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Starting in the 1960's and continuing through the 1970's, a fundamental
research direction was the use of universal constructions to represent the
algebraic aspects of automata and dynamical systems which operate in dis-
crete time. In this paper, we first summarize some of the principal results of
this research for discrete-time linear systems (based largely upon the work of
Kalman and of Arbib and Manes), and we then provide an overview of our
own more recent work on translating these results to linear systems which
operate in continuous time.

0 INTRODUCTION

There are many important models of information processors in computer sci-
ence [19]. Perhaps the most fundamental is that of a sequential machine, which
is a six-tuple M = (Q.,6,1,Y,h,q,), with @ the state set, I the input set, and
§:Q x I — @ the state-transition function. Y is the output setand h : Q — Y,
also a function, is the output map. ¢, € @ is the initial state of A. We may
thus think of the internal transitions of Al as being described by equations ot
the form

g(t +1) = 6(q(t),1(1)) (1)
y(t) = h(q(t)).

In the theory of control and dynamical systems [30, Ch. 2|, the same set
of equations is studied, although @, I, and Y are usually taken to be linear
spaces in this case. Unquestionably, the most important special case in this
latter context is that of linear systems [47], in which 6 is an afhine mapping,
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. nteger A representing time t = k. Here g(t). q(t + 1) € Q. «(t) € [
and y(t) € Y represent the values of the state, input. and output, at the times
specified by the variable t € N .

Although the detailed use of these models in computer science may ditter
substantially from that in the theoryv of dynamical systems, it 1s nonetheless
an inescapable observation that there is common ground. In each case, we may

of the behavior of the system. Specifically, let 7™ denote the set of all finite
sequences of elements of I, and define Y " similarly for Y. In an input Joutput
representation or behavior, we think of the machine as being described as a sort
of “black box” function F: I* — Y *. in which an input sequence 1yiy..q4 € I7
represents a stream of inputs to the system, wit h i/, occurring at time t. The
resulting output is also a sequence yoy;..yp € Y “. with y, occurring
Such a description may be visualized thusly.

speak

at time t.

For a sequential machine Al starting in the state g, and described by the
equations (1). the associated behavior Fay @ i,i1..04 = Yoy1.-Yr 18 given by
yo = hiqg,). yi = h(6(qo-10)). y2 = h(6(6(qo.10).11)), etc. The fundamental
question which we ask in a universal theory ot behavior is how the construction
M — Fy; arises using a particular type of algebraic construction, known as a
universal construction.

In the other direction, we ask the question of realization of a behavior. That
given a black box F as depicted above, we seek to identify a canonical
sequential machine M with Fyy = F. We must eschew a formal definition
of canonical until later, but, informally, the canonical realization of F' (for a
sequential machine) is the “best” realization in the sense that it has the minimal
nmunber of states possible for a machine with behavior F.

The thesis that this bidirectional association between realizations and be-
haviors may be addressed in a unified fashion for systems arising from both
computer science and from control and dynamical systems was first put forth
in the literature by Arbib in 1965 [1]. Subsequently, the decade of the 1970's
saw the development of a generalized algebraic theory of behavior, realization.
and duality' for such systems based upon the foundational mathematical dis-
cipline of category theory [37. 25|, which is

-y

18,

the natural setting for universal

The theory of duality in system theory develops the thesis that important concepts about
systems come in pairs; we will not address duality to any significant degree in this paper.



constructions. Some of the more prominent papers on this topic include the
work of Arbib and Manes [3, 4, 6, 7, 8], Bainbridge [10]. Ehrig and his co-
workers {16, 17] and Goguen 118]. The scope of the types of sy stems covered
in this work includes not only sequential machines of the form (1) and lin-
ear machines of the form (2), but also fuzzy machines, tree automata. al gebra
automata, and group machines, just to name a few. Indeed. the stren gt h of
this theory lies in its ability to characterize. in a unified fashion. realization
and behavior for a very wide class of machines. It also provided needed insight
nto the correct interpretation of these notions for more complex notions of
systems. For example, the correct interpretation of realization and behavior
tor some classes of machines, such as group machines [2] and fuzzy automata
6], were only understood after placing them in this unifying categorical frame-
work. An excellent summary of the key work in this field, with an extensive
bibliography, may be found in [9].

A very significant feature of all of the work cited above is that it deals
exclusively with discrete-time systems. While computer science is concerned
almost exclusively with discrete-time systems, other dynamical models are often
continuous in time. If we change the equations (1) above to their continuous-
time equivalents, in which we replace N by the nonnegative reals R and we
replace iteration by differentiation, we get the following.-

dq(t)/dt = 6(q(t),i(t)) (3)
y(t) = hiq(t))

In this context, it becomes highly nontrivial to construct a behavior, and global
characterizations are not known, except in quite special cases. The equations
(3) above can only be solved under very special circumstances, and then so
often only locally. Furthermore, although our intuition suggests that I™ and Y~
must be replaced with spaces of continuous functions on the nonnegative real
numbers, the precise nature of these functions is not immediate.” The universal
approach to realization, by its very nature, requires a uniform characterization.
in which every internal dynamics (such as those represented by equations (3))
has a natural* behavior associated with it, and conversely. However, equations
of the form (3) have solutions only under special conditions, and even then such
solutions are often only local in nature. Therefore, a general representation of
the realization/behavior correspondence (as outlined above for discrete-tumne
systems) of such systems is simply not feasible at this time. To make any
headway in the continuous-time case, we must restrict our attention to special
cases. In this work, we focus upon the following continuous-time equivalents of
the linear equations (2).

kb WREAR e v -~ P

20f course, we must now assume that all spaces are topological vector spaces over the real
numbers R or the complex numbers C, at least locally.

3Indeed, this intuition is not quite correct; we shall see that [™ must be replaced by a
space of generalized continuous functions, or distributions.

