]|. It is therefore not surprising that
the integration is an active research area, [19, 9, 22, 12, 2, 18, 17, 4].

In this paper EG, a fragment of a database programming language, is pre-
sented. It is aimed at the integration of the two paradigms. Different from other
proposals in this area, EG consists of a variant of the simply typed A-calculus
with subtyping, over which a Datalog-like language has been defined. That is,
EG is an integrated formalism in the style advocated by Beeri [11]. The result
is a (sub) language that can be typed statically, for which both model-theoretic
and fixed-point semantics are defined. It is shown that these two kinds of se-
mantics coincide. Moreover, it is shown that an EG-program P has a minimal
model, which coincides with its least fixed point.

EG is only a fragment of a language. However, the results of this paper can
be applied to extend existing object-oriented database programming languages

131

that adhere to a logical type model, such as [21, 5|. In such a case, the syntax
of EG should be adapted to the syntax of the base language. Hence the name,
the syntax is only an example.

Comparing EG with the other approaches cited above, we have:

e XG5 is based on the simply typed A-calculus with subtyping, that means
e.g.:

1. EG can be typed statically, unlike [19, 9, 22, 18, 2].
2. Types are not objects; unlike [17, 12].

3. Subtyping is an integral part of the typing schema.

o EG has (coinciding) model-theoretic and fixed-point semantics; unlike [4,
12, 9].

e The fragment presented in this paper does not support object invention,
negation and grouping.

T'he last 1item, which is clearly a drawback, is briefly discussed in the last section.

A problem with the integration of the two paradigms is the reconsiliation of
their semantics. The logical type theories mostly used in object-oriented data
models originate from typed A-calculus. Whereas deductive data models are
based on (first order) logic. In this paper, category theory is chosen to define the
semantics of G, because of its close connection with both typed A-calculi and
deduction, c.f. {20, 16]. In particular, our own category-theoretical semantics for
subtyping (25|, are combined with the category-theoretical semantics for logic
programming languages given by Asperti and Martini [6].

The organization of this paper is as follows. In Section 2 the syntax of EG
1s defined. Moreover, it is proved that EG can be typed statically. Due to the
Integration of two paradigms, the semantics of EG come in two parts. The first
part 1s concerned with the functional aspect of EG, i.e., the interpretation of
the terms under (sub)typing; this is the topic of Section 3. The semantics of
the deductive database part are defined over this interpretation. In Section 4,
model-theoretic semantics are defined, while in Section 5 fixed-point semantics
are defined. Moreover, it is shown in Section 5 that these semantics coincide and
that each EG program P has a minimal model. In Section 6, the conclusions
are formulated, and the addition of object invention, negation and grouping are
briefly discussed.

In this article, only proof-sketches are included.

2 THE SYNTAX

In this section, the syntax of EG is introduced. Because EG is intended to inte-
grate the object-oriented paradigm with the deductive paradigm, it inherits its
syntax from both areas. More precisely, the terms of EG in deductive vernacular

are 1ts ezrpressions in object-oriented terminology!. Hence, the definition of the
syntax of EG will reflect both kinds of syntax.

! To indicate this dual nature, we will call them term-expressions.

132

First the object-oriented part is defined. That is, types, the subtyping rela-
tronship, constants and terms are defined, adapting Cardelli’s [14] syntax. The
important variations are the addition of the powertype construction, denoted by
P, and the elimination of function types. Both changes should be obvious from
a Datalog point of view. The presentation of this part follows more or less the
definitions in [8].

The expressions of the object-oriented part are used as the terms for the
deductive part. The definition of this part follows more or less the definition of
standard Datalog [28, 15].

T'ypes are built inductively from a set of basic types B. As usual in type theory,
we make no further assumptions on the nature of the elements of B. These basic
types can be compared to the abstract types of IFO [3]. They denote the kind of
objects that have no underlying structure, at least relative to the point of view
of the database designer.

Besides the set B, we postulate a (totally) ordered set £ of labels. Types are
then defined as follows.

DEFINITION 1. The set of types Type is defined inductively as follows:
1. if 5 € B, then 3 € Type;
2. if 7 € Type, then P(r) € Type;
3. it 7my,---,7, € Type and Iy, ---,1, € L with [; < [; if 1 < j, then

(a) (Iy : 711, -, : ™) € Type (a record with n fields);
(b) [ly :71,---,1ln : o] € Type (a variant record with n-fields).

The order on the fields in a (variant) record is only enforced to have a normal
form. It saves the identification of e.g., records with the same fields but in a
different order.

To illustrate, let both int and string be basic types, then the following exam-
ples denote types:

|

1. person (name : string, age : int), a record type with labels name and
age, refering to the types string and int respectively;

2. strorint = [string : string, int : int|, a vartant record with labels string
and int, refering to the types string and int respectively.

3. group = P((name : string, age : int)), a powertype, denoting groups of
DET SONS.

