Engineering a Main-Memory DBM
Carel A. van den Berg

Martin L. Kersten

CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The declining cost of memory chips in the early '80s has sparked off sev-
eral research projects on using main memory as the primary storage medium
for database management systems. One of these projects was the PRISMA
project. This paper reports on three studies performed at CWI on design issues
of main memory database management systems: index structures, relational
operations and database recovery techniques.

1 INTRODUCTION

The PRISMA project ! has been a large-scale research effort in the design and
implementation of a highly parallel machine for data and knowledge processing
11, 2, 3]. It ran from October 1986 until October 1990 and it involved about
thirty persons distributed over several research groups in the Netherlands. The
database research group of CWI worked closely with the database group at the
University of Twente on the realization of the database processing component,
i.e. a distributed main-memory database management system (MMDBMS),
called PRISMA /DB.

The starting point for our undertaking were the outlooks for large distributed
processing platforms to handle complex relational database applications. We
therefore set out to design a database machine, i.e. a dedicated (hardware) soft-
ware solution to solve the performance and storage problems encountered in this
field. The boundary condition imposed upon the project was the programming
language POOL [4] as the vehicle for software construction.

The database research challenges posed by the POOL programming environ-
ment were roughly separated into ‘how can we exploit large main-memories for
database processing’ and ‘how to distribute data and synchronize distributed
query processing’. The latter is researched at the University of Twente and
the former at CWI. Together we experienced the impact of an evolving paral-
lel object-oriented programming language on a novel hardware platform for the
development of a 45,000 lines program.

1The PRISMA project is a SPIN project, partially funded by the Dutch government, and is
a joint effort of Philips Research Labs, CWI and several Dutch universities for the development
of a parallel inference and storage machine.

95

Global Data Handler

User Interface

SQL/Prismalog parser
Data

| Dictionary

Query Optimizer

Transaction Manager - Concurrency

Controller |

FIGURE 1. The PRISMA Database Architecture

The remainder of this paper is a short account of the research activities within
PRISMA /DB undertaken at CWI. More details on the remaining database as-
pects, programming language and PRISMA machine can be found in [5, 6, 7],
respectively. We start with a short introduction to the overall system archi-
tecture and 1ts design rationale in Section 2. Following, Section 3 describes
engineering results that leads to an efficient use of main-memory for database
storage and that improves response time through preprocessing database scan
operations. Section 4 deals with the stability issues of a main-memory DBMS,
such as database logging and recovery. We conclude with a short summary and
an outlook on future research activities.

2 OvVERVIEW OF PRISMA /DB

In this section we introduce the architecture of the PRISMA database system.
called PRISMA/DB. An overview of this architecture is given in Figure 1. It
shows the functional components, such as a User Interface, Query Parser, Query
Optimizer, Transaction Manager, Data Dictionary, Concurrency Controller, and
One-Fragment Manager. These components are implemented as communicating
processes, l.e. a large collection of POOL objects. The arrows in the diagram
represent the major message streams. A brief indication of their role is given in
Section 2.1 below.

Based on this general architecture, we indicate the major design issues that
had to be tackled in Section 2.2. A more detailed rationale for the PRISMA /DB
architecture can be found in [2].

96

2.1 The PRISMA /DB architecture

The PRISMA /DB database system is designed as a distribut ed relational data-
base system. In particular, the database relations are cons idered fragmented
and stored in separate data managers, called One-Fragment Managers (OFM),
using a horizontal fragmentation rule. Such a fragmented database permits a
distributed query processing scheme that can exploit par allelism by running

(sub-)queries against the fragments in parallel. A proper fragmentation rule
leads to both linear speed-up for many database queries, as a better transact 1011

load distribution.

The user input comes in two forms: SQL or PRISMALog statements. SQL
is a standardized relational database query language commonly available in t he
marketplace. PRISMAlog is a logic-based database query language, In many
respects similar to Datalog. Statements written in t hese languages are translated
by a parser into an intermediate language, ¢ alled eXtended Relational Algebra
8]. Apart from the ordinary relational algebra operators, such as select, join,
group, and project, XRA offers operators for dealing with recursive queries and
operators to control parallel execution of sub-queries.

The Query Optimizer transforms these XRA statements to a sema ntically
equivalent, but less costly XRA statements using symbolic optimization and
heuristic cost functions. Moreover, the optimizer uses the fragmentation rules
to re-phrase the query in terms of operations on the relation fragments. In the
sequel we refer to these two forms ot an XRA query as the XRA-R (on rela-
tions) and the XRA-F (on fragments) expression. Thus, the input to the query
optimizer is an XRA-R statement to be transformed into an XRA-F statement.

The Transaction Manager takes the XRA-F transaction, requests database
locks for the fragments involved and it passes the XRA-F expressions to the
dividual OFMs. Before a transaction commits, the Transaction Manager
checks the integrity constraints to ensure database integrity using a differen-
tial method [9, 10]. Furthermore, the transaction manager coordinates logging
and system recovery.

The individual OFMs execute the XRA-F statements on their fragment data.
For example, each XRA-F update operation, which is set oriented, can result 1n
a sequence of tuple insertions and deletions.

In addition there are two components to administer the system data, called
the Data Dictionary, and to regulate concurrent access, called the Concurrency
Controller. The former contains the description of the relational schema, domain
information, constraints, sizes, and locations of relation fragments, etc. The
latter implements a two-phase locking policy to regulate multi-user access.

