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In this article | discuss Hopf algebras and their occurrence in various parts of
mathematics and theoretical physics. The main point of view is that Hopf
algebras provide the setting for a more general idea of symmetry than that
atforded by group actions. This is illustrated in a number of settings: ¢-special
functions, quantum inverse scattering, representation theory.

1 PREAMBLE

T'he tollowing few pages are based on lectures I have given in 1988 and 1989 at
various places, notably at the State University of Utrecht, at CWI in Amsterdam.
at the University of Amsterdam, in Bukhta Peschanya on the shores of lake
Baikal on the occasion of the 3rd Siberian School on Algebra and An alysis.

All of these lectures were introductory and addressed to rather mixed audi-
ences desirous of finding out about Hopf algebras and quantum groups and what
they are good for (if anything).
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A great deal of the modern motivation for studying Hopf al gebras 1nvolves
some 1dea of generalized symmetry. This takes many forms and includes such
matters as the quantum inverse scattering method, the theory of ¢g-special func-
tions and the quantization of classical completely integrable systems. This is
the subject matter of Section 3 below. Historically, generalized symmetry 1s also
behind the appearance of Hopf algebras. This time in the form that the coho-
structure 1s particularly nice (Section 4.1). Further motivation for the study of
Hopf algebras comes from representation theory, particularly the representation
theory of the symmetric groups (Section 4.2) and from combinatorics (Section 5).



2 (COALGEBRAS, BIALGEBRAS AND HOPF ALGEBRAS

2.1 Tensor products

Let V be a vector space (over a field K'), with basis e, es,... Think of K as
R or €. A good way to think of V in connection with the remainder of this
section 18 as follows. The ey, ez, . .. represent the pure states of some machine or
(physical) system and the elements of V, i.e. finite sums Y z.e,, are mixed states
or distributions over the pure states. Such an interpretation occurs frequently
in many domains of science; for instance quantum mechanics, game theory and
computer science.

Now consider two machines (for instance) represented by the vector spaces
V. W with bases ej,es,... and f1, f2,... respectively. The pure states of the
combined machine are the ordered pairs (e;, f;) and the corresponding vector
space of mixed states consists of the finite sums ¢;;(e;, f;). This vector space
is the tensor product V@ W of V' and W. The elements of the basis {(e;, f;)}i.;
are conventionally written e; ® f;.

In all of the following A will always be assumed commutative. Then the
tensor product is associative in the sense that there is a natural isomorphism
(EQAF)04aG>2FE®4(F®aQG). It is also commutative: 7 : e ® f— fQe
defines an isomorphism F ®4 F ~ F ® 4 E. The switch morphism 7 and the
assoclativity morphism satisfy all possible coherence conditions.

lta: E— E'and 3: F — F’ are homomorphisms of A-modules then

(@ B)(e® f) = ale) ® B(f)

defines a homomorphism of A-modules E ®4 F — E' ® a F".

2.2 Algebras

An algebra A over K is a vector space over K with a composition structure or
multiplication, i.e., a K-bilinear map 4 x A — A. This is equlvalent to giving
a N-linear map m: A® A — A. A unit element is an element 1 € A such that
la=a-1=afor all @ € A. Specifying such an element U/ in A is equlvalent
to giving a K'-linear map K — A (defined by r — »U. r € K ). The fact that
e : k' — A corresponds to a unit element can be expressed by the commutativity
of the diagrams

_ A A L AR AL A
(221) T&:@idA “ Tsz®f ”
KRAS A AR K = A

where the lower arrows are the canonical 1somorphisms KQA — A, xR a — ra,
and A ® K — A. Associativity of the composition law m : A A — A is ex-
pressed by the commutativity of the diagram

ARARA™ESA A A
lida®m . l T
ARA — A

(2.2.2)
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then commutativity of m : A ©® A — A means that the following dia gram 1s
commutative.

fr7: A A — A® A is the switch map determined by a; 0 as — as & ay,

| A A AR A
(2.2.3) o m
A
It 1s useful to formulate these properties in terms of dia grams (categorical terms)
(without elements) in order to see what the dual structures should be (coalge-
bras, the subject of the next subsection) and to see what algebras would be like

Here are some examples of algebras.