Strictly speaking, the name of a type does not belong to the formalism. It 1s
introduced for convenience. For example, P(person) denotes the same type as
P((name : string, age : int)).

The collection of types of EG is a partially ordered set. The subtyping relation,
which is the straight-forward extension of [14], is defined as follows.

DEFINITION 2. The subtyping relation, denoted by <, on T'ype X Type 1s
defined inductively as follows:

133

1. peB=3<s3;
2. o,T € Type No <71 = 7-’(0) < P(T);

3. (o1 Uy 71y 0, i), 00 = (My s vy,o-,my : vg) € Type A Vi €
{1---k}(Fje{l1-- n}(m,; = LiANT; S 14))) = 01 < 09;

i

1. (_.(71 — [[1 S ISR S 7"71]90"2 — [7711 LS TR R L7 7//“-3‘] € Type \ Vi €
{1---np(Fje{l---k}({; = m; A1 < v;))) = o1 < 0,.

With a simple induction proof, the following holds.
LEMMA 1. The subtyping relation is a partial order.

For each of the basic types 8 € B, a set Cg of constant symbols is postulated. The
constant symbols (constants) of a type 7 are then built inductively, mimicking
the construction of 7.

DEFINITION 3. Let Cps denote the sets of constants of the 3 € B. The set of
constants of a type 7 € B, denoted by C,, is defined inductively as follows:

LVie{l---n}(c; € Cr) = {c1,-,en} € Cppy;
2. V1 - {1* 'TL}(C?: - CT,,,;) => (ll — C1, - '7l’n — Cn) S C(h:‘rh*“aln:’rn);
. el njl=UnceE,)=>[l=c €Clyriyir)

Note that item 3 indicates that the C.. are not necessarily disjoint. However, by
straightforward induction the following result holds.

LEMMA 2. Ifc € C,, there is exactly one proof of this fact.
Continuing our example from above, we have:
1. (name = Sara, age = 36) Chrerson;
2. [int = 37] € Cytrorint:
3. {(name = Sara, age = 36), (name = Pete, age = 76)} € C'p(person)-

T'he other ingredient for the definition of term-expressions are the variables.

Rather than introducing type-assignment in EG, a set V- of variables for each
type 7 1s postulated.

Following [8], the term-expressions are defined first and only then a well-typing

relation is defined. The advantage is that non-well-typed expressions do not have
to be given semantics.

DEFINITION 4. The set TE of term-expressions is defined inductively by:

l.Te€eTypeN(te C,VteV,)=teTE:
2. Vi€ {1--n}(t; € TE) = {t1, -+ .1,,} € TE:
3. (tl,tz cTENO € {U,ﬂ,\}) = 110ty € TE:

134

4. (Vi S {1 h -72,}(?5?; & TE) AV € {1 ' ~n}("l,: = ‘C) A
Vi, jeE{l--nj@<j=>L<1))=> Uy =t,,---.1, = t,) € TE:

0. teTENle L=>tleTE;
6. teTENleL=[l=t €TE.

T'he well-typing relation is now defined b y inductive comparison of the structure
of the term and the structure of the type.

DEFINITION 5. The relation : on TE X T'ype (t : 7 is pronounced as t is a term
of type 7) is defined inductively as follows:

L. TreType N(t e C,Vte V) =1t:7:

2. (e {l1---n}t; : T)AVi & {L---n}(t; : 0 = (V] € (1---n}(t; :)
= {t1, -5 tn) P(7);

(t1,t2 : P(T) NG € {U,N\}) = 16ty : P(7);
. V1 ~ {1 S n}(tz : T’i) = (Zl — tla T [n — fn) : (ll c Tyt Zn.. : Tn.);

9
4
o. (t:(lieim, -y rm)ATie{l--n}l,=lAT,=7)) = t.l: T
6. Fe{l---npl=Lntim)=>[T=t]:[l1:7, 1 :7);

(

troNo< T=1t:T.

Item 2 requires that all terms in a set-type are constructed in the same way. This
may seem a severe restriction, however, if we loosen the restriction, anomalies
occur; see also [7]. Continuing our running example, we have the following
well-typed terms?:

1. (name = Sara, age = X;,;) : person;
2. |int = 37] : strorint;
3. {(72/(1,‘7?”?,(2 — Xstfr'ing: Age = 36)7 Y:I)fafr.son} : P(péﬁ"f‘SO?”l«)*

Definition 5 indicates that a term can have more than one type. Moreover, what
1s worse, a fact ¢ : ¢ may have more than one derivation. This endangers an
unambiguous interpretation of a term. However, it turns out that a term ¢ has
a unique minimal type, denoted by t :: 0. Moreover, there is at most one proot
of ¢ :: 0. Rather than proving this directly, the ‘minimal’ typing is defined first
and then it is shown that this definition has these properties.

DEFINITION 6. The relation :: on TE x Type (t :: T is pronounced as t is a
term of minimal type 7) is defined inductively as follows:

1. £:: 7, whenevert € C, ort € V, and 7 € Type;
2. {t1,-,tn} = P(r),ifVie{1---n}:t; 2T,

2Variables are sometimes annotated with their type for clarity.