10ur use of the term natural here and throughout the paper has no special technical
significance here; we simply intend to convey that the correspondence has some meaningtul
structure.
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dq(t)/dt
y(t)

Even then, the underlying mathematics is far more involved than in the discrete-
time case, as it requires results from topological algebras and topological vector
spaces, as well as the supporting algebraic framework of algebra and category
theory. As a consequence, most of the research in continuous time has addressed
the many important details of the systems modelled by equations of the form
(4), rather than placing it within the global algebraic context cited above for
discrete-time systems. It is the primary goal of a research program, which we
have been following for some time, to develop a categorical theory of behavior,
realization, and duality for continuous-time systems which completely paral-
lels the already existing theory for discrete-time. Our principal results in this
direction have been reported in [22] and [23]. |

The overall goal of this paper is to provide, for the nonspecialist, an overview
of the algebraic theory of both discrete-time and continuous-time linear sys-
tems, with particular emphasis on how the comparatively simple constructions
of the discrete-time case may be translated to continuous time. Insofar as pos-
sible, we have tried to avoid becoming involved in the rather technical details
which are an essential part of a full presentation, particularly in the continuous-
time case, where the details are extremely technical. As a consequence, proofs
are generally omitted, and the finer points of definitions and theorems are of-
ten not spelled out completely. The interested reader can refer to the cited
references to fill in the details.

No knowledge of category theory is necessary for the reading of this paper,
although an acquaintance with the basic definitions, as may be found in [5]
or [25], would be beneficial. We must assume an elementary knowledge of the
theory of rings and modules, but the presentation found in [27] should prove
sufficient. We also assume some knowledge of the basic definitions of locally
convex topological vector spaces |35, 36|, although we have made every effort
to avoid difficult details.

To understand the continuous-time case, it 18 necessary to have some under-
standing of its discrete-time counterpart. Therefore, we start, in Section 1, with
a brief but fairly rigorous exposition of the principal results of the discrete-time
theory. Then, in Section 2, we show how these ideas may be translated to the
continuous-time context. Because of the much more technical nature of the
continuous-time case, the presentation in Section 2 is less rigorous than that of
Section 1. However, we hope that it is substantial enough to give the interested
reader a feel for the nature and complexity of the results.

We do not assume any specific knowledge of mathematical system theory.
However, we expect that the reader will have had some exposure to the ideas
of modelling dynamical systems by differential equations, and hopefully by
difference equations as well.

flq(t)) + g(i(t)) (4)
h(q(t))

]
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1  DISCRETE-TIME LINEAR SYSTEMS

In this section, we provide a brief overview of the algebraic theory of discrete-
time linear systems. The fundamentals of these results are based upon the
ploneering work of Kalman [28, 29], while the representation and generaliza-
tion within category theory is due to Arbib and Manes |3]. We have borrowed
freely from both sources in preparing this section. Our discussion is limited
to those aspects of this theory required as a foundation for our presentation
of the continuous-time theory. The reader who is interested in more detail is
encouraged to consult the above references. For more elementary information
on linear systems from an algebraic point of view, the reader is referred to [38].

Basic definitions for linear systems

We fix a commutative ring K with unit.” Formally, a discrete-time linear system
over K is a 6-tuple M = (Q, f,I,g,Y,h) where ) (the state space), I (the input
space), and Y (the output space) are all K-modules, and f : Q — @ (the state-
transition map), g : I — @ (the input map), and h : Q — Y (the output
map) are all K-linear mappings. Throughout this section, we fix for reference
notation such a discrete-time linear system M. The dynamics are described by
the equations (2), and the initial state is implicitly taken to be 0.

Since all of our systems in this section will be over K, we shall refer to them
as simply discrete-time linear systems. Such systems have been very widely
studied in the literature on decision and control, particularly when K is the
field of real or complex numbers, and I, Y, and () are finite-dimensional vector
spaces. See, e.g., |38].

Following [3], let us call any pair (P,vy) with P a K-moduleand v: P — P a
K -dynamics. The internal dynamics of the system M as defined above 1s just
@, ).

Given dynamics (P,~) and (P’,v’), a dynamorphism X\ : (P,v) — (P',7') is
a, K-linear function ) : P — P’ such that the following diagram commutes.

~

P —mmm P

A A

P’ _____________/_______.,_ p’

7 ()

Let K[z] denote the space of all (formal) polynomials in the single variable z
with coefficients in K. A typical element of K[z] is written as > ;. ,arz" with
ar. € K; by the definition of polynomial only finitely many of the a;’s may be
nonzero. We often drop the bounds and just write > axz”. It is well known that
K|[z] admits a natural ring structure, corresponding exactly to the well-known
addition and multiplication of ordinary polynomials over the real numbers 127,

5Typically, in an application, we would expect K to be a field, often the real numbers R
or the complex numbers C. Thus, when we speak of K-modules, the reader may intuitively
think of them as generalizing vector spaces over familiar fields.
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Sec. 2.10]. The multiplication operation is called convolution, which we denote
by “x”; thus

x Kzl x K[z] — K]z (6)
Zakz Zb“" —> Z Z Qb nz
k>0 k>0 k>0 m+4-n=k

Clearly, K|z| also admits the structure of a K-module. The following critical
observation is due to Kalman.

LEMMA 1.1 (STRUCTURAL LEMMA FOR DISCRETE DYNAMICS) There
is a natural bijective correspondence between K-dynamics and K|z]-modules.
With the K-dynamics (Q, f) we associate the K|z]|-module whose action on
Q s given by (3 arz®)g = S ar- f*(q), with the latter a “real” (as opposed
to formal) sum, which is well defined since only finitely many of the ar’s are
TLOMZETO.

The preceding lemma is essentially a restatement of the well-known fact that
z freely generates the ring K|z], or, speaking categorically, that K|z] is the free
K|z] module over K {27, Thm. 2.11]. In the dynamics (P,~), the mapping ~
just corresponds to multiplication by 2. From that, we can identify uniquely
multiplication by 2* for any k € N, and hence recover the K/[z] action.

The system-theoretic significance of 1.1 is that it provides two distinct repre-
sentations for the dynamics of a discrete-time linear system. We may think of
the K-dynamics representation (@), f) as a “local” representation, which tells
us how to do a transition of a single time step, and the K|z]-module repre-
sentation as a “global” description of how to process sequences of transitions.
Interestingly, the entire development of discrete-time behavior and realization
18 possible while working solely with K-dynamics, as witnessed by the elegant
presentation of Arbib and Manes [3]. However, as we shall see, the ability to
have two distinct representations, one for local dynamics and another for global
behavior, becomes crucial in the continuous-time case. In anticipation of paral-

leling our discrete-time methods in continuous-time, we therefore develop both
representations in this section.