2.2.4 The matrixz algebra

ﬁ ' ‘D . . ’ : e N
Let M, (k) be the n® dimensional vector space with basis vectors e;;i,] =
l,...,n. An associative multiplication is given by

where 05 is the Kronecker delta. There is a unit element, viz. e; + --- + ¢ .

2.2.5 The concatenation algebra

Let {2 be some set (alphabet). Let Q* denote the set of all finite words over €2, i.e.
(2" denotes the set of all finite strings (including the empty string o) ayas - - - a,,,
a; € {). Let A(£2) be the vector space of all finite sums Sz w, w € Q*, 2, € K.
An associative multiplication is given by

a1as---a, bl bg Ve b?” = A do Ay, bl b;‘_,g .o bm*

The unit element is the basis vector corresponding to the em pty word.

2.2.6 The merge algebra

There is a second, somewhat less familiar, algebra structure on A(£2) known as
‘merge’ or ‘shuffle’. Given two words w; = @y« Uy, W2 = Aupap- - Qpap. A
merge or shuflle of w; and wy is a word of length n + m

i — » I.}"' L - L R e,
W3 — C1C9 Crod-mn

such that each of the q;,1 < 7 < n and the a;, n+1 <7< n+4+m appears once
in w3 and such that within w3 the a;,1 < ¢ < n occur in their ori ginal sequence
and so do the a;,n+1 < j < n+m. More formally let Sh(n,m) be the set of all
permutations o of {1,2,...,n+ m} such that o7 () < o7 1(j)if1<i<j<n
and o7 '(n+ k) <o ' (n+1)if 1 <k <l < m. The shuffles of wi and wey are
precisely the words

gl N ry—

an(.’l)CLU(TZ) o Ao (ndm) = O‘(CL 1 ° " (Ln—i—m,)
for o € Sh(n,m). The concept corresponds to the familiar rifle-shuffle in card

playing. The merge algebra now has the multiplication given by

w1 Q@ wo > E o (wiws)
oc&eSh(n,m)



if wy i1s a word of length n and wy is a word of length m. The merges of the
words aba and be are

ababc, abbac, abbac, babac, abbca,

abbca, babca, abcba, bacba, beaba

where | have underlined the letters coming from the second word. Note that
there are repeats. Thus the merge product of aba and bc is equal to

ababc + 2abbac + babac + 2abbca + babca + abeba + bacba + beaba.

To understand how this algebra structure might arise naturally, imagine a ‘black
box’ with two input channels and one output channel which simply passes on
whatever comes in on one of the two input channels. Depending on the timing
of the various letters coming in, the result will be one of the merges of the words
appearing at the two input channels and precisely all merges occur.

aba

The merge multiplication is both commutative and associative. There is also
a unit element given by the empty word.

2.3 Coalgebras

A coalgebra over A is a vector space C with a decomposition structure, a way
of cutting up the elements of C'. More precisely a coalgebra structure is glven
by a A'-linear map

--------

.....

map € : (' — A" such that the following two diagrams are commutative.

giving all ways of cutting up ¢ into ordered pairs (¢}, c!). A counit is a linear

CoC & C C®C+~ C
(2.3.1) | e®ide | | ide®e |
Ao~ C CROQK ~ C

rrrrr it

. CoCoC" ™ coC
(2 32) Tid(ﬁ;@u Tu
cCeC £ ¢

and the comultiplication p is cocommutative if the diagram

CRCS0RC

(2.3.3) N
C

commutes. Associativity corresponds to the following idea. Consider break-
Ing up an element into three pieces. There are two two-step ways of doing this.



First break up t he ob j ect ¢ Into two pileces ¢ and ¢’ and then break u D elther
the first part or t he second part 1Mto two pleces. It 1s natural to re (u ire that the
collection of three part decompositions o btained b v going t hhe hirst route is the

.....
b

tivity. Note the ‘duality’ of diagrams (2.3.1) - (2.3.3) with respect to diagrams
(2.2.1)-(2.2.3).
Some examples of coalgebras follow.