2.2 (QOFM design 1ssues

The OFM developed in our group differs trom traditional data managers 1n
one important aspect, namely, we assume sufficient main memory to hold a
relation fragment. This requires a complete new design. because in disk resident
database systems the performance is largely determined by the number of disk
accesses for query processing. Instead, in a parallel main-memory database
management system, the query performance is determined by the number of
CPU cycles and the communication cost for transferring intermediate results

97

from one data manager to another. In this paper we focus on main-memory
database structures, scan operations, and recovery management.

A common database operation is searching for tuples having a particular at-
tribute value. To speed up this operation, an index is maintained for this at-
tribute. Commonly used data structures in disk resident database systems are
linear hashing, and B-trees. These data structures are specially designed for
reducing the number of disk accesses. Because this property is less important
for memory resident databases, the data structures used for indices were re-
evaluated.

As index maintenance is not without cost, there will not always be an index
available for speeding up a search operation. Moreover, the search predicate can
be an arbitrarily complex expression over the tuple attributes, which makes them
less useful. In these situations a scanning operation is used to evaluate the predi-
cate for the fragment tuples. Usually, the scan operation interprets the predicate
for each tuple. As this predicate does not change during the evaluation, there
1s some room for optimization. Two methods have been considered for reducing
this interpretation overhead by vectorizing the scan operation and by compiling
the tuple predicate. An orthogonal optimization, an adaptive method, is based
on sampling the relation to be scanned first, so as to determine the selectivity
factors. Thereafter, the expression is transformed according to minimize work.

In database management systems stability of the data is an important 1ssue.
Because main memory is volatile in nature, disks have to be used to obtain data
stability. However, as the disk is only used as a backup store for the database,
it suffices to access the disk only for update transactions and during database
recovery. Over the last few years several algorithms have been proposed for log-
ging and recovery of main memory database systems. Not all were applicable to
the PRISMA machine architecture. Therefore, we developed our own approach

to logging and recovery based on two concepts: log reduction and parallel log
replay:.

3 ENGINEERING AN OFM

In this section we describe eflicient search data structures and processing tech-
niques for database scan operations. Both topics illustrate how the constant
(CPU+memory) cost associated with well-known algorithms can be improved
significantly with fairly simple techniques.

3.1 Data structures

Using main memory as the primary storage tor the relation fragment puts some
constraints on the data structures for tuple indexes. In particular, the data
structure should have a low storage, search, and update cost. Early experiments
in this area were conducted by Lehman {11}, who studied several main-memory
data structures based on hashing and search trees. He compared their storage
cost, search cost, and update cost for a representative query mix. Of the hash-

based methods (modified) linear hashing [12] turned out to have the lowest
update cost and the highest storage efliciency. Of the search tree based methods

98

o level O
' :
a
| _. j l CVE E]
. b : | | v level 2
) a)

FIGURE 2. The V-tree data structure

a data structure called the T-tree (a variation of an AVL tree) was the best
choice.

rrrrr

called the V-tree, and compared its performance with a heap, sorted heap, binary
tree, and AVL-tree data structures. The V-tree is a compact representation of
a (partially) balanced binary tree, using a fixed-size storage array and implicit
pointers. The top of a k-level tree is mapped on location 2°~! — 1 of the array.
The children of a node at level | are located at an offset of £(2¢¥~! — 1). (See

Figure 2.) This mapping ensures that for low load factors, insertion of a new

merely requires shifting data in the array. Due to this mapping policy, the empty
slots are distributed over the array, thus reducing the number of shifts required
after each insert. Measurements show that for load factors below 75%, the insert
time for the V-tree is lower than that of an ordinary pointer inplementation ot
a binary tree. Furthermore, as the maximum number of levels in the tree is
a priori known, it is possible to use loop unrolling to speed up the search and
update procedures. This technique greatly improves the performance at the cost
of a logarithmic code expansion.

A disadvantage of the V-tree is that it is static; the maximum number of
elements that can be stored is fixed up front. A dynamic data structure can
be obtained by combining the T-tree and V-tree data structure. In the context
of the PRISMA project we considered two dynamic data structures, 1'V-tree
and TVO-tree, based on a combination of the T-tree and V-tree. The primary
objective was again to obtain a data structure, which is both storage efficient
and fast. We have measured the insert time, search time, and load factor for the
T-tree, TV-tree, and TVO-tree. The storage cost is expressed as a load factor,
which is defined as the fraction of the data size in bytes and the total amount
of bytes required for the data structure. For a binary tree, for instance, the

load factor i1s -%,;., because each node consists of two pointers and one data item

(assuming simple data items).

The T-tree is a balanced binary tree, which holds many elements in each node

99

T-tree node T-tree

D
Data buffer
Internal nodes
= —
——— Count , —

Leaf nodes

FIGURE 3. The T-tree data structure

of the tree. Each node contains control information, such as the minimum and
maximum element stored, and the occupation count. (See Figure 3). All the
values contained in the left subtree of a node are smaller than the minimum
value and all the values from the right subtree are larger than the maximum
value. Whenever the occupation count exceeds a threshold, the node is split
and the elements are distributed over the two nodes, possibly followed by a tree
rebalancing operation. The elements in the data buffer of a T-node are kept
sorted to speed up update and search operations.

The TV-tree uses V-trees as the data structure for the internal nodes. Since
the load of a T tree can be rather low, the TVO tree is introduced that uses
an overflow area of half the size of the V-tree. That is, if a node reaches the
load threshold, an overflow V-tree is allocated. Only if the load of this overflow
node reaches the threshold, a node split operation is performed. This approach
guarantees that the load of the leaf nodes is at least 509%. If during a node
search, the element is not found in the primary V-tree, the overflow V-tree is
searched. This implementation is therefore less efficient than the TV-tree.

