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Traditional query optimizers for multi-processor database systems produce mostly
a fixed query evaluation plan based on assumptions about data distribution and
processor workloads. However, these assumptions may not hold at query exe-
cution time due to contention caused by concurrent use of the system or lack
of precision in the derivation of the query plan. In this paper, we propose a
dynamic query processing scheme based on subdividing the query into subtasks
and scheduling these adequately at run-time. We present the performance re-
sults obtained by simulation of a queueing network model of the proposed soft-
ware architecture. Furthermore, we present the results from a validation of the
simulations on the PRISMA 100-node multi-processor.

1 INTRODUCTION

Query processing in current database machines is generally based on the com-
bination of two ideas: operation pipelining and static scheduling. Operation
pipelining is the process of mapping the operations of the operator tree for a
query onto virtual processors. In this model the data flows from the leat pro-
cessors to the processor associated with the top of the operator tree. Before
query execution starts, the virtual processors are allocated to physical proces-
sors using a (heuristic) scheduling algorithm. This algorithm uses assumptions
based on the data distribution, communication delays, and the selectivity of the
operations to come up with an optimal allocation, where optimal means with
a minimal response time. This approach is widely used in database machine
architectures like Bubba [1], Gamma [2], and PRISMA [3].

Although operation pipelined query processing results in a natural and elegant
processing model, it also has some disadvantages. It is difficult with pipelined
processing to obtain a fair load distribution among the processors involved. The
prime reason being the data reduction taking place within the tree. The pro-
cessors at the top of the tree will therefore remain underutilized for most of the
time.

Furthermore, the assumptions about the data distribution for which an op-
timal allocation is determined may not hold at the query execution time. The
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order in which the operations are performed may thus be badly chosen, and lead
to inefficient use of the available processors.

These disadvantages related to static scheduling have already been identified
in the literature [4, 5, 6]. Apers [4] compared the influence of a static scheduling
and dynamic scheduling method on a distributed database system. Graefe [5]
focussed at improving the performance on a uniprocessor by choosing the access
method or join algorithm at run-time. For this purpose the query optimizer
prepares a query evaluation plan, which contains enough information to make the
choice dynamically. Like Murphy [6], we concentrate on parallel query execution.
Similarly, we have decomposed the join processing in a join operation on pages
(segments), and we are interested in finding an optimal schedule for the page
join operations. The main difference is that we determine the scheduling at
run-time, taking the actual execution times for the join subtasks into account.

In this paper we propose a query processing model, which is based on dynamic
scheduling of query subtasks. Instead of decomposing the query into a tree of
communicating processes, a special purpose program is created, which solves the
query efficiently in main memory. For instance, for the three-way join operation
on relations R, S, and 7, a query program is created, which can solve the query
for a small database. (The join operation is a binary operation on relations,
represented by the operator symbol X. ) The whole three-way join query RXSX 7T
1s evaluated by partitioning the relations into segments R;, S;, 7;, and then
executing the query program for each (R;,S;,T)) combination. The resulting
tasks can be executed in parallel using a central scheduler to dispatch the tasks
over the available processors at run-time. This scheduler can easily detect idle
processors. Therefore, it can adjust the number of query processors to the
amount actually required to effectively use parallelism. The order in which the
Join operations are performed within a QP is not fixed. The query program
contains code to perform the operation in either order, depending on the arrival
time of relation segments. The net result of this architecture is that it improves
the ratio communication/processing, it results in a better load distribution over
the available processors, and it is adaptive in the amount of processors used for
each query.

In the rest of this paper we will discuss the new architecture in detail. Section 2
presents the architecture. In Section 3 we give a short overview of the queueing
model used for the performance evaluation. Section 4, discusses the results
obtained from the simulation. A validation of the queueing model on a real
100-node multi-processor system can be found in Section 5. In Section 6, finally,
we give a summary of our results and present our future research goals.

