The Furstenberg Structure Theorem
in Topological Dynamics

Jan de Vries
CWi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

In this paper | give a brief overview of the development of ‘abstract’ topological
dynamics. Central in the research in this area after 1963 is Furstenberg's
structure theorem for distal minimal flows. We give an almost completely
selt-contained proof of this theorem in its most general form (the ‘relative’,
non-metric case). Every mathematician who feels at home in a compact
Hausdorff space and who knows what a probability measure is should be able to
understand the details. (For specialists: the proof does not use 7-topologies,
Ellis groups or the circle operation.)

1 INTRODUCTION

Abstract topological dynamics deals with actions of groups on topological spaces:
topological transformation groups (ttg’s). More precisely, it is the study of

classical dynamics (cf. [14], p.iii). Though in this paper this background is hardly
recognizable, I will spend a few words to the development of the subject?.

When at the end of the 19th century it became clear that for many impor-
tant differential equations describing mechanical systems (in particular: those
describing the solar system) it was extremely hard, or even impossible, to find
explicit expressions for the solutions, Poincaré developed methods to discover
significant features of those systems without integrating the equations. From his
work and from later work by G.D. Birkhoft it followed that the study of many
problems from this ‘qualitative approach’ could be performed in the framework
of continuous actions of the group R on metric spaces. A standard reference for
all major developments ot the theory in this direction up to the middle 1940’s is
18].

The abstract ‘axiomatic’ approach to the subject began with Gottschalk and
Hedlund’s book [14], where the topological study of dynamical systems was put
in the framework of the action of an arbitrary topological group T (instead of
R) on an arbitrary topological Hausdorft space X (usually not metrizable): a
continuous mapping m: T'x X — X such that 7¢ = idy and 7% = wfon’ for s, ¢t €

1Y Many important developments in the theory of dynamical systems (e.g., ergodic theory.,
differential dynamics) will not be mentioned at all. '
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T (here e is the identity of T and 7' : X — X is defined by n'(z) := n (¢, x) for

t e T,r e X).In 1960 R. Ellis introduced the notion of the enveloping semigroup
of a ttg (T, X, ) with X compact: the closure in X of the group {#':t € T’}
of homeomorphisms of X : this closure is a semigroup of (usually non-continuous)
self-maps of X. It turned out that a number of important ‘dynamical’ notions
are reflected in algebraic properties of this enveloping semigroup. Its role in
‘abstract’ topological dynamics can hardly be overestimated, but in this paper
we shall pay no attention to it (at least, not explicitly). Since Ellis” work the
emphasis of research in ‘abstract’ topological dynamics 1s on ttg’'s on compact
spaces: such a compact ttg is called a flow. In particular, much attention has
been given to the investigation of the structure and the classification problem
of minimal flows, i.e., flows that have no proper closed invariant subsets. These
problems are still far from being solved, and only certain subclasses of the class
of all minimal flows have been studied.

The most simple class of minimal flows is formed by the equicontinuous ones.
A flow (T, X, r) is called equicontinuous whenever {r" : ¢t € T'} is an equicontin-
uous group of homeomorphisms of X ; recall that in the case that X 1s a compact
metric space with metric p this means:

Ve >036 >0Vr,ye X: pla,y) <= p(r'r,n'y) <ecforallteT

(actually, this is wniform equicontinuity, which 1s equivalent with pointwise
equicontinuity because X is compact).

[f X is not metrizable then a definition can be given using the concept of a
uniform structure: see Section 2. Examples of equicontinuous minimal flows can
be obtained as follows. Consider any continuous homomorphism of topological
eroups ¢ : T — (G, where G is a compact Hausdorft topological group, and
assume that the image ¢{T| of T in G under ¢ is dense in G. For any closed
subgroup H of GG, let X be the space of left cosets gH of H in G (g € G) endowed
with the quotient topology. Then X is a compact Hausdorff space. An action of
T on X can be defined in an obvious way by 7' (¢gH) := ¢(t)gH (t € T,g € G).
In this way a ttg (T, X, m) is defined which is easily seen to be minimal and
equicontinuous. It can be shown that every equicontinuous minimal flow can be
obtained in this way. This result is the basis of a classification of equicontinuous
minimal flows in terms of group compactifications of T

[t follows that in an equicontinuous minimal flow (I, X, ) the action of T
actually is the restriction of an action of a compact group. In this case it is
well known that if X is metrizable then there exists a metric on X, compatible
with the topology of the space and invariant under the action of this compact
group. In particular, this metric is invariant under the action of T, i.e., each 7!
1s an isometry. Thus, a mimimal flow (T, X, ) with X metric 1s equicontinuous
1ff it is isometric with respect to a compatible metric (‘only if’ is outlined above,
‘if” is obvious). We shall use this property as a motivation for two additional
definitions: that of an isometric extension (see below) and that of a distal flow.

A flow (T, X, m) with X a compact metric space, say, with metric p, is distal
whenever inf {p(7'x, 7'y) : t € T} > 0 for every pair of distinct points z,y € X.
Obviously, if p is invariant under the action of T, i.e., if each w! is an isome-
try, then (7, X, m) is distal. In particular, it follows from the above that every
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equicontinuous minimal flow is distal (actually, this is also true without the con-
dition of minimality). When Ellis introduced distality in topological dynamics
in 1958 it remained an open question whether the converse of the above state-
ment holds: is every distal minimal flow equicontinuous?” It was not before 1963
that H. Furstenberg discovered that Kakutani and Anzai’s construction of skew
product flows on the torus yield examples of minimal distal but not equicontin-
uous flows. (At the same time and independently another example was found
in [2].) A simple example of this type is included at the end of this section.
Furstenberg also proved a result that describes the relationship between distal-
ity and equicontinuity for minimal flows, now known as Furstenberg’s Structure
Theorem (FST). In order to state this result we need an additional definition,
viz., the notion of a minimal flow being isometric ‘over’ another flow (or: iso-
metric ‘relative’ another flow); this notion generalizes the concept of a minimal
How with an invariant metric which, as we have seen above, is the same as an
equicontinuous minimal flow on a metric space (hence we shall also speak over
minimal flows equicontinuous over another flow).