A few experiments have been undertaken with an implementation of the T-
tree, 'I'V-tree, and TVO-tree. Interesting measures are the insert time, search
time, and load factor. Figures 4 and 5 present these measures as a function
of the number of elements. The load threshold in these experiments has been
set to 90%. The TV-tree reaches the same storage efficiency as the T-tree, but
gives a better search and insert performance. It turns out that the TVO-tree
implementation is also slower than the T-tree, despite the use of V-trees as
internal data structures. However, it provides the best storage efficiency (72%).

The load threshold determines the load of the data structure, which is used
In the T-tree nodes. A high average load results in a high insert cost. For
the V-tree we have seen that a load average below 75% still gives acceptable
update performance. In Figure 5 the average load as a function of the load
threshold is presented. For the three data structures the load average remains
below 75%. The insert time and search time are practically not influenced by
the load threshold.

Finally, Figure 6 illustrates the influence of the buffer size on the search time
and insert time. By varying the buffer size the search and update cost can be
shifted from the T-tree to the V-tree. Obviously, the insert cost increases with

100

ooy
g

4%) . .
=it R B -
“ ko o

i{;’ - %1,1 - t,]

=T &

40 + %

i

.y R

(1

2000 A0000 400010
Mumber of slements

;;;;;

LOOOO

It ANERES

FIGURE 4. Insert time and search

LI g ﬂ L -
15 K
& B o " 4
{3 PR & WLHQ - . g N o T i 3 g e
L BE e T g RaneeBantpliaT U neptnattey” T e

-
3
4 @

v o
rﬁ:’ O L e | S

b

w-{j

)

f

i

&) Mfﬂ

o=

,,_,.__
i
L

1 ‘ E——i______
| ™ h
H -
-
i
1
i
|
!
i
i
r
:
z
3
3
!
i
3
l
2
£
]
2
E
r-
2
L
3
i
i
H
oA
z L* 4
El
H
£
£
F—
Tl
E
¥
e

time as a function of size

ot
S

70 | o

SREIN o e

: .
s
—— AL
. H i
l-.\.-

B

H i

10000

20000 30000
Number of elements

101

40

&0 %

FIGURE 5. The load factor as a function of the size

L) 7 10 S W R 1 GU

Load thresholad (%)

and the load threshold

0N - < 8 T
o E
'ﬁ if »'m o, A {_.}_
* - Aol Ly B
R —— A
Prtenen, l 6 || -~ & ‘: IJ {‘53 ﬁ
{ .FJ" "
i‘i;l _,.f-‘gl T {lj [fl pre
i ’ 2 2!
% i = =01 e
o o - — 50 TV=-1 rec
0 L2l 2~ {;;, " o PVO-E e
o £
f-:-; g«/ 0 ey
o RONY 1 +e o) B
I - \ hac
»
. X 1:“.3 # ----------- _‘}
;:] H “ ir- _ J‘IIJ_#" 4ed } i:.j h"'-xl‘ b < th i - é
() | " 4! LOr .h
" o B, .. Q’H i L e
P1 f; [] ?,_i , N . i "I"de ”’J “hm.
T g o
S o L6 R
. ‘ .
4 1) w?”ﬂj o
j i A o . e . l ,{] . : — i —
) s Ee 40) & U #A) L L1000 1200 () o (300 4030 & ()0 S RORE 1A L2 0
Buffer size Butfer size

FIGURE 6. Insert time and search time as a function of the buffer size

the buffer size. An insertion in a V-tree or sorted heap results in shifting the
data in the buffer. As the buffer grows, the average number of shifts increases
also. Insertion of a T-tree node only involves the allocation and initialization
of the node, which has a constant cost. However, the update of a T-tree inner
node is expensive, due to its sorted-heap data organization.

T'he search time also decreases with the buffersize for the T-tree and TV-tree
data structure, because searching a sorted heap or a single V-tree is cheaper
than searching through a T-tree. The search time for the T'VO-tree, however,
increases slightly with the buffer size. Again, the fine tuning of the search using
the V-tree representation reduces the search cost as compared to a traditional
T-tree implementation and its overflow V-tree.

3.2 The scan operation

In [14] attention has been given to relational database operations in main mems-
ory, but in particular they have concentrated on jJoin algorithms. In [15] the
influence of data structures on the performance of all relational operations 1is
investigated. In this section we summarize the results of a performance study
on the influence of implementation techniques for relational operations, that aim
at reducing the memory traffic. We focus on the scan operation to illustrate,
what can be reached by ‘clever’ programming. The scan operation visits all the
tuples and returns those that satisfy the selection predicate.

The common implementation of the scan algorithm is to represent the predi-
cate by an operator tree and recursively Interpret this tree for each tuple in the
relation. Its performance can be improved with the following techniques:

o By changing the representation of the tree (Compilation). This reduces
the memory traffic involved in Interpreting the selection condition, but it
does not reduce the number of data references.

o By vectorizing the operation, so that the tree is only traversed once (Vec-

torization). The operators in the selection condition are replaced by vector

102

11 ¢ e pre— ' l 1
e e o 4 T complled
| vecrtorlzed
T S . e adaptiive
* adaptive + compiled
H ey - won] oy g ey _ ‘ - _.1. . oy g e
H e 1 adaptive + vectorized
3
] "1
©
4
ap
-
T
0
o
0,
4
l AN j‘ ' et L e b 2y LU PPLR LT DETES
2000 3000 40100 =000

Relation size

FIGURE 7. Relative execution speed for alternative scan algorithms

and scalar operators. This approach greatly reduces the number of tree
references.

o By transforming the tree to reduce the number of data references (Adap-
tive). Therefore, the tree is weightbalanced on selectivity. To measure
the selectivity, the expression i1s first completely evaluated for a random
selection of the available tuples. Then the tree is transformed using this
selectivity information and the adapted expression is evaluated for the
remaining tuples using vectorization or compilation.