2 DYNAMIC QUERY PROCESSING ARCHITECTURE

Our architecture is based on two different kinds of processes: query dependent
and schema dependent processes. The query dependent processes are called the
Query Scheduler (QS) and the Query Processor (QP). Typically, during query
processing, there will be a single QS and several QP processes available. The
schema dependent process is the Relation Manager (RM). The query dependent
processes are generated for a specific query. The schema dependent processes
are generated for a specific relation or view. In the following we will briefly

113



I select segment 3 reduce task

Query

Scheduler

2 cached segment 6 result

4 get segment

o I B
Manager =~

Processor

5 send segment

FIGURE 1. The basic system communication pattern

|||||

1 illustrates the communication pattern between the components.

2.1 The Relation Manager

T'he Relation Managers provide a persistent storage and retrieval facility for
a single relation. The relation storage is composed of a number of segments.
Upon receiving a select request from the Query Scheduler, the RM retrieves
the segments from disk, stores it in its cache and acknowledges the QS with a
cached message that 1t has successfully read a segment. The RM can not only
retrieve the raw segments from disk, but it can also apply selection, projection
and partitioning operations on the data.

When the segment data has been cached, a Query Processor can subsequently
retrieve this data by sending the gef message to the RM. The RM then transports
the data over the network to the QP.

2.2 The Query Processor

The Query Processors form the engine of the query evaluation process. The
Query Scheduler translates the query over the relations into a batch of queries
over the relation segments. Each Query Processor solves a query for a given
combination of relation segments. The final query result is obtained by taking
the union of the partial results produced at the QS.

In contrast with a pipelined execution model the execution order ot the indi-
vidual operations in the query is not fixed at compile time. It depends on the
availability of the segments. For instance, if the QP is requested by the Query
Scheduler to calculate Ry b .So < Ty, and segments S and 1 arrive first, it will
first calculate S, 0 T, and store the intermediate result in its cache for further
use. When segment R; arrives, it completes the join operation, and informs the
QS that it has reduced the (R1,S2,7}) segment combination.
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2.3 The Query Scheduler

The Query Scheduler, finally, coordinates the distribution of work over the QPs.
[t consists of two major components: a task filter and a task allocator. The QS
maintains a task table containing all the segment combinations to be reduced
by the QPs.

The task filter removes those tasks from the task table, which will not con-
tribute to the final query result. This will occur, if for instance, the relations
R and S are hash partitioned on their join attributes. Another possibility is to
exploit the feedback information available from the QPs. For example the QP
can detect which segment combinations produce empty partial join results, say
S3 > Ty. The task filter can then remove the remaining (R;, S3,Ty) tasks from
1ts task table.

The task allocator coordinates the execution of the query by selecting an idle
QP for each task and removing it from the task table. Currently we consider
three different schedule algorithms: random scheduling, cache scheduling, and
pipeline scheduling. Clearly, the algorithm to select a task has a great influence
on the efficiency. The random scheduling method selects randomly a new task
from the task table. The consequence is that for practically each task, the QP
has to obtain the required segments from the RMs. For the cache scheduling
method, the QS keeps track of the segments being cached by the QPs. The QS
minimizes the IO by selecting a task for which (almost) all the segments are
already available. In the pipelined scheduling method, the QS also keeps track of
the intermediate results available in the QP. It will send those tasks to the QP,
which require the same intermediate results, thereby reducing both communica-
tion and processing time for a task. In the performance study described here,
we have focussed on the least complex scheduling method, namely the random
scheduling method. If this technique is already profitable, the other approaches
can only further improve the performance.

We expect from this architecture that the performance of the system does not
degrade as the number of QP is increased. We rather expect that the throughput
converges towards a maximum value determined by the cost for moving segments
around, but not because of scheduling overhead. The primary target for the
simulation 1s to check whether this assumption holds for this architecture.