Suppose we have two flows (T, X, 7) and (7,Y, 0) and a continuous surjection
®: X — Y such that gorn! = cglo¢ for every t € T'. Then ¢, but also (T, X, m), is
called an extension of {(T,Y, o); notation: ¢ : (T, X, m) — (T, Y,0). An extension
o : (T, X,m) — (T,Y,0) is called isometric whenever there exists a continuous
mapping p : X x X — R which induces a compactible metric on each fiber ¢ |y
(y € Y; thus, for example, the triangle inequality p(xry, xr3) < p(ry, r2)+p(r3.02)
is required only for triples xr;,rs,r3 in X with o(xr;) = o(xrs) = ¢(ry)) and
such that each 7' induces an isometry of ¢ [y] onto 7o [y] = ¢ [ty] (t &
T,y € Y; so p(rixy, w'xy) = p(xy,x2) for all pairs of points ry,re in X with
o(xr1) = ¢(xr2)). Note that p is not required to be a metric on all of X. 1If
¢ : (T,X,7) — (T,Y,0) is an isometric extension then the flow (7, X, m) is
called isometric over (T,Y, o). Isometric extensions are well-analyvzed; there is a
close connection with fibre bundles (see [9], p. 481, 482 and [3], 3.17.4)

It is rather easy to see that an isometric extension of a distal How is distal
[briefly: if ry,29 € X are in the same fiber then they keep the same distance
under the action of T because the extension is isometric: if r{,.r> are not in the
same fiber then they cannot approach each other under the action of T because
their images in the distal flow cannot approach each other |. So if we start with
an isometric low and if we cansider flows that can be obtained by ‘towers’ of
successive isometric extensions (possibly infinitely often: then one has to take
inverse limits, a process that also turns out to preserve distality) then we obtain
again distal flow. In 1963 H. Furstenberg was able to show that every metric
distal minimal flow can be obtained in this way.

This result of Furstenberg’s (the FST: Furstenberg’s Structure Theorem) had
an enormous impact on abstract topological dynamics. First of all, it caused a
shift in attention from minimal flows to extensions of minimal flows. In addition,
people tried to obtain similar results for other types of lows and extensions (e.g.,
with ‘distal’ weakened to ‘point-distal’). In this paper we shall concentrate on
the following aspects: in the FST metrizability of X can be omitted (see [7]). and
the result not only applies to distal minimal flows but also to distal extensions
of minimal flows (see [5], 15.4 for the metric - more generally: ‘quasi-separable’
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- case, and [17] for the general case). In the proofs of these generalizations
the original idea of Furstenberg, viz., the introduction of auxiliary topologies
(often also called T-topologies: see e.g. [8] or [13]), was extended and refined.
In the remainder of this paper a different approach to the general FST will be
sketched; though this approach seems to be new, it is based on techniques and
results that have been known for some 10 years. Perhaps this approach 1s not
much ‘easier’ than the approach based on 7-topologies, but it has the advantage
that it uses only a small number of main steps, each of which has its own interest.

EXAMPLE. (See [9]; for minimality: p.36/37 in [10].) Let T = Z, X =
(R/Z) x (R/Z) and let @ : T x X — X be defined by w(n,z) = f"(x)
(n € Z,xr € X), where f is the homeomorphism of X defined by

flri,22) = (21 + a,x2 + 1) forx = (21, 72) € (R/Z) x (R/Z).

Here ‘4+’ means addition mod 1, and « is an irrational number. |

It 1s easy to see that this flow is distal: if (r,,xr3) and (y;,y2) are points
of (R/Z) x (R/Z) and x; # y; then the distance of the points f"(xr;,r>) and
f"(y1, y2) is at least the difference of their first coordinates, which is independent
of n; and if r1 = y; then f"(xry,x2) and f"(y1,y2) have equal first coordinates
but the difference of their second coordinates is independent of n. It is also an
easy exercise to show that this flow is not equicontinuous: if {f* : n € Z}

. ' . . Tl T2 ' |
were (uniformly) equicontinuous then for every sequence (ur; ),:r:; )) ~ (0,0)

the sequence {f™(z!", z{")}en would tend to (0,0) for n ~ oo: but taking
" = (4n)~! and ry") = 0, we see that this is not the case. It takes more
effort to show that this flow is minimal. (We do not need the argument in
the remainder of this paper, but some of the techniques are so widely used in
abstract topological dynamics that we include the proof.) Since X is compact.,
a straightforward Zorn-argument shows that X has a minimal set F (i.e., F is
invariant, that is, f"|F| = F for all n € Z, F # 0 and F is minimal (under
inclusion) for these properties). We want to show that F = X.

To this end, define an action of the group R/Z on X by (g, (x1,22)) — ¢ -
(r1,22) = (x1,22 + g) : (R/Z) x X — X. It is clear that each ¢ € R/Z acts
as a homeomorphism of X which commutes with f ( an automorphism of the
flow (7, X, m)). It follows easily that ¢g - F' is a minimal set for every g € R/Z
[if F is closed and invariant then so is g - F1], hence g - F N F, being a closed
Invariant set in each of the minimal sets F' and g - F, is either empty or equal
tog-F =F. Clearly, H := {g e R/Z : g-F = F} is a subgroup of R/Z, and
using that for ¢ € R/Z we have g ¢ H iff g- F C X \ F it is not to difficult
to show that (R/Z) \ H is open [compactness argument]. So H is a closed
subgroup of R/Z. It is sufficient to show that H = R/Z. Indeed, in that case
F'=X = (R/Z) x (R/Z), as follows. Note that the projection ¢ : X — R/Z
onto the first coordinate maps F' onto a closed set in R/Z which is invariant
under the homeomorphism (‘rotation’) z — z + «. As R/Z is minimal under
this homeomorphism [a € Q, so every ‘orbit’ {z + na (mod 1) : n € Z} is
dense in R/Z] it follows that ¢[F| = R/Z. Hence for every (z;,z>) € X there
1s a point of the form (xy,x3) in F. But then for suitable g € R/Z we have
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e s — I _ - - . - -
(r1,22) = ¢ - (r1,x5) € g- F. If R/Z = H then g- F = F. hence (ry,rs) € F.
S50 in this case X = F, and X is minimal under f.

Tt

Assume that H # R/Z; then there exists a character (1.e., a continuous ho-
momorphism of groups) x : R/Z — R/Z with \ # 0 and \ |z= 0 (see [15].