135

. t10to :: P(1), whenever ti,to :: P(7);
. (ll — tl,"*Jn — tn) ‘.- (ll - T1, " -,ln . Tn), 1ft \V/”Z ~ {171} . ti .. T4,

ctleTifte (i, i) and H€{1l---n}bl; =IAT =T

=t 7], i T

Using induction, it is easy to prove that :: really denotes the minimal type of an
exXpression.

LEMMA 3. Ift: o, there is exactly one 7 < o, such thatt :: 7. Moreover, there
18 at most one proof of t :: T.

This result concludes the introduction of the object-oriented part, save one last
remark. Until now, object identities have not been mentioned and as changes to
the database are not considered they do not play a very large role. It is asumed
that Oid € B, and that each type in the database has Oid as an attribute.

As mentioned before, the term-expressions fullfill the role of terms in e.g.,
Datalog. Usually, a set P of predicate symbols is postulated together with a
function arity : P — N 1. If arity(p) = n, p denotes an n-ary predicate symbol.

In EG, the definition of predicates is subtly different, rather than postulating
a function arity, we associate a type with each predicate. The role of the type
1s similar to the role of the arity-function, it defines the atoms that can be
built with the predicate symbol. That is, the type does not denote the type of
the predicate symbol (which is in fact impossible, as predicate symbols are not

included in the set of expressions), but the type of the argument of the predicate
symbol.

This leads to the following definition.

DEFINITION 7. Let Pred be the collection of predicate symbols. A predicate
declaration consists of a pair (p,7), such that p € Pred and 7 € Type.

Examples of predicate declarations are:
1. (rich,person);
2. (small, strorint);
3. (soccer — team, P(person)).
The definition of atoms and literals is now straightforward.

DEFINITION 8. The sets of atoms and literals are defined as follows

o The set Atom of atoms is defined by:

1. (p,t) € Atom, if (p,7) is a predicate declaration and ¢ : T.
2.ty =y to, t1 Fy to iff £y, 1y : T

3. t1 €7 tg, t1 €, ta if t; : 7 and to : P(7);
4. 11 Cpr) t2, t1 Cp(ry t2 if ty,t2 ¢ P(1).

136

An atom is called ground, if it contains no variables.

Hil

o A literal is an atom or a negated atom. A literal is called ground if the
underlying atom is ground.

The literals in item 2, 3 and 4 above are defined over the built-in predicates =,
¢ and C, which have the obvious semantics. Their negations are also added as
we can safely allow e.g., t; #, t2 in the conjunct of a clause. Examples of atoms
are.

1. (rich, (name = Sara,age = X));
2. (small, [string = John]);
3. (soccer — team, {(name = Sara,age = 17), (name = John, age = 23)}).
Examples of literals are:

1. =(rich, (name = Sara,age = X));

2. (small, |string = X]);

3. —(soccer — team, {(name = X, age = 17), (name = John,age =Y)}).

In the remainder of this paper, we will write rich(name = Sara,age = X),
rather than (rich, (name = Sara,age = X)).

The remainder of the definition of EG is a simple copy of the definition of
Datalog. That is, a clause is a finite list of literals and a Horn clause is a clause

containing at most one positive literal. As usual, we distinguish three kinds of
Horn clauses:

e A fact is a positive Horn clause, i.e., a list containing one atom. A fact is
denoted in EG, as an atom followed by a period, e.g.

rich(name = Sara,age = 27).

e A rule is a Horn clause with one positive literal and at least one negative
literal. Rules are denoted as follows:

Tich(Xperson) — T.ich(ype'rson),
parent(par = YPET3" child = XPeTOM),

The lhs-atom of the rule (the head) is the positive literal of the clause, the
rhs is the conjunction of the atoms that underly the negative literals.

e A goal clause is a negative clause, 1.e., a list containing negative literals.
In EG, a goal clause is denoted as:

— rich(XPeTsom),

137

To define EG programs, we distinguish (as usual) EDB and IDB predicates.
In other words, we assume that the collection of predicates consists of two dis-
joint subsets, viz., EDB and IDB. The EDB predicates denote the extensional
database, while the IDB predicates denote the intensional database. So, the
special predicates, =, #, €, €, C, and ¢, all belong to the EDB-predicates.

EG-programs are then defined as follows.

DEFINITION 9. Let P be a finite set of Horn clauses, P is an EG program 1if
for each clause C either of the following two holds:

1. C is a fact, whose predicate belongs to EDB excluding the special predi-
cates;

2. The positive literal predicate of C belongs to IDB, and all variables occur-
1ng in the positive literal also occur in at least one negative literal.

The exclusion of the special predicates in the first item of the definition is made
to ensure that a program does not try to redefine these built-in predicates by
adding new facts.