3 THE SIMULATION MODEL

1o experiment with the design and to gain insight into the key factors affecting
the performance, we developed a queueing model of the system architecture.
Clearly the RM, QS and QP can be associated with process classes. With each
process class in the system we associate an arrival time distribution, a service
time distribution, the number of services and the service discipline. Each service
handles different kind of requests, each with its own service time distribution and
arrival time distribution. For instance, the QP receives reduce requests from the
QS and send requests from the RM. Right from the start we decided to use
simulation of the queueing network as a tool for experimentation, because we
almed for a realistic simulation of the algorithms. Striving for an analytical
solution would require too many simplifications in our model.
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FIGURE 2. The three-way join queueing model

The queueing network modelling package QNAP2!version 5.0 has been used
7]. This package contains algorithms for discrete event simulation and algo-
rithms for analytic solutions. The analytic solvers yield exact and approximate
straints, such as, mutual independence between stations.

T'he simulation was focussed on acquiring insight in the system utilization and
the speedup factor as a function of the number of QPs. We also wanted to see
it our assumption that the QS is not a bottleneck in the system is really true.
T'he consequence of this desirable property is that the addition of new QPs to
the system does not degrade the system throughput.

We use the three-way join operation as the example query. We choose this
operation for our simulation, because the join operation is a commonly used and
communication expensive operation. It can easily be parallelized and it is the
smallest query, allowing two different execution orders.

We have made the simplifying assumption that the network will not be the
bottleneck of the system. Thus we have only modelled the network delay in the
system by routing each message leaving a process through a network center. The
simulation results show that the maximum network throughput is not reached,
so that this assumption is valid [8]. The simulation model then consists of three
Relation Managers, one for each relation, M Query Processors, a single Query
Scheduler and several Network centers (Figure 2).

Two different system architectures have been investigated. The basic archi-
tecture 1s described in the next section. In the extended model, the QPs’ act
as alternative segment caches. A segment can then be retrieved from a Rela-
tion Manager or from another Query Processor. We expect from this extension
that the load is better distributed among the Relation Managers and Query
Processors.

~ 1QNAP2 (Queueing Network Analysis Package 2) is copyrighted by CII HONEYWELL
BULL and INRIA 1981,1982.
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.1  The basic model

In the basic model new tasks are inserted into the system by the src service
center. This center thus mimicks a query request from a user. The QS then
sends for each request a select message to the three RMs. The RM reads the
requested segments from disk and reports this back to the QS using the cached
message.

When the QS has received the three cached messages for a task, it selects an
idle QP and asks it to process the task. This QP requests the cached segments
from the RM using the get message and receives the segments from the RM by
the send message.

When the QP has received all the segments, it calculates the result of the
three-way join operation and sends the result back to the QS using the result
message. The result finally leaves the system through the sink service center.

This cycle 1s repeated endlessly in the simulation to find the steady state
behaviour.

The queueing discipline is First Come First Served (FCFS) for all the cen-
ters. Furthermore we assume that the system consists of independent Poisson
processes. The interarrival time distribution for the processes is therefore an
exponential function [9]. We also assume that the service time is exponentially
distributed.

3.2 The parameter setting

To come up with a realistic parameter setting, we have measured the service time
for each process, and the delay of the network on an existing multi-processor
database machine, named PRISMA [3]. This machine is also used to validate
the simulation model. The parameters can be found in Table 1. The PRISMA
machine 1s a loosely coupled multi-processor machine consisting of 100 MC68020
processors connected through a proprietary point to point network.

We have run the simulation for the basic model and extended model for an ex-
tended period of time so as to obtain statistical measures with a 95% confidence
interval of 10% around the mean. The main parameter, the number of QPs,
covered the range of 1 to 50 processors. The results will be discussed further on.

4 EVALUATION

The simulation results for the basic model (see Section 4.1) show that the load of
the different processes is not equally distributed. The basic model is improved
by Introducing a segment exchange mechanism between QPs. This extended

model shows a better load distribution. These results can be found in Section
4.92.

4.1  Basic model

Figure 3 shows the utilization levels for the three system components. In this
architecture, the load on the RMs is much higher than on the QS and QP. In
particular, it reaches 907% utilization with 20 processors already. The underlying
cause 1s that the ergodic constraint at the RMs reaches equality at this point
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Parameter

J

Unit

Description

RPC message size
Data message size
Segment message size
prepare segment
scheduler processing

- joln processing
network delay (1)

network delay (2)

_network delay (3)

y . R i a

0.5 Kb
4.8 Kb
32.0 Kb

244 msec

0.1 msec

290 msec

38 msec

64 msec

38& msec

The average query result consists of 30 tuples.
A segment contains 160 tuples.