23.26). For every x € R/Z there exists ¢ € R/Z with (x,g) € F |see above].
e, g-(xr,0) € F; put 7(x) := y(¢). In this way one unambiguously defines a
mapping 7 : R/Z — R/Z [if also (r,g,) € F then (—=g +¢,)- FNF # (. so
g1 — g € H and x(g1) = x(¢)]. In order to show that 7 is continuous, note that
the graph of 7 is the following subset of (R/Z) x (R/Z):

F(T) — {(1", T(ﬂi")) S AS R/Z} — {(-«'ll \(9)) : (l"a!}) S F} — (17dﬂ;a/z;%:. X \)[F]-

As F'is compact and idp /7. X x 18 continuous it follows that I'(7) is closed; as R/Z
1s compact it follows that 7 is continuous ([21], Problem 119 in Sec. 6.7). Now

note that for (z,g) € F also (x+a,g+x) = f(xr,g) € F, so by the definition of
T: -

T(r+ o) = x(g+ ) = x(g9) + (r) = 7(x) + ().

However, the character y on R/Z is of the form x — nx for some n € Z, n # 0
because x # 0 on R/Z (see [15], 23.27(a)). So we get for every r € R/Z

T(x + «) = 7(x) + nx. Now a homotopy argument shows that this is impossible.
Heuristically this argument is as follows: view R/Z as the unit circle in C; if
runs precisely once counter-clockwise through this circle then so does x + «, but
according to the above formula 7(x 4+ «) makes n more complete windings around
the circle than 7(x) does, which is impossible if 7 is continuous and n # 0. So
H # R/Z is impossible.

T'his example also illustrates Furstenberg’s Structure Theorem. For let (Z,Y, o)
be the flow with ¥ = R/Z and o(n,y) := h"(y) for (n,y) € Z x Y, where h is
the homeomorphism of Y defined by hA(y) = vy + o« (y € Y). As was already
observed above, (Z,Y, o) is a minimal flow. Moreover, the continuous surjection
¢ : (xry,rs) — 1y : X — Y satisfies the equality oo f = hog, hence go f" = h''og
forall ne Z. Soo¢ : (Z, X, ) — (Z,Y,0) is an extension of minimal flows. It
has the following properties:

(a) On every fiber {x} x (R/Z) of ¢ the group {f" : n € Z} acts as a family of
isometries, each mapping this fiber onto the fiber {h(x)} x R/Z.

(b) The flow (Z,Y, o) is isometric.

Thus, (Z, X, m) is an isometric extension of an isometric flow, in accordance with

FST.

2 NOTATION AND PRELIMINARIES

In the remainder of this paper, T  will be an arbitrary topological group with
identity e; the group operation in T" will be written as a multiplication®. A 7T-
flow, or just: a flow X consists of a compact Hausdorft space X (the phase space

N v o

2} Much of what follows is trivial if T is compact, so T should be assumed to be not
compact. In fact, the topology of T will play no explicit role at all, so 7" might be assumed to
be discrete.
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of X') and a continuous action of 7" on X. We shall not use special symbols to
denote actions; thus, a (continuous) action of 7' on X is a (continuous) mapping
(t,x) — tr : T x X — X such that s(txr) = (st)r and ex = & for s,t € T
and r € X. Flows will be denoted by script symbols (X, YV, Z,...) and their
phase spaces by the corresponding capitals in italics (X.Y, Z....). A morphism
of flows ¢ : X — ) is a continuous mapping ¢ : X — Y such that ¢(tr) = to(x)
for all t € T and r € X. A morphism is called injective, surjective or bijective
whenever the underlying continuous mapping is injective, surjective or bijective,
respectively. A surjective morphism ¢ : X — )V is called an extension of JV
(in that case ) is called a factor of X'), and a bijective morphism ¢ : X — J
is called an isomorphism; in the latter case, ¢ : X — Y 1s a homeomorphism
and ¢! 1 Y — X is also an isomorphism. If £ : X — Z and n : Y — Z are
extensions then we shall say that n is a factor of £ (relative Z) whenever there
exists a surjective morphism ¢ : X — ) such that £ = 7o ¢ (such a ¢ 1s not
necessarily unique). Note that a flow ) is a factor of a flow A’ iff the extension

Y — (%) is a factor of the extension X — (x); here (%) denotes the trivial flow
consisting of one point (with the obvious action of 7).

A subset A of the phase space of a low X' is inwvariant whenever TA = A, l.e.,
whenever Ta C A for all r € A (here Tx := {tx : t € T} is the orbit of x); A
is called a minimal set in X whenever A # (), A is closed and invariant and A
is minimal (under inclusion) for these properties, i.e., if ) 2 B C A, B closed
and invariant, then B = A. Clearly, a non-empty subset A of X is minimal ift
Txr = A for every r € A (the bar denotes closure; note that the closure of an
invariant set is invariant). If X is a minimal set in X then X is called a minimal
flow. If ¢ : X — Y is a morphism of flows and A is a (closed) invariant set in X
then ¢|A] is a (closed) invariant set in ). So if Y is minimal then ¢[A] = Y; in
particular, ¢ is surjective. If B is a (closed) invariant set in )} then ¢~ [B] is a
(closed) invariant set in X'. So if A is a minimal set in A then ¢|A] is minimal
in ) [cousider a closed invariant set B C ¢[A]: then AN ¢~ [B] # 0 hence
A C ¢ |B], and ¢|A] = B]; in particular, if ¢ : X — ) is an extension and X
1s minimal then )V 1s minimal.