In the experiment the predicates were built out of the operations V, A, =, >,
<, =, +, —, x, and /, and the attribute names and constants. The constants
are chosen such that the selectivity of a subexpression can be controlled.

These expressions were evaluated against the Wisconsin benchmark database
using the interpretation, compilation, or vectorization method, both with and
without the adaptive method.

In a few experiments we measured the performance increase for the compi-
lation and vectorization approach with the basic mechanism (Figure 7). The
compilation approach showed a performance increase by a factor 3 - 9, while
vectorization showed a gain by a factor 4 - 7.

The vectorization approach and compilation approach reduce the cost for in-
terpreting the selection condition for each tuple. Both methods have a limited
amount of start-up overhead. The compilation process requires traversing the se-
lection condition and code generation. The vectorized approach requires memory
allocation to store the intermediate vectors. This also requires a single condition
traversal to find out the required amount of storage.

The adaptive process turns out to be too costly in most cases. To find out
the selectivity of the subexpressions, the selection condition is first completely
evaluated for a percentage of the tuples. The number of tuples satistying the
subexpression determine the weights of the subexpressions. Finally, the tree 1s
transformed, so that the subexpressions with the lowest weight are evaluated

103

nethod reduces the number of a‘ubf*xpl
he number of mw EMWWH(oS, H 1 %

wgortthm and a s g > Ra 1N over thﬁ? @(1..t(,)rlz@f.'.."i aig(',‘:)r‘,l th 111.

erime whmw Ml n wit h St ﬁ:uulm d optimization techniques like vector-
1on, a performance increase of a factor 5 can be obtained.
Hu‘nwi out to hv Uulv favourable in combination with the
Our experience with applying these

Wh@

I checkpoint pair has been iden-

hroughput [16]. Traditionally

it the physical record level, which reduces the time s pent in

il database from the most recent checkpoint. Loggin o at

e of SQL update statements, can greatly reduce the

ﬁ;:t*t-f;m:ﬂ,, and therefore reduce the 10 cost involved in

Nf"* price paid is an increased CPU cost, due to longer log

In general, a trade-off must be made between the overhead of loggir
during normal processing and the time spent in crash recovery:.

yeveral ;,;W%mw@;am are pmpmhwi to reduce the over h@ ad for logging and check-

ing, including gging [17], using st '

L0 store a vi umw mf mfmnmtmn I'qtllil'-,z"..f
m checkpoint file for a partition contain
- hw all mcimwnd@m rec uvmy Of the p&xhﬂon U mng

as a par t ﬂ“ 10N in t erms o f [1 ()]

 pertormed in PRISMA at the fragment level.

‘ompares several rwwwry 1emes tor disk-resident muln pz OCessor
* M-@st huda hm« "'

she d OW m 3 cmd differen

g a.-.t;?.@éa,l;am@ M ¢ (h1
roves to be an effective tec hmqw for impr oving

g the transaction throu
The paper by Eich HH? wssihcation of rec C‘W@ry
memory database sy HEMHh

f""lw da ferent classes
t hmuj‘? hput and transaction cost (rmptmw ﬁ:mw} The classification is bs Sed on:
(1) ﬂw .%w'm"“-}mw wf %tm Ee% nwuum (num—* univ (;:a,;?g {md &H 2) &V&lldﬂ;1521"?-&?’ f

logging r overhead (yes, m)) and (4) commit
pmm y (@.mmwimw, w{mp d,ud prec mmmt) E ‘TOM A ‘"‘Sll“pl@ *ﬁumlvtu‘ﬂ%ﬂﬂ model tlw

following general conclusions are drawn: (1) g

mn IS most xamwi fm muihmpm(essor dat

oimmsad

104

time for an individual transaction, (2) stable memory and log processor is good
for both response time and throughput, (3) if there is no stable memory, use
group commit to improve throughput. The cost model presented, ignores the

In the remainder, we investigate the influence of the logging level on the
transaction cost and throughput. Our primary goal is to find a recovery ar-
chitecture suitable for the PRISMA machine. Thus, we ignore the evidently

4.1 Recovery architecture

T'he recovery mechanism of a database system must be able to recover from differ-
ent causes for transaction abort. Following the overview on transaction-oriented
recovery given in [20], we distinguish between transaction failures, system fail-
ures, and media failures.

Transaction failures are likely to happen frequently, about 1% - 10% of all
update transactions [21]. The recovery from these failures should therefore be
fast. In PRISMA, like other main memory database systems, we keep the undo
logrecords in volatile memory, which results in a fast recovery from these failures.

System failures are caused by hardware failures, operating system failures,
and database system software failures. Estimations based on the failure rate of
the hardware components in PRISMA, indicate that a hardware caused system
crash occurs every three days [22]. For the other causes of system failure we
cannot give a reliable estimation. The machine recovers from a system crash by
performing a cold restart, which is followed by reloading the database from stable
storage. Thus in the event that one processing node fails, the whole system is
rebooted. *

T'he database is protected against media failures by using replicated files as a
backup storage for the fragment data. The replicas are allocated by the operating
system to different disks. After a system crash, the operating system restores
the file system into a consistent state. Thus recovery from media failures is
performed by the operating system.

A transaction is any sequence of XRA (update) statements bracketed as such.
T'he Transaction Manager is in charge of guarding the transaction semantics, i.e.
atomicity, consistency, 1solation and durability. The recovery mechanism assures
that the effects of committed transactions survive system crashes. In PRISMA
a two-phase commit protocol is used to obtain transaction atomicity |23].