Universal reconstruction of the reachability map

We now turn to the issue of reachability for the discrete-time linear system
M = (Q, f,1,9,Y,h). Informally, the reachability map of M sends input se-
quences to the state resulting from that input, assuming that the machine
begins in the zero state. To formalize this notion, it i1s mathematically most
convenient to think of sequences of inputs as ending at time 0, rather than
starting at 0. Thus, we represent a sequence of inputs to M as iy, ip_1q... 11, 20,
with 7; occurring at time —j. Now, with the system initially in state 0 € Q.
after applying input i, we see directly from equations (2) that at time —k the
system will be in state g(ix). At time —k + 1, after applying i,_;. M will be
in state f(g(ix)) + g(ik—1). Proceeding along in this fashion, we arrive at the
conclusion that, at time 0, M will be in the state f*(g(ix)) + f* "1 (g(ir—1)) +

+ fg(in)) + g(io) = SoF_ Filg(4;)).
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We would like to express reachability as a linear map. To do so, define I[z] to
be the space of all polynomials over [ in the single variable z. [[z} 18 very much
like K[z], except of course that it is not in general a ring. since we have no way
to multiply the elements of I. Of course, it is a K-module under the obvious
action. We regard I|z| as the linear space of all possible input sequences to
M, with 2% identifying time t = —k in the above convention. Thus, >, =, ix2"
represents an 1nput to M with 75 occurring at time t = —A. Since only finitely
many of the 7;’s are nonzero, the input has a finite st arting time. Specifically.
we regard the input as starting at ¢t = —&, where i, # 0 and 1,, = 0 for all

m > k. We define the reachability map par of M as the following K-linear map.

pr Iz — Q i
> igzh > Fatin)).

Clearly this recaptures the system-theoretic notion described above.

Observe that (I[z],z) forms a K-dynamics, with = denoting the following
shift operator.

z: Iz] — Iz (8)
Zlkw‘ > ZL}‘”

Given a K-module I, a free dynamics over I is a pair ((I3, z), ), with (7%, 2)
a dynamics and 7y : I — I¥ a K-linear mapping, such that for any other dynam-
ics (Q, f) and K-linear mapping g : I — Q, there is a unique dynamorphism
p:(I%,2) — (Q, f) rendering the following diagram commutative. (Note that

the rectangle is commutative just because p is a dynamorphism. The central
condition here is that the triangle commutes.)

P P
/
—_—
Q o, (9)

THEOREM 1.2 (EXISTENCE OF FREE DYNAMICS) Let I be a K-module. The
free dynamics ((I%, z),n;) over I exists, and is given by I8 = I[z]. The mapping
2 I[z] — I|z] is just multiplication by z. If M = (Q, f,1,q9,Y, h) is a discrete
time-linear system, then the resulting dynamorphism p : (I3,2) — (Q,F) i

exactly the reachability map ppr of M. n

The construction of a free object (such as a free dynamics) is called a uni-
versal construction in category theory. Thus, the reachability map arises as the
part of a universal construction, as the unique dynamorphism from the free
dynamics over I to the machine dynamics (Q, f), relative to the input map
g. This 1s a critical observation, because it gives us an abstract construction.
In the continuous-time case, where we will have much less of an intuitive idea
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what the reachability map should be, we will imitate this construction within
the appropriate context. _
The representation of the free dynamics in the K|[z|-module interpretation 1s
exactly the free K[z] module over I. It is well known that this module is the
algebraic tensor product K[z] ® I, with the module action just the extension
of convolution {14, Ch. 2]
K[:] x (K — K] oI (10)

extended by linearity. The natural isomorphism between I[z] and K|z] ® I 1is
sunply

[[:] —> K ]O] (11)

ZZ'AW' — Z @l;\

Universal reconstruction of the observability map

Observability is dual to reachability. Intuitively, the observability map tells us,
for each state ¢, the output sequence that we will see when Al is started in state
g with only zero iputs applied. More precisely, from state ¢, if we apply no
further inputs, equatlons (2) tell us that we will observe the output sequence
h(q).h(f(q)).h(f%(q)),.... This sequence is often called the natural response of
M from state q.

To formalize this notion algebraically, let Y[[z7']] denote the K-linear space
of all formal power series in the variable 27!, We regard an element of this space
as a formal sum Y 7~ ypz7", with no finiteness restrictions. (Note that z71! is
just a symbol like z; we use the variable z7! rather than z for compatibility
reasons to become apparent shortly.) We may identify Y[[27']] with the set
of possible output sequences of M by regarding > ;_, Yz~ " as defining the
output sequence whose value at time A is y,..° Formally, the observability map
or; of M 1s defined as follows.

on R — Y[[ ] _. (12)

. E h — A ?

We now show how this arises as a universal construction. Let (Y[
denote the K-dynamics with z the following shift operator.

V7 — Y[ (13)

' o=k _ —_— K
E :y/\‘” — E Yk+1<

Note that the symbol z is serving double duty: it also denotes the shift operator
in the dynamics (/[z], z). Since it denotes “multiplication by z” in each case,

°In light of this convention and the previous one for I 2], it would perhaps be more
logical to reverse the roles of 2z and z—!. and work with I I[z7*'] and Y[[z]], for then 2z*
would correspond to time k and not —k. However, the convention which we use here is that
introduced by Kalman, and has become standard in the literature.

&2
|
e
2
p
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this overloading is a natural one. Note also that, unlike the shift for the (Iz], 2)
case, z here is not injective, as yq is lost in the above mapping.

Given a K-module Y, a cofree dynamics over Y is a pair ((Ys, z),y), with
(Yy, 2) adynamics and ey : Yy — Y a K-linear mapping such that for any other
dynamics (@, f) and K-linear mapping h : Q — Y, there is a unigue dynamor-
phism o : (Q, f) — (Ys,€y) such that the following diagram commutes. (Again,
1t 1s the triangle which is central here; the rectangle commutes by virtue of o
being a dynamorphism.)

Q-—-—-—-———‘-f——-—-'-Q
o g

(14)

T'HEOREM 1.3 (EXISTENCE OF COFREE DYNAMICS) Let Y be a K-module.
T'he cofree dynamaics ((Yy,z),€y) over Y exists, and is given by Yy = Y[[z71]].
The mapping =z : Y[[z7']] — Y[[z7']] is just multiplication by z. If M =
(@, f,1,9,Y,h) is a discrete time-linear system, then the resulting dynamor-

phism o : (Q, F) — (Y, 2) is exactly the observability map oar of M.