Recall that a compact space X has a unique uniform structure Uy compatible
with the topology: all subsets a of X x X that include the diagonal Ay :=
{(r,r):x € X}in their interior (with respect to the product topology on X x X).
A flow X is equicontinuous whenever T acts as a (uniformly) equicontinuous
group of transtormations of X with respect to the uniform structure Ux, i.e.,

Vo e Uy 80 €eUyx : T3 C a.

|

Here T3 has to be interpreted in the low X’ x X, i.e., the coordinate-wise action of
T on X xX;thus, T3 := {(txy,txs) : t € T&(xy,22) € 3}. ( The equicontinuous
minimal flows are well understood. They can be classified by means of (classes
of non-conjugated) closed subgroups of the Bohr compactification of T'; see e.g.
1], Theorem 6 on p. 53. Briefly, this is because their enveloping semigroups are
compact topological groups, hence factors of the Bohr compactification.)

closure of the orbit of (r;,z2) in the flow X x X is disjoint from Ax, i.e.,
T(xy,r2) N Ax = 0: equivalently: if r; # x5 then there is o« € Uy such that
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T'(x1,29) Nov = (B, which can be expressed by saying that tr; and try remain
always «-apart from each other (o depends on (xry, x»)). It is easily seen that in
case X 1s metrizable this definition is equivalent with the one in the Introduction.
A fundamental result is that the phase space of a distal flow is a union of minimal
sets. (This is not a trivial result. It follows quite easily from the fact that for
a distal flow the enveloping semigroup is a group. In this context the following
terminology is convenient. In an arbitrary flow X a pair of points xy,xy € X
s called a proximal pair whenever T'(x1,x5) N Ay # (), i.e., whenever there is
a net {t,}~er in T and there is a point x in X such that t~x; ~ r along I' for
1 =1,2. If 1,29 € X and either r; = - or (r1,22) 1s not a proximal pair then
(x1,x2) is called a distal pair. Thus, (r1,x2) is both a distal and a proximal
palr ift x; = x5. Clearly, a flow X is distal iff all pairs of points z;,2y € X
form a distal pair. Similarly, a low X is called proximal whenever all pairs
of points x1,z2 € X are proximal. (It can be shown that if T is Abelian, or
more generally: T' = K.S with K a compact set in T and S a nilpotent normal
subgroup, then 7" admits no non-trivial proximal minimal flows: cf. '13], 11.3.4.
The natural action of T := SL(2,R) on the projective line P! - i.e.. the unit
circle in R* with antipodal points identified - is a proximal minimal flow: P! is
even homogeneous under SL(2,R), and proximality follows from the fact that

under the sequence {tx }ren with ¢ = (é ’i) all points of P! converge to the same

point.)

It is not difficult to show that equicontinuous = distal for any flow X. [If
ri,r2 € X and x1 # xo then (x(,x2) &€ « for some o« € Uy let 3 € Ux with
't C a. Then T(xy,z2) N B = 0, for otherwise (ry,r2) € T3 C «.] The
example in the Introduction shows that the converse is not true in general, not
even for minimal flows. The notions ‘proximal’ and ‘distal’ are opposed to each
other: if a flow X" is both proximal and distal then X = (x) [now X x X = Ax].
(Actually, more can be said: if X' is a distal minimal flow and Y is a prozimal
minimal flow then X x Y is minimal: cf. [13], I1.1.3. Much attention has been
devoted to the question for which classes M; and M5 of minimal flows one has
A X ) minimal for X € M, and Y € My; see e.g. Chapter VI in [22].)

A flow X is said to be ergodic whenever each invariant set is either dense or
nowhere dense (this is adapted from ergodic theory, where a measure preserving
flow is called ergodic whenever every invariant measurable set has measure 0 or
has a complement of measure 0); equivalently, X is ergodic iff every non-empty
open 1nvariant set 1s dense, iff for every pair of non-empty open sets U and V
in X one has TU NV # 0. If X s metrizable then X is ergodic iff there is a
point in X with dense orbit. ['If’ : Let Tx = X and let ) £ U C X, U open and
invariant. Then U NTx # 0, hence x € TU = U and Tx C U, so U is dense.
‘Only if’: Let B be a countable base for the topology of X, and assume () & B.
For every U € B, TU = | J{tU : t € T} is an union of open sets (each t € T
acts as a homeomorphism of X) so TU is open; as TU is invariant it is dense
(ergodicity). By Baire’s theorem, D := ({TU : € B} is not empty. For x € D
the orbit T'r meets every U € B, hence is dense.]

A flow A& is called weakly mixing whenever the flow A x X is ergodic. This
1s the opposite of equicontinuity: if X s both equicontinuous and weakly mixing
then X = (x). [Suppose there are x1,z2 € X, 7 # x2. Then there is a € Uy
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with (z,,r2) € @. Let 3 € Ux be such that T3 C o (equicontinuity). As J has
non-empty interior in X x X we have T3 = X x X (& x X is ergodic), hence
a = X x X. Contradiction.] In this statement ‘equicontinuous’ can be replaced
by the weaker property ‘distal’; this is a consequence of the following theorem:
if a flow X is both distal and ergodic then X is minimal. [Indeed, if &' is distal
and weakly mixing then X x X is easily seen to be distal; as &' X A& 1s ergodic,
the result implies that X x X is minimal. But Ay is closed and invariant, so
X x X = Ay, hence ¥ = (x).] The proof of this theorem is rather easy In
the case that X is metrizable: in that case ergodicity of X implies that A" has a
point with dense orbit (see above). Distality of X implies that A" is a union of
minimal sets. So if X" is both distal and ergodic then A is minimal. In the case
that X is not metrizable the result was proved in [7] by an ingenious reduction
to the metric case (see 4.1.1 below).

[t is easy to see that a weakly mixing flow has no non-trivial equicontinuous
factor [every factor of a weakly mixing flow is weakly mixing, hence if it is
equicontinuous then it is trivial]. Rather simple examples show that the converse
need not be true, not even for minimal lows. Much attention has been paid to the
question under which additional conditions a minimal flow without non-trivial
equicontinuous factors is weakly mixing; see [22|, Chap. VII for an overview.
This question is related to the FST; see below.

The above properties for flows are examples of ‘absolute’ properties. Flows
can also have properties ‘relative a factor’; in practice those ‘relative’ properties
are properties of extensions such that, when applied to extensions of the form
X — (*) one gets the corresponding ‘absolute’ property for X 3. ‘Relativization’
of the above mentioned properties yields the following:

An extension ¢ : X — Z is called proxzimal or distal whenever all pairs of points
r1,ro € X for which ¢(x,) = ¢(x2) are proximal or distal, respectively. Clearly,
a flow X is proximal or distal iff X — (%) is a proximal or distal extension.
In the same vain, an extension ¢ : X — Z is equicontinuous whenever the
equicontinuity condition for X holds only on fibers of ¢ (and uniformly so in the
fibers):

Vo € U}{ Ed - UX X (151,;1”:2) & 13& Qf)(l‘l) = (;b(l_g) —
(txy,txo) € avfor allt € T.