T'he recovery mechanism for PRISMA maintains a log file, where the update
statements for a transaction are recorded. The logfile is also used to record the
transaction status information. The transaction status can be aborted or com-
mitted. In the event of a system crash, the updates of all committed transactions
recorded on the logfile are replayed. To reduce the replay time, the database
1s checkpointed once the log size reaches a threshold value. A low threshold
incurs too much checkpointing overhead during normal processing. However, if
the treshold is chosen too large, log replay during recovery becomes too time

2The problem of building a fault tolerant system was considered to be out of the scope of
this project.

105

Clearly, we need a threshold value for which the overhead is

L T

Cons
minimal.

The logging process can either be centralized or distributed. In centralized
logging the Transaction Manager could log all the update information. In dis-
tributed logging, both the OFMs and the Transaction Manager could be involved
in the logging process. For distributed logging the Transaction Manager records
the global abort or commit decision on the transaction log only. The OFMs
record the updates performed on behalf of the transaction, the local abort or
commit decision, and the global decision.
best possible transaction throughput. That is, we do not optimize the lo geIng
procedure or the recovery procedure in isolation, but together in relationship to
the expected mean time between failure (MTBF). The choice of what is logged
has a direct influence on the crash recovery time and the loggin g overhead.
Evidently, logging at the highest level in PRISMA leads to small amounts of
log information. But the cost associated with recovery could become so high
that the effective transaction throughput remains low. So, there is a trade-off
between 10 and CPU cost.

In the tollowing overview we consider, the influence of a given log level on the
replay cost and logging cost for a transaction. Three different logging levels are
considered: XRA-R, XRA-F, and Tuple level. We illustrate the effect using the
following update transaction:

T salary = salary * 1.10

The SQL transaction is translated by the SQL parser to the following XRA-R
transaction:

select(R,dept =" CS"), salary = salary 1.10)

> logging process is controlled by the Transaction Manager, which writes
the transaction commit or transaction abort decision to the lo g. A checkpoint
operation is initiated by the Transaction Manager, whenever the log size reaches
a certain threshold. Update operations are only written to the log if all the
locks for the operation have been acquired. This ensures that during replay the
transactions are re-executed in the correct order.

The recovery process requires that all OFMs reload their latest checkpoint
and that the Transaction Manager, in charge of the recovery, replays the opera-
tions of committed transactions found on the log. The replay cost includes the
translation of the XRA-R statements to XRA-F st atements.

Logging at the XRA-F level is just like logging at the XRA-R level a form of

centralized logging. The advantage is that the XRA-F st atements are already

optimized. The amount of log information, however, is lz rger. The single exam-

ple XRA-R statement is translated to n ; XRA-F statements, if the relation R
1s stored in ny fragments. °

TR TN T TIPS ey "

e o

3This number of logrecords is a pessimistic value

and probably too high in practice.

106

update(F;, select(Fy, dept =" C'S"), salary = salary = 1.10) i =1,...,n;y
commit /abort

The Iransaction Manager records the XRA-F statements and the transaction
commmlt and transaction abort decisions on the log. The checkpoint operation 1s
agaln mitiated by the Transaction Manager.

and replaying the XRA-F log. *
Logging at the tuple level 1s a form of distributed logging. It is basically the

update(tuple;, f(tuple;)) i=1,...,05;
precommat
commat /abort

The OFMs write the list of tuple updates to a private log. If the size of the
log becomes too large, a checkpoint of the fragment data is made. Because the
One-Fragment Manager has complete control over the updates on the fragment
1t 1S also possible to perform a ‘tuzzy’ checkpoint operation. By keeping a copy
of the data of completed transactions, the checkpoints can be written to disk,
while new update transactions are in progress. This process is described in a
little more detail in [14].

For recovery it is necessary that the OFM records both the precommit, as well
as the global commit or global abort records for the two phase commit protocol.
The Transaction Manager writes the global decision on a system log, because a

involved.

The recovery of an OFM then involves reloading its most recent checkpoint
and replaying the updates of completed transactions from its private logfile.
Transactions, which have entered their precommit phase, but which have not yet
run to completion are either aborted or committed, depending on the information
on the system log.

Because the logging and checkpointing information involves only a single frag-
ment, it is possible to recover fragments individually. This makes on demand
recovery of fragments possible.

4.2 Cost model

In the previous section, we have discussed in general terms the recovery mecha-
nisms for each logging level and argued that there is a trade-oftf between logging
overhead during normal processing and recovery time. In this section, we want

LI p—

41t is possible with this scheme to recover fragments on demand by analyzing the depen-
dency graph for fragments and transactions. This analysis delivers a subset of the transactions
on the transaction log, which is minimally required to recover the database to a correct state.
In general, it is unlikely that this subset is smaller than the complete collection of completed
transactions on the transaction log.

107

SQL 0.6 | SQL level execution overhead
XRA-R | 04 XRA-R level replay overhead
XRA-F | 0.2 XRA-F level replay overhead

Tuple 0.0 Tuple level replay overhead

fu 0.25 the fraction of update transactions

fi 0.03 the fraction of failing update transactions
S| 0.1 the size of a log record in pages

Sy 0.5 the size of a tuple in pages

r | 1000 the number of tuples in a fragment

n 10 the number of fragments in a relation
N, 30 the number of relations in the database
Ty 209200 | MTBF

Cio, 0.03 time to read/write a page to/from disk
Cqry - 0.8 average cpu time per read transaction
Ctuple ' 0.001 tuple update cost

TABLE 1. The parameter setting

to substantiate this claim by deriving a simple cost model for a memory resident
database system. Our model is based on the one proposed by Eich [18] for main
memory database systems to experiment with different logging policies. The
main difference is that we model the recovery time explicitly, as it influences the
throughput.