T'he shift z here is forward in time, as in the similar operation for the free
dynamics, but it has the opposite effect. Here it discards the 2¥ term vy of a
series Zf‘;o yr 2~ and shifts the rest down, yielding }:i‘;o Ypr12 ",

To recapture the cofree dynamics within the K]z]-module context. let
L(K|[z],Y) denote the space of all K-linear maps from K]|z] to Y. It is easy to
see that we have a natural isomorphism

L(K[z].Y) = Y[=7']] (15)
o = Y p(zF)z
k>0

The K|z]-module action in this context translates to

K|z] x L(K|[z],Y) — L(K|[z],Y) (16)
(@, p) = (B plaxpd))

A construction which yields a cofree object (such as the cofree dynamics) is
called a co-universal construction. Although the notion of duality has not heen
formally introduced, it is not difficult to see that diagram (14) may be obtained
from diagram (9) by replacing input with output and turning around all of the
arrows. Thus, universal and co-universal constructions are closely related, and
we sometimes refer to them both as universal constructions.



Universal representation of behavior N
We have thus shown how both the reachability map pp; and the observability
map op; of a discrete-time linear system arise as universal constructior}s. Now
we define the total behavior Bay ot M as the composition oy o pag 2 1 3 — Ys.
This provides us with a completely algebraic construction of the behavior of A,
which we may represent pictorially by gluing diagrams (9) and (14) together
(and replacing o and p with oa; and pyy, respectively), as follows.

] —— s = s

E" »
Y (17)

In the next section, we shall imitate these constructions in the context of
continuous-time linear systems to discover what the reachability map, observ-
ability map, and total behavior should look like for such systems.

Algebraic representation of realization

We know that every discrete-time linear system A naturally defines its behavior
Bar. Now let us examine the converse. Suppose that we are given K-modules
I'and Y, and a dynamorphism

(T[] 2) = (V][] 2). ' (18)

[t is natural to ask under what conditions (18) defines the behavior of a
discrete-time linear system. The immediate answer is always, for we may define
Mp, = (I|z],2,1,n;,Y,ey o B) and Mps = (Y][[z7!]],2,Y,Bo nr, Y,y ); it is
trivially verified that each has behavior B. These are extreme cases; the former
is called the free realization of B, and the latter the cofree realization. Thus,
each behavior yields at least two realizations. Generally, it'will have many more.
However, there is one realization which is most natural.

Given a discrete-time linear systemy M, we say that it is reachable if its reach-
ability map pj; is surjective, and we say that it is observable if its observability
map oy 18 ijective. Intuitively, if M is reachable, there are no “useless” states
which cannot be reached from 0 by the application of any input. Similarly, if M
1S observable, no two states are equivalent in the sense that they lead to exactly
the same output sequences. We say that Al is canonical if it is both reachable
and observable. Intuitively, a canonical System 18 minimal in that it contains

the fewest possible states. We have the following algebraic representation of
‘anonicity.
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1THEOREM 1.4 (EXISTENCE AND UNIQUENESS OF CANONICAL REALIZATIONS)
Let I and Y be K-modules, and let B : (I[z],z) — (Y[[z7].2) be a dynamor-
phism. Then, up to isomorphism (a renaming of states), there is a unique
canonical discrete-time linear system whose behavior is B.

PROOF OUTLINE: T'he i1dea is quite simple. We know that we may factor B as
a function as [|z] 22, Q 22, with pp surjective and opg injective. We simply
take ) to be I[z]/ B, the set of blocks of the equivalence relation defined by the

function underlying B. Furthermore, () is unique, up to renaming, as a set. The

! '

a dynamics. In other words, we ask whether or not we may fill in the diagram
below with the dashed arrow labelled f, so that (Q. f) becomes a dynamics.

I[[2] ——2» ][2]
Q---1--»0
o5 o5

i

~1 = V[~
> ~
Y{[="] Vi 10
This is guaranteed by a result known as the dynamorphic image lemma |3, 4.4],
which is a generalization of what was known in earlier contexts as the Zeiger

fill-in lemma [29, 6.2]. This may also be recovered on purely algebraic grounds
37, Prop. 1, p. 195]. -

Summary
The following is the key identification for discrete-time linear systems, which
we wish to extend to continuous tume.

THEOREM 1.5 (SYSTEM REPRESENTATION THEOREM) Given any K-modules
[, and Y, there is a natural bijective correspondence between behaviors B

(I2],2) — (Y[[z7']],2) and isomorphic equivalence classes of canonical sys-
tems with input space I and output space Y . (]

In words, behaviors and canonical realizations are coextensive, up to math-
ematical equivalence. Knowing the input/output action of a canonical system
is sufficient to allow us to recover its internal structure, and conversely.

2 DYNAMICS AND BEHAVIOR OF CONTINUOUS-TIME LINEAR SYSTEMS

In this section, we attempt to illustrate the main ideas behind our efforts to
transport the theory of the previous section to continuous-time linear systems.
Due to the extremely technical nature of the results, we have adopted a fairly
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in which we tllustrate the principal ideas without
/ mwdvm in detalls. The reader who finds the presenta-
gorous or incomplete, or who simply wants to learn more of
to consult the references (22, 23, 24|. Virtually all of the
s based upon [23], and so we have not made explicit

legitimately ask at this point why the abstract representa-
mumwmzw case 18 not just a simple recasting of that of discrete
very @m tract sense 1t 1s, save that we must show that the continuous-
logs of I I Yy exist. However, demonstrating this existence requires
1at we p ay vmw mmm m to t(miﬂm;&( al as well as algebraic aspects, and
plicates Mw mé ture wh% MIH&HV‘ Bm I a more (‘*m'lc*'r@t@ sense, we

25 , Y *‘“«nd SO fm*th. ()bm.mmg them C ()n(..rete epmse}nm-
tions {w h IC h wqu ire a tmn;: lation from the discrete-time concept of iteration
to the continuous-time notion of integration), requires that we employ a rather
complex area of mathematics known as distribution theory.

nternal mod fl

i

he h %ﬁM ( )f re “ﬂ I r;mhe:% r's ) or e N C (t h@ ﬁe 1 d (:)f cComp .lex num b ers ) Be yon d
Hi M several further choices must be made. First of all, we must identify a
suitable setting for the spaces ), I, and Y. There is a number of possibilities.
One wmﬂd be m wm&\ wnthm th@ setting of Hilbert spaces or Banach spaces, as
hi " ch of infinite-dimensional linear system theory
""f.'i'i y rwh assoclated theory of one-parameter semigroups
perators | } Utszas!*mt unmﬁ*lm it does not appear to be possible to develop a
unita}*;}?éMMV satisfactory translation of the discrete-time results to this setting,
although |21] contains some suggestions for pur suing a theory of behavior within

the B anach space framework. Qur approach, rather, is to allow the underlying
spaces to be quite arbitrary locally convex topological vector spaces, in the

uf 135, 36]. A locally convex topological vector space, or locally convexr
space for short, is a topological vector space (= topological module) over K
for which the operations of addition and scalar multiplication are continuous,

and which in addition satisfies a technical condition known as local convexity.
Almost all classes of spaces which arise in practice are locally convex, including
all Banach and Hilbert spaces.