(Equicontinuous extensions have a well-understood structure. For example, it
can be shown that if ¢ : X — Z is an equicontinuous extension of minimal
flows then ¢ : X — Z is a fibre bundle: there is an extension 6 : Xy — Z of
which ¢ is a factor, say under v : Ay — X (i.e., 8§ = ¢ o ¢) which is of the
following special form: there is a compact group K acting continuously as a
group of automorphisms of Ay such that the K-orbits in A are just the fibers of
Y. It follows that every fiber ¢ [z| of ¢ is homeomorphic with K /Ky for some
closed subgroup Ky of K (2 € Z). For details, see [3], 3.17.4, combined with
8], 1.13. This can be used to show that if, in addition, X is metrizable, then ¢

®) Extensions can also have properties that are not ‘relative’ in this sense, i.e., that have
no meaningful ‘absolute’ counterpart (e.g. because X — (*) has such a property iff X = (x),

or because X — (*) always has the property; an example of the latter is the property for
extensions of being an open mapping).
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1s 1sometric according to the definition in the Introduction: see [5], p. 159 (this
proof is not correct; for another proof, see 4.3.5 below). This structure can easily
be recognized in the example in the Introduction.) As in the absolute case one
shows that every equicontinuous extension is distal [insert ‘¢(x;) = ¢(r2)’ in
the appropriate places in the proof of the absolute case], and that an extension
which is both distal and proximal is ‘trivial’ in the sense that it is an isomorphism
levery fiber consists of one point, i.e., ¢ is injective, hence a homeomorphism].
For an extension ¢ : X — Z the set
Ry :=A{(r1,r2) € X x X : ¢(xy) = o(a2)}

(sometimes it is convenient to write R(¢) for R;) is a non-empty [Ax C R]
closed [¢ is continuous] invariant [¢(r;) = ¢(x2) implies o(tr;) = to(xr,) =
to(xre) = @(txo)] set in the flow X x X. By restriction of transformations it
defines a ‘subflow’ of X x &X', denoted by R,. Note that an extension ¢ : X —
1s completely determined by R,: if also ¢ : X — Z is an extension then Ry, C Ry,
iff there is an extension 7 : YV — Z such that » = no ¢, and n is an isomorphism
(1.e., up to isomorphism ¢ = ) iff Ry = R,. The extension ¢ is called weakly
muxing whenever the flow R, is ergodic.

As in the absolute case, an extension that is both equicontinuous and weakly
mixing 1s trivial, i.e., an isomorphism [note that equicontinuity of ¢ : X — Z
can be expressed as follows: Vo €e Ux 33 C Ux : TGN Ry, Ca; as TGN Ry =
T(BN Ry) = Ry (Ry is ergodic), we get o« O Ry for every a € Ux; hence
R4 Ax|. This implies that a weakly mizing extension has no non-trivial
equicontinuous factors. [Let 8 : X — Y and ¢ : )V — Z be extensions such
that ¢ := ¥ 0 6 1s weakly mixing. Then 6 x 6 maps R, onto R, hence if R
1s ergodic then R, 1s ergodic, i.e., if ¢ is weakly mixing then so is its factor v.
It ¢ 1s also equicontinuous then i is an isomorphism.] Again, one may ask for
sufficient conditions for the converse. In order to explain the relevance of this

question for the FST we mention the following results (see e.g., [9]):

|

THEOREM. Let ¢ : X — Z be an extension of flows. Then ¢ has a factor-
ization of the form

X 2, zZ
D o \ /‘ Vo
Ve

where @~ has no non-trivial equicontinuous factors and V¥~ ts a (possibly trans-
finite) composition® of equicontinuous extensions.

PROOF (outline). If ¢ has no non-trivial equicontinuous factors then take ¢.. =
¢ and Y5 = idz. In the other case, ¢ = ¢y 0@, with ¢y a non-trivial equicontin-
uous extension. Now apply the same reasoning to ¢,. Continue the process by
transfiinite induction, taking inverse limits for limit ordinals. We get factoriza-
tions @ = ¥ o @), where the ) are transfinite compositions of equicontinuous

%) We shall not give a formal definition of ‘transfinite composition’ of extensions. The idea

will be clear from the proof.
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extensions, and where the A’s run through an initial segment of the ordinals.
For some A we must have ¥y+; = ¥5: the sets R(¢y) form a decreasing family
of subsets of X x X, so the cardinality of the set of mutually different members
of this family cannot exceed the cardinality of X x X. But if R(¥x+1) = R(¥x)
then (up to an isomorphism) ¥’»11 = ¥». This means that ¢, has no non-trivial
equicontinuous factors. a L

What we shall show (or at least: indicate proofs of) below are the following:

- 1f in the above theorem ¢ is a distal extension of minimal flows then ¢ 18
weakly mixing:
- a weakly mixing and distal extension of minimal flows is an isomorphism.

However, if ¢ is distal then so is ¢ [clear from R(¢~) C Ry], hence by these
two statements ¢, is an isomorphism. This proves ([9].[7],[17]):

F'ST FOR DISTAL EXTENSIONS. Fuvery distal extension of compact minimal flows
s a transfinite composition of equicontinuous extensions.

(The technical term, often used in the literature, for a transfinite composition
of equicontinuous extensions is strictly-I-extension, where the ‘I’ comes from
‘isometric’.)

3 DISTAL AND NO NON-TRIVIAL EQUICONTINUOUS FACTOR IMPLIES WEAKLY
MIXING

We need some preliminary results about distal extensions. For the understand-
ing of the proofs it is sufficient that the reader is familiar with Chapter I of [13].

3.1 PROPOSITION. Let ¢ : X — Z be a distal extension of minimal flows.
Then:

1. The set Ry s a union of minimal subsets of X x X.

2. The mapping ¢ : X — Z is open.

3. ror every proximal extension i : Y — Z with YV a minimal flow the set

R(o,v) == {(r,y) € X xY : o(z) =¢(y)}

1s minimal in the flow X x Y (coordinate-wise action of T on X x Y).

PROOF.