The cost model is based on a simplified PRISMA architecture consisting of
several processors connected by a communication network and sharing a single
disk. The effect of using several disks in parallel can be modeled by reducing
the time to read or write to disk. The fragments of a relation are allocated to
different processors and we assume that an update transaction affects a single
relation only. This means that the tuple modifications, during normal processing
and log replay can be performed in parallel for each fragment.

T'he procedure for determining the proper logging level is as follows. First,
we express the transaction throughput as a function of the checkpointing fre-
quency. Next, we determine the checkpointing scheme that maximizes transac-
tion throughput. Finally, this cost formula is used to determine the maximum
transaction throughput for different logging levels, using some typical cost esti-
mates for the basic operations, like writing log records and CoOpylng memory.

A summary of the parameter setting is given in Table 1. In the remainder o
represents the update selectivity; that is the fraction of the relation, modified
by an update transaction.

The transaction throughput r; depends on the MTBF 1T's, the recovery time
cr and the average transaction time ¢;. We assume that the recovery must be
finished before normal processing can begin.

_ 1y —cr
fr-t — ct.i_Tf_

T'he recovery cost is determined by the cost for reloading the latest database

108

checkpoint and the cost for replaying the log records. The reload cost depends
on the database size sy, (in pages) and the time to read a page from disk ¢;,.
IT'he checkpointing policy for all logging levels considered is that L,,., log
records are written, after which a new checkpoint is produced. The replay cost
consist of the 10 cost for reading a log record ¢; and of the CPU cost for re-

executing the log record c¢yeprq,. Obviously Creplay depends on the logging level.

SdbCio T 'Iitailm(cl T (—:frf%pmy)

|

CR

]

Sdb TLrTL TSt

The average transaction time ¢; is determined by assuming that a fraction
f. of all transactions are update transactions. We assume that the CPU cost

involved in read transactions can be estimated by constant cost c,r,. The effect
of parallel execution is already included.

Ct - (1 — fu)cr + fucu

Cr = Cqry

The cost for an update transaction depends on the cost for updating the
data cu,d, the number of log records produced by the transaction n;, on the
proportional overhead required for the checkpoint operation c.ni, the checkpoint
frequency f. and the fraction of transaction failures f;. Note that the number
of log records produced in a transaction depends on the log level.

Cu = Cupd + nyc; + fccchk' + ft Cundo

The update cost consists of a fixed amount for translating the SQL update
operation to tuple updates and on a variable cost for modifying the selected
tuples. The latter depends on the update selectivity o and the fragment size n;.

Cupd — SQL + ony Ctuple

Every time the total number of log records written to the log exceeds the
threshold value L,,,., & checkpoint is generated. This results in a fraction ot
n;/Lmaer checkpoint operations per update transaction.

The time spent in the checkpoint operation depends on the amount ot dirty
pages produced during normal processing. We make the assumption that the
(tuple) updates are equally distributed over all the database pages. Using prob-
abilistic arguments we find an expression for the expected amount of dirty pages
after k tuple updates.

Between two checkpoints run L,,../n; update transactions, which produce
together k = on¢n¢Lmar /M tuple updates.

Cehk — (]- — (— 'gi"g)k))sdbcio

The cost for undoing the result of a transaction is determined by the amount of
updates already performed on a fragment. As the list of undo records is kept 1n
memory, no 10 cost is involved. Therefore, the update selectivity o determines
the amount of tuple modifications, which have to be undone.

109

| XRA-R | XRA-F [Tuple _
"}’il - 2 o 11 -I—m;zf . | 1 _—i—w2f‘hrifﬁ+ O FN¢
Clemr | XRA-R | XRA-F |0
logging method | centralized | (i’tékntralized | distributed

TABLE 2. Parameter setting for different logging levels

Cundo — T Cty ple

Given the formula for the transaction throughput can determine the maximum
throughput for each logging level by filling in the n; and Creplay Parameters and
differentiating the transaction throughput.

oo = 0
ALlimar

As the solution of this equality is analytically intractable, we have solved the
equality numerically.

4.9 Ezxperiments and results

T'he cost formula r¢(L,,q,) is parameterized by the replay cost Crepia, per log
record and the number of log records per transaction n;.

The replay cost depends on the number of transactions, which can be re-
played and the cost per transaction. On the average about L,,,./2n; update
transactions have to be replayed after a system crash. This is per log record
1/?“.

T'he transaction cost for each logging level depends on a level dependent over-
head cjepe; and replay cost for the tuple updates, which depends on the update
selectivity. The replay of the tuple updates can be performed in parallel for each
fragment and therefore only depends on the size of the fragment.

1_ _ — Clevel + Untct'upig
Creplay = "““““““‘"““m ——

For the XRA-R level 2 log records are produced per transaction. The replay
cost per log record involves the translation of the XRA update statement and
the subquery execution in the OFM, which are performed in parallel.

The XRA-F level produces 1 + n f log records. The replay cost per log record
18 again composed of a fixed overhead for translating the XRA-F statements and
the actual tuple updates.

At the tuple level for each tuple update a log record is produced. The replay
cost per log record is simply the cost for performing a single tuple update. As
the log records for the n; fragments can be replayed in parallel. An overview of
the parameter settings for the different logging levels can be found in Table 2.