We must also state what the mappings f, g, and h are to be. The most
uhvmuh choice is to require each of them to be linear and continuous. Indeed,
this 1s exactly what we did in our earlier work 122]. Linearity is essential
dfté r ME , we are dealing with linear systems -— but this assu mption of continuity
turns out to be needlessly " Rather, we need to ask which conditions
are necessary in order that the @qu ;.mcmb (4) admit a unique solution. It is well-
kxmwn from the classical t groups of operators on Banach spaces

*"} thm nmt iw letmuuus tQ pmwd@ existence and uniqueness of

tain closed but not necessarily continuous operators suflice.

t be the infinitesimal generator of a semigroup of operators




parameterized by R, the nonnegative reals. Komura [34] has demonstrated
that a similar approach applies in the more general context of locally convex
spaces. Specifically, a locally equicontinuous semigroup of operators of class (C,,)
1s a pair (T, E') in which E is a locally convex space and 7 : R, — L(FE) is a
function from the nonnegative reals R, into the space L(E) of all continuous
linear mappings on E, which is a monoid homomorphism (i.e.. T(0) = 1 and
I'(t1) oT(ty) = T(t; + to) for all #1,t5 € Ry), whith is pointwise continuous
at zero (lim;_o 7T (t)e = e for any e € E), and which is locally equicontinuous
{T(t) | 0 < t < e} is equicontinuous for some = > 0.) The infinitesimal
generator of such a semigroup is the function gy : £ — E given by

|

* ‘ T t £ v ! * . . »
l1m ( )f ~ if the limit exists:

gr(e) =4 t—0 7 _ | (20)
undefined otherwise.

It is important to note that g need not be total, although it is closed, and
if E' is sequentially complete (i.e., Cauchy sequences converge), the domain
ot definition is dense in E [34, Sec. 1]|. Hereafter, we shall abbreviate “locally
equicontinuous semigroup of class (C7,)” to just semigroup.

T'HEOREM 2.1 (EXISTENCE AND UNIQUENESS OF SOLUTIONS) In the equa-
tions (4), assume that Q. I. and Y are locally convexr spaces, that f is the
infinitesimal generator of a semigroup T, that g and h are continuous and lin-
ear, and that Q s sequentially complete. Then f and T determine each other
untquely, and for every continuous function 1 : Ry — I, the function defined

by

t
q(t) = T(t)qgy + / T(t—s)g(i(s))ds (21)

()

1s the unique continuously differentiable solution to (4) with nitial condition
qdo at t = 0. _

The solution equation (21) is well-known in the more classical case in which
all spaces are finite dimensional [38, 6-1, Thm. 1]. Actually, as we shall see
later, 2.1 holds even when @ is not sequentially complete, provided that other
conditions are met. Theretfore, we shall not explicitly require state spaces to be
sequentially complete.

Formally, a continuous-time linear system is a 6-tuple M = (Q, f,1,9,Y,h)
where @ (the state space), I (thie input space), and Y (the output space) are all
locally convex spaces, f : Q — @ (the state-transition map) is the infinitesimal
ocenerator of a semigroup, and g : I — @ (the input map) and h : Q — Y (the
output map) are both continuous linear mappings. We call (Q, f) a smooth
dynamics to emphasize that it has special properties to allow us to reconstruct
the continuous-time behavior. A dynamorphism is defined as per diagram (5),
with A a continuous linear mapping, but we must be careful since v and ~’
need not be total functions. Precisely, commutativity in this case means that
whenever one path is defined, then so is the other, and they are equal.
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A simple example

Before moving on to the abstract theory, we present a simple example which
will help to illustrate both the generality and the limitations of this framework.
For this example, we assume some familiarity with the use of distributions (in

the sense of [42]) to represent the modelling of wave phenomena. For those
without the requisite background, this entire example may safely be skipped

without loss of continuity. This example is also discussed in |23].

The setting is a unit length of ideal transmission line with series inductance L,
series resistance R, shunt capacitance (', and shunt conductance A, all per unit
length. The line is driven at its right endpoint r = 1 and terminated at its left
endpoint r = 0 with a short circuit. It is assumed that the behavior of this line
1s governed by the standard wave equations, and that the loss is small enough
that the characteristic impedance is given by Z, = \/L/C. See, e.g., [13]. We
let V(x,t) represent the voltage across the line at position r (0 < r < 1) at time
t, and let J(x,t) similarly represent the current on the line. The state space Q
is {(V(r),J(x)) € C.(0,1]xCL[0,1] | V(x)— Z,-J(xr) = 0 in some neighborhood
of r = 1}. Because the right end of the line is short-circuited, the voltage is 0 at
r = (0: this 1s recaptured by the fact that the voltage distribution be in C.(0, 1],
the space of all scalar-valued distributions with compact support contained in
the halt-open interval (0, 1]. C/|0, 1] is defined similarly, and V(z)—Z,-J(x) = 0
in some neighborhood of 1 recaptures the stipulation that the impedance at
r =1 be matched.