2.3.4 The matrix coalgebra
Consider again the vector space M, (/) of n X n matrices with coeflicients in i\
with the basis ¢; ;,¢,) = 1,...,n. A comultiplication is defined on A, (A") by

f ( €iy ) — Z Cif L)€ Je
A

This is coassociative. There is a counit given by e(e;;) = 1, e(e;;) =0 if ¢ # .

2.3.5 The cut coalgebra

Consider again the vector space A({2) of all distributions of words on the alpha-
beth (2. There is a comultiplication on A(f)) which cuts up each word into all
possible prefix-sufhx pairs:

| n—1
[\L(Cl, | an) = 1®a 1y T E ay - a; A1 Qy T Ay Ay & 1

1= 1
where I have written 1 for (the basis vector corresponding to) the empty word.
There 1s a counit € : A({2) — A, given by e(w) = 0 if w is of length > 1 and
e(1) = 1.

2.3.6 The group coalgebra

Let GG be a group. For the moment and for simplicity let G be finite. Consider
the vector space A(G) of K-valued functions on . The group multiplication
G x G — (G, induces a comultiplication p: A(G) — A(G x G) = A(G) & A(G).

A basis (,)f A(G) is given by the delta functions e,,9 € G : e,(¢') = 1if g = ¢
and e,(g") = 0 if g # ¢'. In terms of this basis

pleg) = Z €g, & €g,.

g1942=g

There is also a counit given by €(e,) = 0 if ¢ is not the unit element of G and
e(e,) = 1 if g is the unit element of G.

It G is an algebraic group (or group scheme) take for A(G) the algebra of
algebraic A'-balued functions on G; then again the multiplication on G induces
a comultiplication on A(G). If G is a Lie group and one considers for instance the
smooth functions Fun (G) on G there are (slight) technical difficulties because
Fun(G x G) 2 Fun(G)® Fun(G). Instead one has to take a suitable completed
tensor product.



2.4 Duality

Let C be a coalgebra over K. Consider C¥” = Homg (C, K), the dual vector
space of all linear functionals on C'. There is a natural linear mapping

p: CPeoCP - (Ceor)?

given by o(f ® g)(c1 ® ¢2) = f(c1)g(ez2). If C is finite dimensional this is an
iIsomorphism of vector spaces. Now consider the composed map

D
m: CP oC"” — (C@G)D — CcP

This defines a composition structure on CP turning C'P into an algebra. If
e : C — K is a counit then e = ¢ : K — CP is a unit. Obviously C'” is
assoclative, resp. commutative, if C' is coassociative, resp. cocommutative.

It 1s somewhat harder to obtain a coalgebra by dualizing an algebra. The
reason is that there is no natural mapping (A @ A)P — AP @ AP, or, that ¢
above 1s not an isomorphism if C' is an infinite dimensional vector space. Instead
of AP consider A° = {f : A — K : Ker(f) contains an ideal of finite codimension
in A}. One (easily) proves that m? : AP — (4 ® A)P actually maps A° into

The pair of functors C' — CP and A — A establishes a duality between the
categorles of algebras over A and coalgebras over A'.

The matrix algebra and the matrix coalgebra are dual to each other. The
dual of the group coalgebra of 2.3.6 is the group algebra K[G] = {>° g Agg  ag €

K’} with the multiplication m(}_ azg,>" byg) = >_o(2_h agn-1br)g (given by
g© h— gh). ‘

2.5  Bialgebras

A bialgebra B over A is a vector space with both a coassociative decomposi-
tion and an associative composition structure. Moreover these structures are
compatible in the sense that e : B — K and p: B — B ® B are algebra homo-
morphisms or, equivalently, that e : ' — B and m: BQ B — B are coalgebra

homomorphisms. In terms of diagrams this means that the following diagrams
commute