The cost model presented formed the basis for some experiments to increase
our understanding of the parameter settings. These experiments show that
choosing a higher log level as the basis of the recovery architecture improves

110

e e
b MWm e Hmﬁ__MXR&fR |
. S XRA-F -
L.2 HW% Tuple 7
| H"‘*-m. .
o 1.1 r
:3
Q,
)
- Lot -
O
o
’ﬁ
A
0.9 F)
O - 8 B .
O - 7 ——— — o R bt ey T AL et
| ve+05 le+06

Log threshold

Fi1GURE 8. The transaction rate as a function ot L,, .,

the transaction throughput of the database system. Additional expernnents
were conducted to validate that this conclusion holds even when the parameters
for the hardware change an order of magnitude, and if the ratio read/update
transaction shifts. All calculations are based on the default parameter settings
derived from the actual PRISMA machine, which can be found in Table 1.

Critical in optimizing the recovery mechanism is the choice of the threshold log
value. This value is different for each log level, because it is determined by the
replay cost and the log cost. For tuple level logging the maximum transaction
throughput is reached at much higher values for the log size threshold, than for
XRA-R and XRA-F level logging. This is caused by the checkpointing overhead.
For tuple level logging, the threshold value L, .. is reached sooner than for XRA-
R and XRA-F level logging, which results in more checkpointing overhead per
transaction. An increase in the update selectivity necessarily results in a reduced
transaction throughput, but has no effect on the optimal threshold value. The
results of this experiment can be found in Figure 8.

Given the optimal threshold value for each logging level we determined the
effect of changing the update selectivity for a transaction on the maximum trans-
action throughput. (See Figure 9.)

The transaction throughput for tuple logging degrades more quickly as a func-

overhead during normal processing. We expected that for low values of the
update selectivity, the recovery mechanism based on tuple logs would beat a
recovery mechanism based on XRA-R or XRA-F logging. However, even for
update selectivity values, where only a single tuple was updated, XRA-R and
XRA-F logs give the highest performance. This effect can be explained by con-
sidering that the transaction throughput is dominated by the logging overhead
during normal processing. The replay overhead, which is higher for XRA-R and
XRA-F logging, is negligible for large values of MTBF. Experiments with values
for the MTBF. which were an order of magnitude smaller, however, showed that

111

“'mﬂmnﬂ'ﬂlﬁgﬂu

L'

Rl T R

o
A,
& 0.8 F -
o
5
g 0.0 r -
fo
4
0.4 3
0.2 F -
O : L 1 L { b 4. 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
selectivity

FIGURE 9. The maximum throughput as a function of the update selectivity.

tuple logging still not beats XRA-R logging.

By varying the ratio f,, between read and update transactions, we can get an
impression of the overhead involved in logging. The results on the transaction
rate can be found in Figure 10.

It highlights the considerable influence of the read/update transaction ratio.
To find out whether this should be attributed to the logging overhead or only by
the amount of tuple updates, we have run the same experiment with the overhead
for logging and checkpointing set to zero. This situation corresponds with a
database system equipped with safe ram and a separate checkpoint processor.
The result of this experiment is shown in Figure 11. As expected, tuple level
logging performs under these circumstances (only marginally) better than XRA-
R and XRA-F level logging. The maximum transaction throughput, however, is
hardly influenced. This indicates that the overhead is primarily determined by
the tuple updates and the overhead caused by transactions failures. Although
this effect is at first sight in conflict with the results reported in [18], the different
findings can be explained. In that paper only tuple level logging was considered.
[t we only look at the effect of stable memory on the transaction throughput for
tuple level logging, we observe a similar increase of transaction throughput.

5 CONCLUSION

In this paper, we have surveyed some of the engineering experiments to obtain
efficient solutions to well-known database problems, such as indexing, selection
processing and reliability issues. The general conclusion is that with simple
techniques significant performance improvements can be obtained over tradi-
tional relational DBMS implementation techniques. However, due to separation
of concerns between language implementation and database implementation, the

results have only been partially incorporated in the prototype POOL implemen-
tation of the One-Fragment Manager.

112

relative performance increase

.
Al == ¥
- o - =la s o - -
- e e wpee o wewm men
e et e
l s i —‘—JJ RS

0 0.05 0.1

"‘"t"" L T . * [C evmmbe b Ll t.l._._. frmmmr——————— e bmimdes . et 1.:..-_:.,-“-.,. TR [T] TR

0.15 0.2 0.25 0.3 0.35 0.4
update fraction

FIGURE 10. The maximum transaction rate as a function of the read/update
transaction ratio, f,.

1.4 L "1 ! e ™ ™ ! Y

A
-l"‘"*rr
uret

1.35 ¢ XRA-F - o

aprel
I

et |
! 1
e -

" L
. L]
r,..m'"-""#_ﬁ L
- Lk amte
N T
e A 1 e e evy
L et "
H"-J:

o
I'“"J:

LT
!
sutal
n:
e
J - T
i
P

et
l,_,.mn’
ar

VL Ly
,,,,,,

e
____ P

throughput

EY
"N
™
.
el
1 1 - - '
| - -
-
Ty
“u
LY
S

1.05 bl 1 l T R S
0 0.050.10.150.20.250.30.350.40.450.5
update fraction

FIGURE 11. The ratio ry//r;, where ry/ represents the maximum transaction rate
1n a stable memory environment

113

The prototype OFM uses hash-based indexes, rather than the TV-trees de-

scribed above. They have been excluded, because it would require extensions to
POOL and its implementation. Furthermore, TV-trees are meant to optimize
range queries, which are not (yet) recognized by the Query Optimizer.

TI'he expression compilation method has been incorporated in the implemen-
tation language and it is widely used in the prototype OFM. In certain cases.
where expression compilation was not feasible, such as with s pecific relational

operations, like the group-by operation, vectorization has been used.
type, because the primary goal of the PRISMA architecture is to improve query
respounse time instead of increasing transaction throughput.