The line is driven with an impedance matched generator at r = 1, so that
the input space I takes values in the field K, and the input over time (the
f‘i -1(t), with 2(¢) a real-
valued signal (represented as a distribution). (The current carries a negative
sign since 1t is travelling to the left.) The internal dynamics of this system are
represented by the following differential equation.

continuous-time equivalent of 73) has the form

d [ V(r,t) — & L. g Vi, t) 7. H
o A b — L L Ox > v _ O 7 (1 ‘
dt I(r, 1) ) 'Zl“ : ;;%- C”} J(x,t) T —1 i(£)  (22)

As for modelling the output of this system, we would like to observe the
voltage-current pair at x = 1. However, the state is a distribution which may
not be representable as an ordinary function of time. Therefore, it is not possible
to employ a representation which samples the values at r = 1 directly. There
are two ways around this difficulty. The first is to regard the output space
itself as a space of distributions about some small half-open interval (1 — ¢, 1],
where ¢ is some small number. This output is easily obtained by restricting the
state distribution by using the natural surjections g1 : C(0,1] — C/(1 — ¢, 1]
and g2 : C;[0,1] — C/(1 — ¢, 1] (see [43]). In this case, the output space Y is
C.(1—¢.1], and we get an output equation of the form

%

[ e1 O _
vit)={ "9 o )9O (23)
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The second approach is to regard the output space Y as consisting of just
palrs of real numbers (V,I) € K x K, representing values aver raged about the
point right endpoint r = 1. In this case, the output mapping A is an evaluation
of the state distribution on a certain test function pair (p1, o) € CL(1 — ¢, 1]~
Typically, this test function would have unit area. The output oquat lon would
then take the following form, with “+” representing distributional convolution.

y(t) = . *0(_) Do *0(___) q(t) (24)

Perhaps the key observation to be made from this example is that the equa-

tions (3) are quite general; we may even recapture systems modelled by partial
differential equations with delays (as is our example).

R rmngs and modules

In translating the discrete-time theory to continuous time, the key step is to
replace K[z| with any member of a class of commutative topological rings,
which we term R -rings. In these rings, the multiplication is not necessarily
continuous, but rather it is hypocontinuous with respect to the precompact
sets, or c-hypocontinuous. That is, if R is an R. ring, then the multiplication
1s continuous when restricted to sets of the form A" x R and R x A, with A a
precompact subset of R.

To 1dentify an R, -ring, we start by specifying an R_-ring generator F,
which 1s an operator which gives, for each locally convex space E, a locally
convex space F(R4, E) of continuous functions from R into E. This space
characterizes the desired system responses; for a continuous-time linear sys-
tem AL = (Q, f,1,g9,Y,h) modelled under F, the outputs over time (i.e., the
continuous-time analog of Ys) will be precisely (R, .,Y). The range of c:hol-ces
for F 1s extensive, and includes most of the spaces of differentiable vector-
valued functions identified in the classic paper of L. Schwartz [40]. Perhaps the
two most mmportant examples for F are C and £€. C(R4,Y) denotes the space
of all continuous functions from R, into Y, endowed with the topology of uni-
form convergence on compact subsets of Ry [43, Ch. 40]. £(R..Y) denotes
the subspace of C(R,Y ) consisting of the infinitely differentiable functions,
and endowed with the topology of uniform convergence on compact sets of all
derivatives. There 1s a multitude of other choices which we will mention later.

The R -ring corresponding to F is obtained as the dual space F'(R ) (space
of all continuous linear functionals) of F(R.,K) = F(R ). C'(R ) consists of
all measures on R, in the sense of Bourbaki [12], which have compact support.
£’ (R ) consists of all infinitely differentiable measures or distributions in the
sense of L. SC}'lwartz [42] In each case, the ring '1'1'1ultip1ic*ation 1S Convolution

topology in all cases 1S that of umfox 1 convergence on precompact s.1,.1bseto of
F(R‘-I-—). . L ] »
Each R.-ring contains, as a (topologically) dense subring, a special ring
which we denote by K(z). This ring is exactly like K|z], save that instead of
allowing only integer exponents of z, we allow any nonnegative real number.



More precisely, define the ring K(z) to be the linear space of all formal poly-
nomials of the form ) R. a,z', with each a; € K. It is important to realize
that, as with K[z], the sum must be finite in the sense that all but finitely
many of the a;’s must be zero. The ring multiplication is defined analogously
to that of equation (6).

« o K(z) x K(z) — K(z) (25)
( Z apz'. Z biz') — Z Z a,.b,z'
’ER-i—- “ER~+— tER+ r+s=t

In all cases, the element z' identifies the point (or Dirac) measure ¢é;, defined
by &:(f) = f(t). & is the multiplicative identity element of the ring F'(R4).

On each Ri-ring R = F'(Ry), we define the differentiation operator D :
R — R as the transpose of differentiation of functions. That is, if p € F'(R4).
then for ¢ € F(R4),

. ((dy/dt if ©» is differentiable
D(p)(p) = { pldp/dl) - (26)

o undefined otherwise

In £(R.), D is a continuous and everywhere defined function. However, 1n
C(R.), it is not everywhere defined, since not every continuous function 1s
differentiable. Nonetheless, it is closed and densely defined on any R -ring.

Given an R -ring R, an (R)-module is a pair (E,b) in which E is a locally
convex space and b : Rx E — E is a bilinear mapping which is c-hypocontinuous
and which satisfies the usual axioms for a module. Given such an (R)-module,
the associated semigroup Ty : Ry — L(E) is defined by t — (e — b(z",¢e)). A
semigroup realized in this fashion is termed an ( R)-semigroup.

THEOREM 2.2 Let R = F'(Ry) be an Ry-ring, and let (E,b) be an (R)-
module. Then Ty is a semaigroup, and for any e € E, the function t — Ty (t)e
st F(R4, E).

Thus, for any R4-ring R, each (R)-module defines a semigroup in a natural
way. This is eftectively the continuous-time analog of one direction of 1.1. To get

the other direction, for a semigroup 7" : R4 — L(FE'), define the K(z)-module
bt as tollows.

by :K(z)x E — E “ (27)

(Z a;z'.e) — z a; - 1T'(t)e

THEOREM 2.3 Let R = F'(R.) be an Ry-ring, and let T be a semigroup on
E. Then br extends uniquely to an (R)-module action by p : R x E — E if
and only if the function t — T'(t)e is in F(R., E) for each e € E. C

We are now In a position to assert the full continuous-time counterpart to
1.1. ‘
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LEMMA 2.4 (STRUCTURAL LEMMA FOR CONTINUOUS DYNAMICS) There is a

natural bijective correspondence between (R)-semigroups and (R)-modules.

1s grven by (> a;z')g = > arTr(t)q, extended by continuity using the denseness
of K(z) in R. O]

A smooth dynamics (@, f) in which f is the infinitesimal generator of an (R)-
semigroup is called an (R)-dynamics. The fact that we are working relative to
an Ry-ring automatically guarantees that f will be densely defined and will
determine a unique semigroup. There is no need to explicitly require Q to be
sequentially complete.