Time spent in RM to read a 32k segment from
disk.

Time spent in QS for result, and cached
Time spent in the QP for joining three
segments.

Delay for messages get, cached, select, and
reduce

Delay for sending the join result to the Query
Scheduler.

Delay for copying a segment to another node

TABLE 1. The parameter setting for the simulation.
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| Process | 1/O | Description i Type Messages /sec : Kb /sec
QS | IN segment cached from RMs | RPC : - 82.5
| result from QPs Data | 27.0 ;
| 170.9
OUT | reduce vector to QPs RPC | 27.0 |
select segment to RMs RPC 82.95 r
partial result to user Data | 27.0
184.4
| . 355.3
. QP IN | reduce vector from QS - RPC 0.7 |
send segment from RMs Segment 2.1
67.6
OQUT | result to QS Data 0.7
get segment to RMs RPC 2.1
4.4
_ 720
- RM | IN | select segment from QS | RPC 27.5
get segment from QPs RPC 27.0
27.3
OUT | segment cached to QS RPC 27.5
send segment to QPs Segment 27.0
877.8
905.1

TABLE 2. Network requirements for the basic model

(-ﬁ ~ 1). That is, the expected number of arrivals (A) at a center reaches the

serving capacity (u).

An indication of the total throughput for each process is given in Figure 4. The
central role of the QS is highlighted by the throughput of messages through this
center. Furthermore, the bottleneck is the RM which can not adequately handle
an 1ncreasing number of QPs. Therefore the throughput for QPs ultimately
decreases.

TI'he assumption that the network will not limit the system still holds, as can
be seen in Table 2. Using the message type distribution, obtained from the
simulation, and the size of each message type (Table 1), we have calculated in
this table the total data throughput for each process. It turns out that for all
process types the required bandwidth is much lower than the network limit of 2
Mbytes/sec. Thus the capacity of a single network link is not exceeded. Under

the assumption that a fully interconnected network is used, we may conclude
that the global network bandwidth is not exceeded either.

4.2  Extended model

In the previous section we observed that the RM forms the potential bottleneck
in the basic model. The congestion of the RMs can be avoided by also using the
QPs as a cache for the tuple segments, thereby spreading the load for accessing
tuple segments over both the QPs and RMs. To simplify the model, we assume
unbounded caching resources at the QPs.

This model was simulated under the same conditions as the previous model
(i.e. accuracy, simulation time). The results from these runs are presented in
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Figure 5 - 6.

Figure 5 shows the utilization level of the three system components. If the
utilization of the QS is extrapolated, we see that the QS reaches saturation with
around 60 QPs. However, the throughput peak of the QS is reached for a much
lower number of QPs (43, see Figure 7), which means that between 43 and 60
one already faces a reduced pay-off of parallel execution.

Compared with the basic model we have doubled the effective number of active
QPs and we obtained a 5 times higher throughput (48 QPs, Figure 7) by better
utilization. Furthermore, the model displays linear speed-up in processing up to
25 QPs. The RM is no longer the bottleneck, allowing parallel query execution
without causing a significant performance degradation.

As with the simulation of the basic model we have verified the network as-
sumption using the simulation results. As these calculations are similar to the
previous one we simply refer to [8] for the details.

5 THE VALIDATION

For a simulation experiment there is a trade-off between the level of detail mod-
elled and the implementation effort. To assess whether the architecture has
been modelled in enough detail, we have also performed a validation study for
the three-way join operation.

We have made a prototype implementation of the architecture on the POOMA
machine in POOL-X. The POOMA architecture and operating system were spe-
cially designed to support the language POOL-X. At the moment the POOMA
machine can only run single POOL-X programs. The program is compiled,
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linked with the operating system code and downloaded to the machine. The
result 1s that the program runs in complete isolation and that there are no other
activities affecting the performance.