This concludes the definition of the syntax of EG. A straightforward adaption
of Cardelli’s [14] typechecking algorithm results in a typechecking algorithm for
EG. Hence, we have the first important result of this paper.

THEOREM 1. Type checking EG programs can be done at compile-time.

3 THE INTERPRETATION OF TERM-EXPRESSIONS

For a standard logical programming language, such as Datalog, the semantics of
a program are given with respect to the Herbrand Universe. All constants are
Interpreted as themselves, and the universe consists of all ground facts. For EG
this 1s not a viable option, as, different from e.g. Datalog, the constants of EG
are unrelated.

For example, consider the types person = (name : string,age : int) and
employee = (name : string,age : int, sal : real) and the constants (name =
pete,age = 35) and (name = pete,age = 35, sal = 3452). Let the predicate rich
be declared as (rich,person). Because of the subtyping relationship, the atoms
rich(name = pete,age = 35) and rich(name = pete,age = 35,sal = 3452)
should be considered the same in a very precise sense of the word.

Such identifications are not only necessary for the constants, but for term-
expressions 1n general. In this section, we define how the term-expressions are
to be interpreted in such a way that the correct identifications are made.

As explained in the introduction, this interpretation is through category the-
ory. Because of space constraints, this paper can not be self-contained with
regard to this theory. The interested reader is refered to [10, 24]. Some non-
standard constructions are defined in the appendix.

It is asumed that the basic type are objects in some topos (in general this will
be Set). The semantic domain of EG, 7, is then formed by the full sup-topos
freely generated by B.

The interpretation of the other types is straightforward, records are mapped
to cartesian products, variants to sums and powertypes to powerobjects.

138

DEFINITION 10. The interpretation I : Type — T is defined inductively by:

1. I(3) = 3 for ¢ € B;

2. I((ll cT1,° " ,ln :Tn)) m— [(Tl) Xoeeo X I(Tn);
3. I([ll ¢ Tl ':ln : Tn]) — I(Tl) L I(JTn);
4. I(P(r)) = P(I(7)).

The interpretation of a constant ¢ € (' is an arrow ¢ : 1 — I(C'). It is postulated
that the interpretation of the elements of the basic types is known.

DEFINITION 11. The interpretation I/ of constants in 7 is defined inductively
by:

1. forc=0b¢€ 3 € B,

I(c)=0:1— (;
2. for c = {c1, -, cn} € Cp(ry,

I(c) ={}umynmo <I(cr),--,I(cn) > 1 = P(I(7));
. forc=(li =c1,-- -, ln=0cn) €CUr, . 1,7,)

I(c) =< I(c1),--+,1(cn) >:1 —I(711) % -+ xI(1);
4. forc=[l; =d| € Cy .y tyimn]

I(c) =tj0l(d):1—=I(m)+ -+ I(Tn).

We will sometimes omit the I, if the context unambiguously implies that we use
the interpretation rather than EG itself. More specifically, we will sometimes
write ¢, rather than I(¢) and 71 X --- X 7, rather than I(7y) x --- x I(7,).

The interpretation of term-expressions in general is less straightforward than
the interpretation of the constants. The reason is, of course, that there is at
most one proof of ¢ € C,, but there may be more proofs of ¢ : 7. To simplify
the definition of the interpretation, we first define a pre-interpretation. Then we
define conversion functions, which form the semantic interpretation of subtyping.
Then we combine these two interpretations in the definition of the interpretation
of a term-expression.

Rather than interpreting variables, and thus terms, as arrows 1 — I(7), vari-
ables, and thus terms, are interpreted relative to an environment. This interpre-
tation turns out to be most usefull in the next sections; see also [6].

DEFINITION 12. An environment 1 is a set of (typed) variables. Given an
environment n and a type 7, TE(n, 7) denotes the set of term-expressions t : 7,
such that ¢t € TE(n,) iff for each variable X occuring in ¢, X € 7.

139

When EG programs are given semantics, the environment will consist of the vari-
ables in the clause in which the term-expression occurs. To illustrate TE(n, 1),
1f 1) = {XTI,YTQ} and 7 = (Zl . T1, ZQ . TQ,[;} ’ ’Tg) and c € 0‘7'3 then

(ll =Xl =Y 13 = C) - TE(?],T)

T'he pre-interpretation of a term-expression is defined relative to an environment,
and 1ts minimal type. Hence, the difference between pre-interpretations and

Interpretations is that the former are only defined for the minimal type of an
expression.