The reachability map in continuous time

We fix an R -ring R. A free (R)-dynamics is defined in exact analogy to the
discrete-time case; namely, given a locally convex space I, a free (R)-dynamics
over I is a pair ((I%,d),n;), with (I®,d) an (R)-dynamics and n; : [ — I® a
continuous linear mapping, such that for any other (R)-dynamics (@, f) and
continuous-linear mapping g : I — (@, there is a unique dynamorphism p :
(I%,d) — (Q, f) rendering the following diagram commutative.

il d

]-——-—-—-———-..-——-—-—-p-[$-—-——-—————p-[$
q P Y

Q —L—+ 0@ 28)
If M =(Q, f,I,g9,Y,h) is a continuous-time linear system with (@, f) an (R)-
dynamics, the function p is called the reachability map ot M, and is denoted
orr, in exact analogy to the discrete-time case. Note that py; depends upon R,
although our notation does not make this dependency explicit.

We construct the free (R)-dynamics using the module representation. Given
two locally convex spaces E and F', the c-hypocontinuous tensor product £Q . F
has as underlying space the algebraic tensor product E @ F', and carries the
strongest locally convex topology which renders the canonical bilinear mapping
EF x F — E® F defined by (e, f) — e ® f c-hypocontinuous.

THEOREM 2.5 (EXISTENCE OF FREE DYNAMICS) Let I be a locally conver
space. The free dynamics ((I%,d),n;) over I exists, and is given by I® = RO, 1,
with

d . R ®C_- I — R ®e 1 (29)

Lt — D(u) .

If M = (Q, f,I,g9,Y,h) is a continuous time-linear system with (Q, f) an (R)-
dynamics, then the resulting dynamorphism pay : (I°,d) — (Q, f) is defined on
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the subspace K(z) @1 C R® I by
orar KOOI — Q@ (30)
Z(at::’ D) Z ar - Tr(t)y,

and i1s exrtended to all of R ® I by the density of K(z) in R.

T'he (R)-module action of the free (R)-dynamics is completely analogous to
that of equations (10). We simply replace K|[z] by R to get

Rx(RI) — R&I (31)
(a, BRI) — (axB)®1,

Note that the definition of p); on K(z) is independent of the choice of R,
and closely parallels the discrete-time case. It is the extension to R, using the
topological density of K(z) in R, which admits the smooth inputs which makes
the continuous-time case so much richer. To elaborate, let Al = (Q, f,I,q,Y, h)
be a continuous-time linear system with (Q, f) an (R)-dynamics. Let us first
consider imputs in K(z) ® I. Regard the element ! © i as an impulse input
applied to the system at time —t with weight /. (Note the time reversal.) The
respouse par(2'©1) is the resulting state at time 0. Thus, K{z) ® I is regarded
as an 1mput space of finite linear combinations of I-valued impulses occurring at
times < 0. The reachability map pj; gives the response at time 0 to such a train
of impulses. That is, pp; (D2 @ i) =3 be‘R(::"’*'j g(ir)) = D> Tr(te)g(in).
Note the direct analogy to the discrete-time case, in which an Iput may be
regarded to be of the form »° ¥ © 4. and the response to be T f(k)g(iy) =
S fRglis). where f = T f(1). The only difference, other than the topological
considerations required for differentiation, is that the set of times at which an
input is allowed to occur is the nonpositive reals R_ in the continuous-time case
(recall the time reversal) and the nonpositive integers N_ in the discrete-time
case, and that f assumes the réle of a continuous rather than discrete generator.
Thus, if we first examine the input signals and reachability map of a continuous-
time linear system in terms of its skeleton input set K(z) ©® I, we see that it
1s not all that different from its discrete-time counterpart. What does make
continuous-time linear systems richer than their discrete-time counterparts 1is
the ability to complete K(z) and K(z) @ I to obtain a much more diversified
set of inputs, tailored to the specific situation.

Let r®oie RO, L. If r = 2t for some t, we already know that p,;(r @ i)
Tr(t)g(i). If r € R more generally, we can approximate r as closely as desired
by a sum of the form > i—1aj- 2% with a; € K, since K(z) is dense in R.

(>-%_1@a;-z") ©i then approximates r ® ;. Si1 )Af 1S contir “‘ r &
j=1Q27) Ot pproximates r @ 1. Since ppy is continuous, par(r @ 1)
1O A ENTNT AL Yy T £ | r n " . : . q
Is approximated by > ._, a;-Ts(t;)g(i).

Now suppose that r is represented by a function ¢, : Ry — K. Then,
19110 the dencityv h ~Y 1y 101 1Mnet b >R AY: + Q1117 © Thex » -
using the density of K(z) in R, there must be a net of sums 2o a;Ts(tj)g(i)

which converges to the Q-valued integral /Ux 2r(t)Tr(t)g(i)dt. Regarding o, (1)

]

K

as an mput signal to the system A, the time scale is reversed, so if we view
» R — K, the state at time t = 0 is ¢(0) = - Ts(—~t) (@r(t)-g(1))dt, which



such inputs is by simple linearity. The inputs in the most general case may be
regarded as vector-valued distributions in the sense of Schwartz [41].

The observability map in continuous time

T'he construction of the observability map in continuous time is no more difficult
than in discrete time. With respect to an R _-ring R, given a locally convex
space Y, a cofree (R)-dynamics over Y is a pair ((Ys,d),ey), with (Yg,d) a
dynamics and ey : Yy — Y a continuous linear mapping such that for any
other (R)-dynamics (Q, f) and continuous linear mapping h : I — @, there is

a unique dynamorphism o : (@, f) — (Ys, ey ) such that the following diagram
comimutes.

Q_..____.._f__...___.,Q

(32)
It M = (Q,f,I,9,Y,h) is a discrete time-linear system, then the resulting

dynamorphism o : (Q, F') — (Yg,d) is exactly what we define to be the observ-
ability map oy of M.