A program run displays, in contrast with the simulation, the transient be-
haviour of the system. However, the transient behaviour converges towards the
steady state behaviour, if the total number of tasks to be reduced is choosen
sufficiently large. In total 1000 tasks are processed during a single run.

In the validation experiment we ran the versions with and without segment
exchange, changing the amount of Query Processors from one to fifty. The
processes were all allocated on different physical nodes. We used the hardware
timers provided by the processing nodes, to measure the total time spent in the
query evaluation.

The validation experiment only measures the total time for a query. It was
not possible to measure the idle time for a processor directly. Figure 8 shows
the measured task throughput for the runs, and the task throughput obtained
through simulation.

The model and the prototype display the same behaviour. In the range of 1
to 50 Query Processors the extended model and its prototype implementation
show a lineair speed-up up to 25 QPs. The basic model and its implementation
reaches its maximum throughput at 15 Query Processors.

On the whole the performance for the simulated model is better than for the
implementation. For the extended model this effect is caused by the simplifying
assumption that the cache of the QP is unbounded. In the implementation cache
misses do occur, which result in additional segment requests for the RM.

127



30 [“““““ﬂ”“““““T“—"“"“T*m“““F“““”““T““““"“T““““““T““““““T"““"“‘T“ —
baslic model implementation -&—

extended model implementation -+
basic model -t -

extended model -»--
25 F -
X

20 F ]
_ |
0 el
¢}
0 B
~ E
0 15 L "
5
3 .
) o+
, T
10 x**'ﬂa w,m”-ﬂ e |
- A I
X - ul
. -
R - Lk - - - £l -
o S et e . N— .- — < - £ 1
. IW I .I".,l"’ s @‘ L ek R L ks “,.Q
15 20 25 30 35 4 () 45 =0

number of Query Processors

FIGURE 8. Task throughput for the simulation and the prototype

A close examination of the implementation showed that there is a relation
between processing speed and communication activity. Each communication
action requires a packetize and depacketize operation. We attribute the constant
discrepancy between the model and its implementation to this relation.

6 (CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have presented an alternative approach for query processing
on large multi-processors. Our approach is based on breaking the query into
two smaller problems, namely, how to solve the query for a small portion of the
database and, how to schedule a large number of tasks, which together form
the query program. We think that this combination leads to better system
utilization and smooths the fluctuations normally encountered in parallel query
processing.

A queueing network model has been constructed that captures the processing
aspects of our architecture. It has been used to drive a discrete event simulation
to experiment in a time efficient way with two processing strategies, i.e. a central
and decentralized caching of tuple segments.

T'he two simulations show that the central scheduler does not lead to an im-
mediate bottleneck. The linear speed-up curve flattens before the scheduler be-
comes overloaded. That is, the speed-up from parallelism becomes neglectable
before the Query Scheduler becomes saturated. Furthermore, the decentralized
caching of segments proved effective.

T'he system utilization in both cases is still limited, mainly due to the network
activities, which are modelled as independent processes. Thus, once a Query
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Processor has issued a request for a tuple se gment 1t has to wait for delivery; it
does not take part in handling the communication protocols.

T'he validation experiment has strengthened our confidence in our simulation
model. Although there is a slight discrepancy in the measured fi gures and the
figures from the simulation, the prototype im plementation displays the same be-
haviour as the simulation model. As a result we will use the simulation model
as the basis for some further experiments. We are especially interested in the
behaviour of the system in situations where the system load is not equally dis-
tributed. Currently we are also studying the effect of the cached and pipelined
scheduling algorithms on the performance.

Designing the filter algorithm as well as query specific scheduling 1s an open-
ended track. The filter can do a better job once more feedback information is
passed to the QPM about the contents of the segments being cached. For ex-
ample, as part of the message cached one could also return the min/max over
the join attributes. This would enable the filter to precompute the overlap of a
proposed segment pairing (and drop it when no such overlap exists). Further-
more, one can easily configure a more static evaluation plan within the Query
Scheduler to enforce a specific order of vector evaluation.

T'he results of these studies will be reported in a forthcoming paper.
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