DEFINITION 13. Let n = {X;™,---,X,,”}, 7 € Type, and t € TE(n, 1),
moreover, assume that ¢ :: 7. The pre-interpretation PI(n,7)(t) : 1y X --- X 7,, —
T of t is defined recursively by:

l. fort =ce C,,
PI(n,7)(t) = colryx...xry
2. for t = X;" € n, (note this implies that 7; = 7)
PI(n,7)(t) = m;;
3. for t = {t1,--+,tm}, and 7 = P(0),
PI,7)(t) = {hmo © (PI(1,0)(t1) X - -+ X PI(,0)(tm))
4. for t = t,0t,,
PI(n,7)(t) =60 (PI(n,7)(t1) x PI(n,7)(t2));
o. fort=(l1 =t1,- - lm=tm) s (l1: 01, lm : o) (= T),
PI(n,7)(t) = PI(n,01)(t1) X - -+ X PI(n,00)(tm);
6. for t =t'.l;, where t' :: 0= (I3 : 01, -+, Iy : o),
PI(n,T)(t) = mio PI(n,0)(t');
7. for t = [l; =t'], where t' :: o,
PI(n,7)(t) = t; 0 PI(n,o)(t).

In this definition, the construction of the pre-interpretation of a term-expression

t of minimal type 7 follows the proof that ¢ :: 7. The definition is sound because
there is at most one proof that ¢ :: 7.

T'he definition of these conversion functions follows directly from the categor-
1cal interpretation of types.

140

DEFINITION 14. For o,7 € Type, with ¢ < 7, the conversion function CUr< 7 °
I[(0) — I(7) is defined inductively as follows:

2. it o =P(0’) and 7 = P(7'), with ¢’ < 7/, then
CVo<7 = (CVgr<7) ;5

3. ifo=(U1:01,---, 0y ion), T=(k1:71, -,k : Tyn), and
f:{l---m} — {1---n} such that k; = {;(;), then

ClvgéT — (Cvaf(l)STl Koo X Cvdf(”rrt)gT*r*rL)o < ?Tf(l-)’ S :Wf(?”n) >;

4. 1f 0 = [ll - 01, ln : U*r‘z]a T = [kl - T1y """, k*m : T’I’Th]) and
f:{l---n} — {1---m} such that |; = k;(;), then

CUs<r == [Lf(l)’ B Lf(n)] © (C"Ual <rpay T CUs <74,).

There may be more than one way to prove t : 7 from ¢ :: ¢. This could am-
biguate the combination of conversion functions and pre-interpretations. How-
ever, the following fact holds, by induction using the standard categorical prop-
erties:

LEMMA 4. Foro <7 < U: CUs<r O CUr<y = CVUs<y-
Now the interpretation of term-expressions can be defined as follows:

DEFINITION 15. Letn ={X;",---,X,’*} and 7 € Type, the interpretation
I(n,7)(t) : 71 X - - X T, — 7T of a term-expression t € TE(n,T), with t :: ¢ is
defined by:

I(7,7)(t) = cvazr o PI(n,7)(t).

T'he interpretation of a term-expression is well-defined, for there is exactly one
proof that ¢ :: 7 by Lemma 3, and Lemma 4 ensures that there is at most one
conversion function between two types.

4 MODEL-THEORETIC SEMANTICS

In the previous section, we have given an interpretation to term expressions
relative to an environment. In this section, we use this interpretation to give
model-theoretic semantics to EG-programs.

In the, usual, semantics of logic-programming languages, predicate symbols
are 1nterpreted as subsets of the Herbrand Base. For EG, a minor variation of
this scheme 1s needed. The Herbrand base is replaced by the interpretation of a
type, and subobjects ot this interpretation are used rather than subsets.

DEFINITION 16. An interpretation H of an EG-program P is a map that
associates a subobject H(p,7) of I(7) with each predicate declaration (p, 7).
Moreover, H should map built-in predicates to their standard interpretation °.

3See the appendix for the construction of the standard interpretations.

141

Atoms are interpreted by the composition of the interpretation of its predicate
and the interpretation of its term. So, the interpretation of an atom depends on
an environment.

DEFINITION 17. Let H be an interpretation of an EG-program P, (p, o) be
a type declaration, n = {X;™,---, X,,’*} an environment, and t € TE(n,o) a
term-expression, the interpretation of p(¢) with respect to H and 7, denoted by
I(H,n)(p(t)), is the arrow

I(H,n)(p(t)) : I — I(11) X <+ x I(7n)
which is defined as the pullback of H(p, o) along I(n,o)(t).

Next, conjunctions of atoms are interpreted as the composition of the interpre-
tations of all of its constituting atoms.

DEFINITION 18. Let H be an interpretation of an EG-program P, let

{(Pi, i) }ieq1...ny be a set of type declarations, n = {X|™,---, X » ™} an environ-
ment, and {t; € TE(n,0;)};c(1..n} a set of term-expressions, the interpretation
of p1(t1),---,pn(tn) with respect to H and 7, denoted by

I(H, 77)(]’)1({:1), e ,pn(tn)) 1S the arrow

I(H} '"77)(1’)1(t‘1): S :pn(tn)) P — I(Tl) Koo X I(T‘Tlv)
which is defined as the limit of {I(H,n)(pi(t;))}icq1...ny.