1. Apply [13], I1.1.2 to the (distal!) extension (z,z’) — ¢(x) : Ry — X.

2. See (1] ,p. 142.

3. ‘Relativize’ {13], I1.1.3, as follows: the restriction to R(¢, ) of the projection
X xY — X defines a proximal extension R(p,¢¥) — X, so by [13], I1.1.1 the
flow R(¢, 1) has a unique minimal set. Similarly, the projection R(p, ) — Y
is a distal extension, so by [13], II 1.3, R(¢, ¥’) is a union of minimal sets. So
R(¢, 1) is minimal. O

For the study of extensions with no non-trivial equicontinuous factors we shall
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use the notion of a continuous invariant fibre-wise pseudo-metric (abbrevia-
tion: CIFP). A CIFP for an extension ¢ : X — Z is a continuous mapping
p: Ry, — R™ such that

N P~ » | M - | ry N
(C.1) Vz € Z : p|p—[2]xp—[z] 18 & pseudo-metric on ¢ [z],
(C.2) V(xr1,22) € Ry Vt € T : p(txy,txa) = p(11, I2).
Thus, the conditions p(z1, x2) = p(x2,r1) and p(ry,x3) < p(x1,r2) + p(xs, x3)
hold only for points x1,rs and x3 with ¢(x;) = o(x2) = ¢(x3). If pis a CIFP
for  on X then it 1s easy to see that

Dy(p) := {(z1,72) € Ry : p(x1,22) = 0}

is a closed invariant equivalence relation on X. If ¢ admits a CIFP p such that
Dy (p) = Ax then ¢ is equicontinuous. For let a € Ux. By a compactness argu-
ment there exists € > 0 such that S, := {(z1,12) € Ry : p(x;,12) <€} CaNRy
[ may be assumed to be open, and ({S. : € > 0} = Ax € a N Ry|.
There exists 3 € Ux with 3N Ry C S. [Se is a nbd of Ay in Ry]. Then

TB3NRy CTSe =S € . So ¢ is equicontinuous. More generally, we get:

3.2 LEMMA. Let ¢ : X — Z be an extension with no non-trivial equicontin-
wous factors. Then every CIFP p for ¢ is zero on Ry, i.e., Dg(p) = Ry.

PROOF. As D,(p) is a closed equivalence relation on X the quotient space
X/Dy(p) is a compact Hausdorff space. As Dy(p) is invariant, an action ot 7" on
X/Dy(p) can be unambiguously defined by tg(x) := q(tr) for t € T'and r € X
(here ¢ : X — X/Dy(p) is the quotient map). Thus we get a flow X/ Dy(p).
As Dy4(p) € R, (by definition) there is an unambiguously defined continuous
mapping ¢ : X/Dy4(p) — Z such that ¥(qr) = ¢(x) for r € X. Actually,
qg: X — X/Dy(p) and ¢ : X/D,(p) — Z are extensions of flows, and ¢ = y»ogq.
i.e.. ¥’ is a factor of ¢. Now define o : R, — R by o(q(x1).q(x2)) := p(xr1,12).
Then o is a well-defined [for R, = D,(p)] CIFP for v» on X'/Dy(p) and it is
easily seen that Dy, (o) = Ax/p,(p)- S0 by the remark preceding the lemma,
Y is equicontinuous. So by assumption, iy is a bijection, which implies that

D(p(p) = Ry. .

Next, we want to prove a kind of inverse to the preceding lemma: if every CIFP
for ¢ is zero on Ry then ¢ is weakly mixing (which, in general, 1s a stronger
condition then ‘no non-trivial equicontinuous factor’). To this end we need a
device to construct CIFP’s. For such a construction we need the notion of a
Relatively Invariant Measure (abbreviated: RIM).

If X is a low then the space of all probability measures on X will be denoted
by M;(X). Recall that a probability measure on X is a regular Borel measure
1w on X with u(X) = 1 (‘regular’ means in this case that if A is a closed set in
X then u(A) = inf {u(U) : U open and U 2 A}). For every pu € M;(X) and
t € T define tu by

(t11)(A) := pu(t~ ' A) for every Borel set A in X.

It is easy to see that tp € M (X) for all t € T and p € M;(X) and that in this
way an action of T on (the set) AM;(X) is defined. If fu = p then p is called an
invariant measure on X. The ‘relativization’ of this notion is as follows:
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: X — Z with section A : Z2 — M (X) and let
Re. For r € X, put

r,r'ye N}.

(learly, N U’*] is daw d in X,N[r] € o7 [r] and tN[r] = Nltr| for all t € T.
Moreover, if X land N # 0 then N|r| # @ for all r € X [the projection
of X x X onto its h ht f actor X 18 an extension of Hows X’ x A — X', hence it
' V X|. For an arbitrary non-empty closed invariant set N in R, put

prnlri.r) = A, (N[r|]AN|ry]) for (ry,x2) € R,.

Here "2\ denotes the symunetric difference of sets. Note that pn 1s well defined
because the symmetric difference of the closed sets N|r{| and N|[r,| is a Borel
set in X. Now we have:

3.3 LEMMA. Let 0 : X — Z be a RIM-ertension of minimal flows with sec-
tion A and let N be a non-empty closed invariant set in R,. Then pn as defined

above 1s a C'IFP.

PrROOF. It is straightforward to check the conditions (C.1) and (C.2) for py
(for the proofs one needs only (R.2)). The proof that py is continuous is a bit
tricky and uses condition (R.1) and regularity of all involved measures as well
as minmmality of X'. We shall not give it here; for details, see [20] (or ‘relativize’
the proof on p. 128/129 of [1]).

The following ‘technical’ lemma is

are useful.

precisely the heart of the reason that RIM’s

:3 » 4 E‘J E‘: P’vg i\g .uA . [.J’ fﬁi é,j " A ﬂ TL d ;) ‘Z\/ ble a S' (L bJO ??6% . TW}' ZH E’fﬁ 72; f c) ?t ﬁf ,r{ ) E,) Tmz / ( -.,F 1 : th :2 ) E D (z‘) ( [) ;V, )
and ever oty open set U in X :

A B e W O SRR, | { ANl 1 - 2 A G ~ ATl.
U0 Supp Agr,y © Nire] = UnN Supp A\y(y) C© Ny

PROOF. Assume the left-h:

wnd inclusion. Then

Aot (UNNLE]) € Agien)(N[x2] \ N[ry]) < pa (2, 11) = 0.

As U \ .{\fg'
Am g }3 %0’

1s an open set this means that U \ N[r,] is disjoint from Supp

‘; ﬂ Sllpi) ﬁ\@(r 2 ) C j\* [.T ] | :]




3.5 LEMMA. Let ¢ : X — Z be an open RIM-extension of minimal flows and
assume that every CIFP for ¢ is zero on R,. Then ¢ is weakly mizing.