T'he PRISMA database machine is now being used at the University of Twente
as a platform for further experiments in parallel query processing. The research
in the database group at CWI is further focussed on dynamic query processin g
described elsewhere in this issue.

6 ACKNOWLEDGEMENT

The following persons have contributed to the PRISMA project. Carel van den
Berg, Marc Bezem, Anton Eliens, Martin Kersten, Louis Kossen, Peter Lucas,
Kees van de Meer, Hans Rukkers, Jan Willem Spee, Nanda Verbrugge, and
Leonie van de Voort, from Centre for Mathematics and Computer Science. Pe-
ter Apers, Herman Balsters, Maurice Houtsma, Jan Flokstra, Paul Grefen, Erik
van Kuijk, Rob van der Weg, and Annita Wilschut, from University of Twente.
Marcel Beemster, Maarten Carels, Sun Chengzheng, Boudewijn Pijlgroms, Bob
Hertzberger, Sjaak Koot, Henk Muller and Arthur Veen, from University of Am-
sterdam. IJsbrand Jan Aalbersberg, Pierre America, Ewout Brandsma, Bert de
Brock, Huib Eggenhuisen, Henk van Essen, Herman ter Horst, Ben Hulshof, Jan
Martin Jansen, Wouter Jan Lippmann, Sean Morrison, Hans Oerlemans, Juul
van der Spek, Marc Vauclair and Marnix Vlot, from Philips Research Labora-
tories. Jan Bergstra, Karst Koymans, and Piet Rodenburg, from University of
Utrecht. George Leih, from University of Leiden.

REFERENCES

1. P.M.G. Apers, M.L. Kersten, and H.C.M. Oerlemans. Prisma database ma-
chine: A distributed, main-memory approach. In Proc. Int. Conf. on Ex-
tending Database Technology; Venice, 1988.

2. Martin L. Kersten, Peter M.G. Apers, Maurice A.W. Houtsma, Erik J.A. van
Kuyk, and Rob L.W. van de Weg. A distributed. main-memory database ma-
chine. In Proc. of the Fifth International Workshop on Database Machaines,
pages 303-369, October 1987.

3. P.M.G. Apers, J.A. Bergstra, HH. Eggenhuisen, L.O. Hertzberger, M.L.
Kersten, P.J.F. Lucas, A.J. Nijman, and G. Rozenberg. A highly parallel
machine for data and knowledge-base management: Prisma. Prisma Report
PO001, Philips Research Laboratories, Eindhoven, The Netherlands, 1986.

4. P. America. Language definition of POOL-X. Prisma Report P0350, Philips
Research Laboratories, Eindhoven, The Netherlands, 1988.

114

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A.N. Wilschut, PW.P.J. Grefen, P.M.G. Apers, and M.L. Kersten. L ple-
menting prisma/db in an oopl. In Proc. of the 6th International Worksh O
on Database Machines, June 1989.

E. Brandsma, Sun Chengzheng, B.J.A. Hulshoff, L.O. Hertzberger, and
A.C.M. Oerlemans. Overview of the prisma operating system. In Proceed-
mngs of the International Conference on New Generation Computer Systems,

1989.
Marnix Vlot. The pooma architecture. In Proceedings of the PRISMA Work-

snop, LOUNS 503, pages 365-396. Springer-Verlag, September 1990.
A. Wilschut. Xra syntax. PRISMA Report P280, Twente University, July
1988.

.....

allel database system. In Proceedings of the International Symposium on
Databases 1n Parallel and Distributed Systems, 1990.

P.W.P.J. Grefen and P.M.G. Apers. Integrity constraint enforcement through
transaction modification. In Proceedings of the International Conference on
Database and Fxpert Systems Applications, 1991.

Tobin J. Lehman and Michael J. Carey. Query processing in main memory
database management systems. In Proc. ACM SIGMOD Conference, pages

W. Litwin. Lineair hashing: a new tool for file and table addressing. In
Proceedings of the 6th International Conference on Very Large Databases.
pages 212-223, 1980.

M.L. Kersten. Using logarithmic code-expansion to speedup index access. In
Springer-Verlag, June 1989.

D.J. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebreaker, and D.Wood.

Implementation techniques for main memory database systems. In Proc.

Tobin J. Lehman and Michael J. Carey. A study of index structures for main
memory database systems. In Proc. of the Twelth International Conference
on Very Large Data Bases, pages 294-303, August 1986.

Tobin J. Lehman and Michael J. Carey. A recovery algorithm for a high-
performance memory-resident database system. In Proc. SIGMOD, 1987.
Rakesh Agrawal and David J. DeWitt. Recovery architectures for multipro-
cessor database machines. In Proc. SIGMOD, 1985.

Margaret H. Eich. A classification and comparison of main memory database
recovery techniques. In Proc. of the 1987 Database Engineering Conference,
pages 332-339, 1987.

G. Copeland, T. Keller, R. Krishnamurthy, and M. Smith. The case for safe
ram. In Proc. of the 15th International Conference on Very Large Databases,
1989.

Theo Haerder and Andreas Reuter. Principles of transaction-oriented
database recovery. Computing Surveys, 15(4), December 1983.

Andreas Reuter. Performance analysis of recovery techniques. ACM Trans-

115

22. H. Muller. Hardware aspects of fault tolerance. PRISMA Report P121.
University of Amsterdam, June 1987.

23. S. Ceri and G. Pelagatti. Distributed Databases, Principles and Systems.
McGraw-Hill, 1984.

24. K.M. Chandy, J.C Browne, C. Dissly, and W.R. Uhrig. Analytic models for
rollback and recovery strategies in database systems. IEEE Transactions on
Software Engineering, 1, March 1975.

116