In definitions 17 and 18, the environments are left unspecified. Both atoms and
conjuncts are interpreted as arrows on I(7y) X --- x I(1,), which is more or less
the type of the environment. This observation suggests a natural association
between clauses and environments, viz., associate with a clause the collection of

all the variables it contains. Or, equivalently for EG clauses, the collection of
all variables in the body of a clause.

T'his natural environment will be the standard choice in the remainder of this

paper. Moreover, I(H)(---) is used as a shorthand for I(H,n)(---), where n
denotes the natural environment of the clause under discussion.

Validity of clauses is defined in the standard categorical way.

DEFINITION 19. Let H be an interpretation of an EG-program, a clause ¢ is
valid in I, denoted by H k= ¢, if:

1. let ¢ =« (p1,01), -+, (pn,0on) then:
H =¢ < (I(H,n)(p1,01), -+, (Pnyon) = id))
2. if ¢ = (q,0) < (p1,01)," -, (Pn,on) then:
H = ¢ < (3monicm (I(H,n) om = I(H,n)(p1,01),- - -, (Pr,0n))).

The definition of a model is now simply the standard definition.

DEFINITION 20. Let P be an EG-program, and H an Interpretation of P, H
1s a model of P, denoted by H = P, is defined as follows:

142

HE=P & (Vo e P(H & ¢)).

In the next section, we will prove that each program P has a minimal model, and,
moreover, we show that this minimal model can be computed by a fixed-point
construction in the usual way.

Db LEAST FIXED-POINT SEMANTICS

In the previous section we defined the model theoretic semantics of an EG Pro-
gram F. In this section, we define the fized-point semantics of >. Moreover, we
show that each model of P is also a fixed point of P and vice versa. Finally, we
show that P has a minimal fixed point, which is also a minimal model.

The definition of the fixed-point semantics closely follows standard practice
in this area. That is, with each program P a (monotonic) function fp on a
complete lattice H Ap is associated. HAp is defined as follows.

DEFINITION 21. Let P be an EG-program, with predicate definitions: (p;, 1),
-« (Pn,Tn). HAp, is defined by:

HAp = Sub(I(my)) X --- x Sub({(1,)).
HAp is a Heyting Algebra [16], so it is certainly a complete lattice.
LEMMA 5. HAp is a complete lattice.

The function fp that is associated with a program P is defined as follows.

DEFINITION 22. Let P be an EG-program, with predicate definitions (p;,71), - - -,

(pn,Tn) and X € HAp. The function fp : HAp — HAp is defined pointwise
by:

1. X induces uniquely an interpretation H (X) of P by:

B ’)T.L(X) it g = p;
H(X)(q) = { the standard interpretation 1if ¢ is a built-in predicate

2. If p; is an IDB-predicate, with facts p;(cy1), ---pi(cn), X; is the subobject
of I(1;) constructed by the epic/monic factorization of:

H(X)(ps) UI(H(X))(pi(c1)) U---UI(H(X))(pi(en)).
3. If p; is an IDB-predicate, defined by the rules:

pj(tl) A QI,l(Sl,l),‘ 5y d1,n, (813n1)'

Pj (tm) — {4m,1 (Sm,l): Tt Qm,nm(smmm)

Define a set {;}ic(1..n} Of subobjects as follows: ay is the subobject of
T; contructed by the epic/monic factorization of:

I(H(X))(p;(t1)) U I(H(X))(QI,l(Sl,l)v Q1 my (81,m,))-

143

Define Xf,; =y U---Uaoy,-
4. fp(X) = (X1, -, X,).
By construction, fp(X) = X U C, hence we have the following lemma.
LEMMA 6. If P is an EG-program, fp is monotonic on HAp.

Since HAp is a complete lattice, we have by Knaster-Tarski [26] the following
lemma.

LEMMA 7. fp has a least-fized point on HAp.

It 18 easy to see that each model H of P induces (uniquely) a fixed-point of fp.
H induces an element Xy of HAp by ‘forgetting’ the built-in predicates. The
fact that H is a model implies for the IDB-predicates that

I(H)(p:) 2 I(H)(pi(cj))

for each fact p;(c;). Moreover, it implies that for each EDB-predicate:

I(H)(p;(t1)) 2 I(H)(q1,1(51,1), " - , Q1,1 (S1,n))

for each rule p;(¢1) «— qi11(s1.1),""*,q1.n,(S1.n,)- Hence, Xy is a fixed-point.
Similarly, each fixed-point induces (uniquely) a model; simply add the standard
interpretation of the built-in predicates. This leads to the following result.

LEMMA 8. Let H be a model of an EG-program P. H induces (uniquely) a

fized point of fp. Conversely, let X be a fixred-point of fp. X induces (uniquely)
a model of P.

Combining the Lemmas 7 and 8, we have one of our main results on EG, viz.
THEOREM 2. An EG-program P has a minimal model Mp.

For the (terminating) computation of the minimal model Mp of a program P, it
1s assumed that there is a natural isomorphism between the functors ID : T — T
and Hom(1,—) : T — Set. This assumption yields that for each object O € 7T,
O = Hom(1,0), i.e., objects are completely determined by their elements 4.