PrROOF. We have to show that if (U; x Us) N Ry and (Vi x Vo) 1 R, are
non-empty basic open sets in Ry (U; and V; open in X for ¢ = 1,2) then

(Vi x Vo) N T(Uy x Uz) N Ry # @ or, equivalently, (Vi x V5) N N # (), where
N :=T(U; x Us) N Rs. Note that NN is a closed invariant subset of Ry, so ac-
cording to 3.3 we have a CIFP py for ¢. By assumption, this CIFP is zero on
Ry.

Observe that we may assume that ¢[U,] = ¢[Us] and ¢[V}] = ¢[V5] Jreplace
Ui by U; "¢~ U], where U := ¢[U;] N ¢[Uz] # @ and open (because ¢ is open):;
similar for ‘/z (Z — 1, 2)]] Let top € I with W .= t(j)Ug M Vg % @ [[SUC}'l Lo ex1Sts
because X is minimal] and select w € W such that w € SUpPpAy(w)- [This is
possible: pick any xg € X and ' € SuppAys(.,) € ¢ [dxp]. Then ¢(z') = ¢(xg),
So &' € SuppAy(.), hence tz’ € Supp Ap(tzr) forallt € T. As 2’ has a dense orbit
one can take ¢ such that w := tx’ € W.| By the choice of U; and V; (i = 1, 2)

there are 1 € Vi and xy € toU; such that ¢(x,) = ¢(w) = ¢(x2). Then

D # ({x2} x W)NRy Cto(Uy xUz)N Ry C N,

and it follows that W N ¢~ |[gpx2] € Nx2|, hence certainly W (1 Supp Ay(p,) C
N|x3]. Now recall that pn is zero on Ry, so that in particular py(z,22) = 0.
S50 by 3.4 we get W N Supp Ap(z,) © Nzi]. Asw € W and w € Supp Ap(w) =
SUPP Ap(z,) [@(x2) = ¢(w)] it follows that w € N[z], that is, (z;,w) € N. Bu
also (z1,w) € V1 x Va,s0 (V1 x Vo)N N # 0. O]

U,
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Z be an open RIM-ertension of minimal flows.
inuous factors then ¢ s weakly maring.

s
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Ve want to replace in the above Corollary the condition ‘open RIM™ by ‘dis-
tal’. (It can be shown that every distal extension o f minimal Hows 1s an open
RIM-extens: But for the proof - at least, as far as I know - one needs the
e want to prove.) For that purpose we shall use the fol-

he an ertension of minimal flows. Then
of extensions of minimal flows

with the following properties:

(a) @ and T are prorimal extensions,

is @ minimal set in R(¢,7)° and o and ¢' are the restriction to X' of the

{m mf is a RIM-extension,
cof X x 7' onto X and Z', respectively.

.!#" kY

canontcal projections

[12]. The proof uses methods from functional f:umly‘ﬂs like the

rmmwl\«fﬂnmn theorem and properties of the ‘barycenter map’ of compact con-
sets in locally convex spaces. The flow Z’ is obtained as a certain su bflow

of the natural flow on M (X). O

3.8 LEMMA. Let ¢ : X — Z be a distal ertension of minimal flows. Then
mn m e diagram of 3.7 we have:
I. a; 18 distal, hence open.

2. X' = R(¢, 1), hence (o X )[Ry

PROOF.

1. Let (x,x,) € Rg. Then clearly (ox',0x,) € Ry, so (ox},0r)) is a distal
pair (by the definition of ‘distal extension ). If (2, x5) were a proximal pair
then also (ox|,ox;) would be a proximal palr [straightforward], so we would
have ox| = ox). To zether with ¢'(2}) = ¢'(x5) this would impl y ry = x, [¢
and ¢ are pmjmtums. Thus, (x},z)) is either not proximal, or x| = x%: so by
definition (x',x}) is a distal pair. This shows that ¢’ is a distal extension. By
3.1.2, ¢ is open.

2. By 3 1.3, R(¢,7) is 1311111111&1 hence X' = R(¢, 7). Now consider (ry,r2) € Ry
wand let y = o(a 1) = (x9) and y' € 77 |y|. Then for 2 1, 2 we have
R(p,7) = X émd therefore ((xy,y'), (x2,y")) € Ry . This element of
ppmi onto (..rh To) by o X 0. This shows that (o x o)[Ry4| 2 Rs. The

*!»«-—w

- |l

RW 1S 1

%) F‘«W th-?‘i leh ' .-'(ﬁi)., ) see 3.1.3. By R(¢, ) we denote the subflow of X x Z’ on

d@ﬁ nition of R
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inclusion (o x o)[Ry ] € Ry is trivial.

3.9 PROPOSITION. Let ¢ : X — Z be a distal ertension of minimal flows.
If ¢ has no non-trivial equicontinuous factors then ¢ is weakly mixing.

PROOF. Consider a diagram as in Theorem 3.7. We shall first show that ¢’
18 weakly mixing. By 3.7 (b) and 3.8.1, ¢’ is an open RIM-extension, so by 3.6
it 18 suflicient to show that every CIFP for ¢’ is zero on Ry4. So let p' be a

¢. Assuming that this has been proved, we proceed as follows: by 3.2 and the
hypothesis on ¢, p is zero on Ry, hence p’ is zero on R, just what we wanted
to prove. This completes the proof that ¢’ is weakly mixing, i.e., that R, is an
ergodic flow. As o X o maps Ry onto Ry, it follows easily that R, is an ergodic
flow, 1.e., that ¢ is a weakly mixing extension. This completes the proof of the
proposition. It remains to prove the above claim: every CIFP p’ for ¢’ factorizes
as p' = po (o x o) with p a CIFP for ¢. The proof is as follows.