THEOREM 2.6 (EXISTENCE OF COFREE DYNAMICS) Let R = F'(Ry) be an
R -ring, and let Y be a locally convex space. The cofree dynamics ((Ys,d), ey )
over Y exists, and is given by Ys = F(R,,Y). The mapping D : F(R+,Y) —
F(R4,,Y) is the differentiation operator D, which may be a partial function.
If M = (Q, f,1,q9,Y,h) is a continuous-time linear system with (Q, f) an (R)-
dynamics, then the resulting dynamorphism oy 2 (Q, f) — (Ys,d) ts defined
by

om Q@ — F(RLY) (33)

g — (tr— h(Tg(t)g))

(]

Thus, the observability maps just reads out the “natural response” of the
semigroup of the dynamics (@, f), after the output function A has been applied.
oy depends upon R only to the extent of defining its range.

In analogy to (15), there is an natural isomorphism of locally convex spaces

Lc:(fl(R-i-)vY) = ]:(R—HY) (34)
o = (t— p(2")

Here L.(F'(R4),Y) denotes the space of all continuous linear maps from
F'(R4) into Y, with the topology of uniform convergence on precompact sub-
sets of F/(R.). The (R)-module action in this context translates to

RxL.R,Y) — L.R,Y) (35)
(a, ) +— (B plaxB))
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Other contexts

We remarked earlier that there are a great many possible choices for the R -
ring R. It is impossible to give a full account of this here, but the following
table gives some idea ot the possibilities.

TR
P e -

L:Type omeynaIms N Input&, mw | Outputs in Yy
locally equicontinuous | measures W1th ~ continuous
SeIigroups compact support functions
infinitely differentiable | distributions with | C
Semigroups compact support functions B
~ equicontinuous uniform bounded | bounded and uniformly
SeImigroups additive measures continuous functions
~ bounded B Lt | bounded continuous
SeINigroups Imeasures functions
) stable B LY |  continuous functions .
~semigroups measures which vanish at oo
* finite- -response I Radon | continuous functions with
semigroups measures scalar-compact support

Note that there is a fundamental measure/test-function duality between I® and
Y5, so that, in general, the more measures in 1%, the fewer functions in Y. There
18 no single choice of topological ring which provides a biggest version of each.
Rather, the choice is a modelling problem; one of selecting the best framework
for the systems being considered. Note also that bounded semigroups and stable
semigroups take the same space of inputs. The distinction comes in that this
space 1s topologized differently in each case, so that the underlying topological
ring is not the same. In all cases, though, the inputs are allowed to be not only
continuous functions, but also continuous measures. Therefore, the restriction
of “sufficiently smooth” identified in 2.1 is really not much of a restriction at
all. Of course, to interpret equation (21) pointwise rather than operationally,
the Input must be an ordinary function with certain constraints.

It is also possible to work within the context of locally convex spaces which
possess a certain degree of completion (such as complete or quasi-complete
spaces), rather than with all locally convex spaces. Basically, we just apply the

appropriate completion operator to all constructions. We refer the reader to
the complete papers for details.

Algebraic connection of behavior and realization

In the discrete-time case, we said that a system M was reachable if its reach-
ability map pps is surjective, and observable it its observability map o, is
injective. This definition is not adequate in the continuous-time case, since (sur-
Jection,injection) factorizations of continuous linear mappings are not unique
up to 1somorphism. To get uniqueness, we must take the topological aspects
ito account. Categorically speaking, we must work with an image- factomzatwn
system (or (£, M)-system [25 §33]) for the category of locally convex spaces. /

T,

7A(tua,lly, suc-h factorlzatlonc; are necessary in CilSCFG‘t@ tlme as well if one works with
topologized systems. See [20] for details. '




The three most fundamental of such systems are:

(1) (topologically dense mappings, closed topological embeddings)

(ii) (surjections, topological embeddings)
(iii) (closed surjections, injections)

Since the dynamorphic image lemma [3, 4.4} is formulated abstractly in terms
of image-factorization systems, any continuous linear mapping between locally
convex spaces has a unique (up to isomorphism) factorization in any of these
systems. Thus, within the context of a particular image-factorization system,
1.4 extends directly to the continuous-time context, provided we speak of

(£, M)-canonical systems. We then have the following continuous-time ana-
log of 1.5.

THEOREM 2.7 (SYSTEM REPRESENTATION FOR CONTINUOUS TIME) Given
an Ri-ring R = F'(R4), an tmage factorization system (€, M), and locally
convexr spaces I, and Y, there is a natural bijective correspondence between
behaviors B : (F'(R4) ®. I,d) — (F(R4,Y),d) and isomorphic equivalence
classes of (£, M)-canonical systems with input space I and output space Y. O

Remarks on the literature

In addition to our own work, there was substantial earlier work on the algebraic
theory of continuous-time linear systems using a module-based approach. In an
early paper, Kalman and Hautus [31], a theory with R = &(R) and I and Y
finite dimensional is presented. However, the constructions were purely alge-
braic, with no attention paid to the topological aspects, so that a reconstruction
of the infinitesimal dynamics was not possible. Also, Kamen developed an early
theory based upon the module £(R,) [32], and later upon the space D(R})
of distributions which do not necessarily have compact support [33], but he
too did not address the topological issues, and so was unable to recover the
infinitesimal dynamics.

In later work, Yamamoto (45, 46, 44| developed a theory of continuous-time
linear systems which did construct infinitesimal dynamics from behaviors. How-
ever, because his work emphasized other aspects of continuous-time linear sys-
tems, his definition of behavior did not involve universal constructions. Thus, he
was not able to formulate a natural bijective correspondence between behavior
and internal dynamaics.

There has also been much other recent work on the algebraic theory of
continuous-time linear systems, particularly over Hilbert and Banach spaces. In
'15], Curtain provides a survey of the major results along these lines. However,
this work does does not provide a universal approach to the representation ot
behavior as we have described in our paper. Indeed, if we require that all of the
spaces with which we work be Hilbert spaces (or even Banach spaces), then it 1s
possible to show that free and cofree dynamics do not always exist. It is for this
reason that the direction surveyed in [15] must take a fundamentally different
perspective on the problems of system representation. Nonetheless, there are
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mportant connections between the two approaches, which are unfortunately
beyond the scope of this survey.

The theory of continuous-time linear systems is an incredibly rich one, and we
have only mentioned a few of the most relevant papers. The reader interested
in further information should use the bibliographies of these references, as well
as our own papers, as a guide. In addition, we should point out that there are
many aspects of the categorical theory of discrete-time linear systems which
we have not touched upon. In particular, the papers [7] and [8] contain very
elegant generalizations of key ideas.
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