Under this assumption, the function fp on HAp = Sub(I(71))x- - -x Sub(I(T,))
induces a function gp on Hom(1,I(m)) x --- x Hom(1,I(7,)). Application of
gp 1s the addition of the new elements computed by fp. Similar to fp, gp 18
monotone on a complete lattice and thus gp has fixed-points. Moreover, the
fixed-points of gp correspond naturely with the fixed-points of fp.

Following 1], it is straightforward to prove that the set of elements that can
be computed inductively by ¢ starting with the empty set is finite. Hence, the

minimal fixed-point of gp is finite. Given the natural correspondence with the
hxed-points of f this leads to the final result of this paper.

THEOREM 3. Under the assumption made above, | |52, fp' (L) computes the
manimal firpoint of fp. Mp is the model induced by this fized-point.

4The assumption holds e.g. if T is a subcategory of Set.

144

6 CONCLUSIONS AND FUTURE RESEARCH

EG is a (fragment) of a database programming language that consists of a vari-
ant of the simply typed A-calculus with subtyping, over which a Datalog-like
language has been defined. The result is a language that can be typed statically,
tor which both model-theoretic and fixed-point semantics of EG are defined. It is
shown that these two kinds of semantics coincide. Moreover, it is shown that an

o
.l

' !
..........

of methods. Given the difficulties of the integration of the functional and the
logical programming paradigm, it seems troublesome to allow expressions of
a ftunctional type in EG. However, it is well-known that a DBPL with object
creation is strictly stronger than the same language without object creation. This
means that supporting the application of methods increases the expressiveness
of the language.

From a deductive databases point of view, the most obvious ommision in EG
1s the lack of negation and grouping. Similar to the short-coming mentioned
above, it is well known that the addition of these two constructs increases the
expressiveness of the language. In the remainder of this section, we briefly
address both issues.

6.1 Method-application

In the previous sections term-expressions are interpreted as arrows in 7. Clearly:,
term-expressions built from the term-expressions as defined in this paper and
method-applications can still be interpreted as arrows if method application can
be interpreted as function application.

Given that all new term-expressions can still be interpreted as arrows in 7,
both the model theoretic and the fixed-point semantics of EG as developed in
this paper are still valid. Moreover, all theorems simply carry over to this new
situation. Except, of course, that minimal models may be infinite.

S0, if we can interpret method-application as function application, the exten-
sion 1s straight-forward. It is well known that it is problematic to interpret a
method as a function in a language with subtyping, as subtyping of functional
expressions 1s contra-variant in its first argument and covariant in its second.
However, the inherent functionality of methods makes it plausible that each
application of a method m can still be interpreted as the application of a associ-
ated function f, provided we do not require that we allways associate the same
function with m.

‘T'he other problem with this extension, especially in the case of the method
new, 1s that Od will need some more structure than that of a simple basic
type. It seems that Ohori’s [23]| representation of an object identity in a pure
functional language represents a good starting point.

6.2 Negation and grouping

The various stratification approaches, used for grouping and/or negation, are all
built on top of standard Datalog and its semantics. In this paper, it 1s shown
that all important properties of the semantics of standard Datalog also hold for

145

the semantics of EG. Hence, adding negation and grouping to the language is a
rather straightforward exercise.

More in particular, note that category theory is a constructive theory, the
imner logic of a topos is in general non-classical. Hence, the obvious way to
extend EG is to adopt the constructive approach to these problems, as initiated

by Bry [13].

REFERENCES

1. 5. ABITEBOUL AND C. BEERI (1988). On the Power of Languages for the
Manipulation of Complex Objects. Tech. Rep. RR 989, INRIA.

2. S. ABITEBOUL AND S. GRUMBACH (1988). COL, a Logic-Based Language
for Complex Objects, in Proc. EDBT, 271-293.

3. 5. ABITEBOUL AND A. R. HULL (1987). IFO, a formal semantic data model.
ACM Transactions on Database Systems 12, 525-565.

4. 5. ABITEBOUL AND P.C. KANELLAKIS (1989). Object identity as a query
language primitive, in Proc. ACM SIGMOD, 159-173.

5. ANTONIO ALBANO, GIORGIO GHELLI, AND RENzZO ORSINI (1989). Types
for Databases: The Galileo Experience, in Proc. of the 2nd Int. Workshop
on Database Programming Languages, 196-206.

6. A. ASPERTI AND S. MARTINI (1989). Projections Instead of Variables: A
Category Theoretic Interpretation of Logic Programs, in Logic Programming,
Proceedings of the sixth international conference, 337-352.

7. H. BALSTERS AND C.C. DE VREEZE (1990). A Formal Theory of Sets in
Object Oriented Contexts. Tech. Rep. INF90-74, University of Twente.

8. HERMAN BALSTERS AND MAARTEN M. FOKKINGA (1991). Subtyping can
have a simple semantics. Theoretical Computer Science (to appear).