Let (z1,22) € Ry. Then there exists (r},x5) € Ry with (o x o)(x),2y) =
(1, x2) [cf. 3.8.2]; put p(xy,x2) := p'(x},25). This unambiguously defines a
function p: Ry — R™. For if also (o x o) (xf,25) = (x1,x2) for (zf,25) € Ry,
then there are z’, z"” € Z' such that x} = (z;,2') and z] = (x;,2") for i = 1,2
[recall that ' = (o(z'), ¢'(x")) for every ' € X'; so just take z/ = ¢'(2]) =
o' (x5) and 2" = ¢'(xf) = ¢'(24)]. Note that 7(2') = 7(2") [¢poo = 70 ¢" and
o(x;) = o(z!)], hence (2, 2") is a proximal pair. It follows that there is a net
{tx}rea in T such that the nets {t 2’} and {t,z"} converge to the same point
2V € Z’. Along a suitable subnet we have t\x; ~ T; for some T; € X [X is
compact], so if we put z¥ := (T;, 2") for i = 1, 2, then

t)\fl?;; == (t)\iﬁ?;,t)\z’) ~ (Ti,zo) = .L? for]l =1, 2

along this subnet (the same subnet for z/ and xb); similarly, t 2! ~» 2z} for
: = 1,2 along this subnet. It follows that

() = {0zt arh) ~ p (b

[the equality follows from condition (C.2) for a CIFP], hence p'(z7,25) =
o' (29, xY). Similarly, p'(z{,z%) = p' (2], 23), and we may conclude that p'(z7, x5)
= p/(z,z4). This shows that in the above the function p is unambiguously de-
fined. Note that by the definition of p we have p’ = po (o X 0). Aso X 0 is a
quotient map it follows that p is continuous, and the conditions (C.1) and (C.2)

are easily verified for p. This completes the proof of the claim. C

4 ‘DISTAL AND WEAKLY MIXING' IMPLIES ‘TRIVIAL’

In the ‘absolute case’ we have scen that an crgodic and distal flow is minimal,
and that in the metric case this was quite easy to prove. The corresponding
‘relative’ result 1s:

4.1 THEOREM. Let ¢ : X — Z be an extension of minimal flows. If ¢ s
both distal and weakly mixing then ¢ is an tsomorphism.
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PROOF. In the case that X and Z are metric spaces the proof is easy: 1n
that case the ergodic flow R, contains a point with dense orbit. But by 3.1.1,
R, is a union of minimal sets. Hence R4 is a minimal flow: the point with dense
orbit is situated in a minimal set M of Ry, so A is dense in Ry, i.e.. M = Ry.
But Ay is a closed invariant set in R4, so Ay = R,. This implies that ¢ 18
injective, hence ¢ is an isomorphism.

To reduce the general case to the metric case a construction has to be used
that, for the absolute case, was invented by R. Ellis in [7], and that was ‘rela-
tivized” by McMahon & Wu in [17]. For any open extension (and recall that a
distal extension is open: see 3.1.2) ¢ : X — Z, for any countable subgroup H
of T' and for any continuous pseudo-metric d on X there exists a commutative
diagram of continuous surjections

- O
X %z
on | L TH
e O H
X }} > Z H

with the following properties:
_ ok s o mn ) NN N £ O
(a) X7 and Zy are compact metric spaces.

(b) There exist continuous actions of H on Xy and Zy such that oy, ¢y and
T are morphisms of H-flows (note that by restricting the action of 7 to
H also ¢ is a morphism of H-flows).

We shall not describe the details of the construction. In [17] it is shown that
if ¢ 1s not an isomorphism then the continuous pseudo-metric d on X can be
chosen such that ¢gy i1s not an isomorphism. Fix d such that this is the case.
On the other hand, if o : A — Z is a weakly mixing extension of minimal flows
(for 7°) then (for given d) H can be chosen such that ¢y is a weakly mixing
extension of minimal H-flows. Moreover, it is not so difficult (using standard
techniques which we have not discussed) to show that if ¢ is distal then ¢y is
distal as well (provided X7; is minimal under H). Conclusion: if ¢ is a distal
and weakly mixing extension of minimal 7T-flows, then for suitable H, ¢y is a
distal and weakly mixing extension of metric minimal H-flows. Hence ¢ 1s an
isomorphisni: contradiction. This implies that ¢ is an isomorphism. [

REMARK. The observation that, for suitable H, ¢y is weakly mixing and distal
is not in [17]: in that paper ¢y is only shown to be ‘point-distal’ and to have no
equicontinuous factors. Then a quite deep result from |6] is invoqued to show
that ¢y is an 1somorphism. A complete version of the above proof will be pub-
lished in the near future.

4.2 COROLLARY. Let ¢ : X — Z be a distal extension of minimal flows. If
® has no non-trivial equicontinuous factors then ¢ is an isomorphism.

PRrROOF. Clear from 3.9 and 4.1. ]
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As is observed at the end of Section 2, this is just what is needed to com-
plete the proof of FST.

4.3 REMARKS (for specialists only).
1. The proof of 3.5 is a simplification of arguments used in [20]. These, in turn,
were based on techniques from [16].
2. By a minor modification the proof of 3.5 can be adapted to a proof of the
following: Let ¢ : X — Z be an open RIM-extension which has no non-trivial
equicontinuous factors. Then for every ry € X and every non-empty relatively

that if X is metrizable every fiber ¢ |oxry| of ¢ has a dense subset of points
x such that (rg,xr) has a dense orbit in R,. Using this it is standard to show
that an open RIM-extension of metric minimal flows that is point-distal and
has no equicontinuous factors is an isomorphism. Using an ‘improved’ version
of 3.7 (with (b) replaced by: ¢’ is an open RIM-extension; see [22]) one then
concludes: a pownt-distal extension of metric minimal flows with no non-trivial
equicontinuous factors is an isomorphism. Thus, also the main result of [6] can
be proved without using ‘7-topologies’ via RIM's.

3. The proof of 3.9 is based on a technique that is used in |11].

4. The techniques used in Section 4 can be used in precisely the same way to
show that a RIC-extension of compact minimal flows which has no non-trivial
equicontinuous factors is weakly mixing. Using the ‘improved’ version ot 3.7 one
obtains a similar conclusion for Bronshtejn extensions (cf. [19]).

5. Using the techniques ot Section 3 it is easy to see that f ¢ : A — YV 1is
an equicontinuous extension of minimal flows then ({Dys(p) : p is a CIFP for
o} = Ax. If X is metrizable then in this intersection one needs only count-
ably many CIFP’s, say, p1,p2,... Then py := X7 ,27'p; is a CIFP for ¢ and
Dy (po) = Ax. It follows py defines a compatible metric on each fiber. So in this
case, ¢ is an isometric extension according to the definition in Section 1.
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