BB BeoB® B® B

ltdpRTRidg
(2.5.1) | m B2 B B® B
l megim
B 5 B® B
BB S KoK

(2.5.2)

lm lz

B — K




In words the first diagram says that the result of cutting up a product aja-
in all possible ways is the same as that of cutting up the factors a; and a, and
then combining each ‘prefix-suffix pair’ (a/, a?) of a; with each ‘prefix-suffix pair’
(a3, ay) to form a ‘prefix-suffix pair’ (aa).aal) of ajas. The functor B — BY

defines a duality of the category of bialgebras into itself.

cut bialgebra (or shuffle-cut bialgebra); it is of importance in distributed and
concurrent computing, cf [3,4]. In a certain sense, not the most obvious categor-
ical one, they are free (there are no relations). It seems to me important to try
to understand the sub and quotient bialgebras of this one (which relations are
compatible with the given composition and decomposition structures).

As in 2.3.6 let G be a group and A(G) the vector space of (suitable) A -valued
functions on G. Pointwise multiplication makes A(G) an algebra which together
with the comultiplication of 2.3.6 defines a bialgebra structure in A(QG).

T'he coalgebra structure on Al,(A) of 2.3.4 and the algebra structure on
M, (K) of 2.2.4 do not combine to define a bialgebra structure on MM, (/). Indeed
1 this case diagram (2.5.1) is about maximally far from commuting. Nor do the
cut coalgebra and concatenation algebra structure on A(§)) combine to define
a bialgebra structure (but there does exist the spray-concatenation bialgebra
which is the dual of the merge-cut bialgebra).

2.6 Hopf algebras

v : H — H called an antipode which imitates the map induced by e g P €41 1N
the case of the bialgebra A(G) of a group (cf 2.5). More precisely the antipode
1 : H — H is a linear map such that the following diagrams commute.

ERFEL

As already indicated e, — e,_; turns the bialgebra A(G) into a Hopf al-
gebra. The map 2 : A(2) — A(Q2) defined by (1) = 1 and (a;---a,) =
(=1)"a,a,—1 ---a; turns the merge-cut bialgebra into a Hopt algebra.
Further examples of Hopf algebras and bialgebras will occur later in this paper.
The antipode 2 of a Hopf algebra satisfies :(1) = 1 and (ab) = 1(b)i(a).
In particular if H is not commutative it is not a homomorphism but an an-
tithomomorphism of algebras. Correspondingly if u(a) = > . a) ® a7, then

9



p(a(a) = ¥, o(a) @a(af). |
The functor H — HY defines a duality of the category of Hopf-algebras into
itself.
Two monographs on Hopf algebras are [1,31].

3 GENERALISED SYMMETRY

This section contains some brief ‘motivational’ sketches for the study of bialge-
bras plus one more extensive section on quantum inverse scattering. The last
subsection can be seen as a worked out version of one of the more condensed
parts of [7].

3.1 Harmonic analysis

The standard setting for symmetry is embodied in the idea of a group acting
on a space, a (suitable, for instance differentiable when G is a Lie group and
S a differentiable manifold) mapping o : G x S — S where G is a group and
S a space. The action a : G x § — § is required to satisfy a(1,s) = s and
a(g,a(h,s)) = a(gh,s). As a rule one writes simply gs instead of (g, s), so
that the last requirement is g(hs) = (gh)s.

As 1s frequently the case one attempts to understand such situations by de-
composing the space S into G-orbits. In the particular case of a group acting
on itself (on the left) m : G x G — @G, there is only one orbit, and nothing can
be done at this level.

Things change drastically if instead of S one considers the functions on S.
The action of G on S induces a linear action on the algebra of functions on S
defined by g(f)(s) = f(¢7's), f: S — K, g€ G, s €S, and as a rule Func(S) is
not indecomposable. For instance in the case of the circle group G = S! acting
on itself decomposing f : S' — R (a periodic function) means decomposing f
imto its Fourier components.