9. I'. BANCILHON AND S. KHOSHAFIAN (1986). A calculus for complex objects,
In Proc. 8th ACM Symp. on Principles of Database Systems, 53-59.

10. MICHAEL BARR AND CHARLES WELLS (1990). Category Theory for Com-
puting Science. Prentice Hall.

11. C. BEERI (1989). Formal Models for Object Oriented Databases, in Pro-

ceedings of the First Int. Conf. on Deductive and Object Oriented Databases,
405-430.

12. CATRIEL BEERI, ROGER NASR, AND SHALOM TSUR (1988). Embedding

pst-terms in a Horn-clause logic language, in Proc. 3rd International Conf.
on data and knowledge bases, 347-358.

13. FRANCOIS BRY (1989). Logic Programming as Constructivism: A Formal-

1zation and its Applications to Databases, in Proc. 8th ACM Symp. on Prin-
ciples of Database Systems, 34-50.

14. L. CARDELLI (1988). A semantics of multiple inheritance. Information and
Computation 76, 138-164.

15. 5. CERI, G. GOTTLOB, AND L. TANCA (1990). Logic Programming and
Databases. Springer Verlag.

16. R. GOLDBLATT (1979). Topoi, The Categorical Analysis of Logic. North-
Holland.

17. M. KIFER AND G. LAUSEN (1989). F-logic: A Higher-Order Language for
Reasoning About Objects Inheritance and Scheme, in Proc. ACM SIGM OD,

146

18.

19.

20.

21.

22.

23.

24.

29.

26.

27.

28

A

134-146.

M. KIFER AND J. WU (1989). A Logic for object-oriented logic programming
- Maiers O-logic revisited, in Proc. 8th ACM Symp. on Principles of Database
Systems, 379-393.

G.M. KUPER (September 1985). The Logical Data Model: A New Approach
puter Science.

J. LAMBEK AND P.J. ScotrtT (1986). Introduction to Higher Order Cate-
gorical Logic. Cambridge University Press.

C. LECLUSE, P. RICHARD, AND F. VELEZ (1988). O, an object-oriented

SHANIN NAQVI AND SHALOM TSUR (1989). A Logical Language for Data
and Knowledge Bases. Computer Science Press.
ATSHUSHI OHORI (1990). Representing Object Identity in a Pure Functional

BENJAMIN C. PIERCE (1990). A Taste of Category Theory for Computer
Scientists. Tech. Rep. CS-90-113, Carnegie Mellon University, To be pub-
lished in Computer Surveys.

ARNO SIEBES (1990). On Complex Objects. Ph.D. thesis, Twente University.
A. TARSKI (1955). A lattice-theoretical theorem and its applications. Pacific
Journal of Mathematics 5, 285-309.

IT'. ToMivyaAMA AND P.W.J. TEN HAGEN (1987). The Concept of Intelligent
Integrated Interactive CAD Systems. Tech. Rep. CS-R8717, CWI.
JEFFREY D. ULLMAN (1988). Principles of Database and Knowledge-Base
Systermns 1. Computer Science Press.

SOME NON-STANDARD CONSTRUCTIONS

Not all functions and objects used in this paper have a standard name in category
theory. In this appendix, we show how they can be constructed:

® twistA?B = TR, TTA >:A><B—ﬂ‘~B><A;

e €44 — P(A) X Ais the canonical injection from the definition of power-
objects.

 {}14 : A — P(A) (the singleton-set builder) is the unique arrow de-

fined by the universal property of powerobjects and the (monic) arrow
<tdg,tdg >: A— A X A;

e Upcaq): P(A)xP(A) — P(A) (the typed union) is defined by the following
construction:

1. let f — ’id’;)(A)X CA: p(A) X €A — P(A) X P(A) X A;
2. let g — t’LU?:St'p(A),'p(A) O f . 7)(44) X €4 — P(A) X P(A) X A,
3. let (k,l) be the epic/monic factorization of

f,9] : P(A) x €ea+P(A) x ea = P(A) X P(A) x A;

4. Up(a) is the unique arrow defined by the universal property of power-
objects and the (monic) arrow [;

147

Npcay and \pca) are constructed similarly.
© {},,4:A" — P(A) is the arrow constructed from {}; 4 and Up(a).
e let f:A— B, f*:P(A) — P(B) is constructed as follows:
1. let g = (idp(ay X flo €Ex:e4 — P(A) X B;

2. let (k,l) be the epic/monic factorization of g;

3. f™ 1s the unique arrow defined by the universal property of powerob-
jects and the (monic) arrow /.

The standard interpretation of the built-in predicates is a straightforward ex-

cercise in Category Theory, see [16]. For example, =4 is constructed as the
equalizer of

idAxA,tUJiSt :AXA— A Xx A.

T'he intepretation of # 4 is defined as the pullback of the arrow — o x—,; where

- : () —), and Q is the classifying object of 7. The other standard predicates
are Interpreted similarly.

148