Instead of an action o : G x § — S, we now have an action G x Func(S) —
Func(S), or, more algebraically, a linear mapping

|

|||||||

(3.1.1) A|G] ® Func(S) — Func(S)

(with the extra property that for each g, the map f — ¢f is a homomorphism of
algebras). Thus Func(S) becomes a module over the group algebra K|G]. This
suggests two things. First that it might on occasion be a reasonable idea to
switch for the study of a space to the study of functions on that space. Second
mstead of the Hopf algebra K'[G] of symmetry operators one could consider more
general Hopt algebras. (The comultiplication on K[G] is given by g — ¢ ® g,
the antipode by g — ¢g~', and the counit by €(g) = 1.) The first suggestion is
already a good reason to study Hopf algebras. For if G is a group then Func(G)
(or A(G)) is a Hopf algebra.

As to the second suggestion, in the last 10 vears or so it has become clear that
more general ideas of symmetry than an action of a group on a space are indeed
called for. Thus for instance in conformal field theory one nowadays encounters
‘higher relatives’” of the Virasoro Lie algebra as symmetry algebras and these

10



are not group algebras (or their infinitesimal counterparts, universal enveloping
algebras of Lie algebras, cf. e.g. [30] and references quoted there). Another
fold symmetry elements, an impossibility according to the crystallographic group
syminetry theory, and the related Penrose tilings. Not that it is clear that these
symmetries can be understood in terins of Hopf algebras. (But, without a great
deal of evidence, I am still inclined to think so.) Other cases where symmetry in
the torm of Hopf algebras definitely plays a role will be indicated below (dressing
still other parts of mathematics with objects of great regularity and symmetry
without the presence of a symmetry group or Lie algebra.

3.2  Representations and measuring

The second reason suggested above for considering more general syminetries than
those coming from groups actually suggests a much more drastic generalization.
viz. arbitrary algebras as symmetry algebras, i.e., the study of A-modules where
A 1s any algebra. There are, however, two good related reasons not to go that
far. First for groups and Lie algebras there is a natural notion of the product of
two representations, and that construction is a powerful tool in representation

theory. For groups the construction is as follows. Let p: G — End(V), o : G —

and ¢ are two representations of o on V and W respectively then the product
representation of o on V @ W is given by the formula (p © o)(a)(v © w) =
pla)v ®w+ v ® pla)w.

In case A is just an algebra there is no natural product of representations.
Given two representations A ©V — V and A © 11" — W there still is a natural

.....

15 given by (p @ o)(g)(v @ w) = p(g)(v) @ o(g)(w). If o is a Lie algebra and p

itself from this.
But if A is a bialgebra the comultiplication can be used to define a product

™

representation AV oW — V © W as follows

11111

Jelesiles

Ot course for this to be a representation of the algebra A it is essential that
s :A— A® A is a homomorphism of algebras.

The product structure on the module of all representations in the case of
groups comes precisely from the bialgebra structure on K[G] given by the coal-
gebra structure p : g— g ® g,g € G. In the case of Lie algebras a g-module is
the same as an Ug module where Ug is the universal enveloping algebra of g.
And Ug also carries a bialgebra structure given by the coalgebra structure map
Ug — Ug @ Ug determined by ar— a1 +1® a.

The second reason for not considering arbitrary algebras and modules as em-
bodying the idea of syminmetry i1s as follows. As already mentioned, the repre-
sentation (3.1.1) of A|G] on Func(S) has an extra property, viz. that for each
g € G, the map f +— gf is an algebra endomorphism of Func(S). This can be

11



formulated in terms of the Hopf algebra structure. Let C be a coalgebra and A
an algebra and let a : C ©® A — A be a K-linear map. Then one says that («, C')
measures A to A if the f()llowmg diagrams commute.

nnnnn

?????

l (e Did A u«bzd l (v
CoCoAOA A
l Idc @)T@f}idq T 4

COADCRA 5 AR A

LT e

Co K¢ WK g S K
R
Lide®e 4 1%

l €A

In case (' is a bialgebra, this can also be stated as follows. Let A be an al-
gebra which is also a C-module (via «). Give A ® A the product C-module
structure. Then the commutativity of the diagrams above simply means that
ma:AOA— Aand ey : K — A are C-module maps. The algebra A is then
also called a C’-module algebra.

All this adds up to the suggestion that a natural setting for the study of
generalized symmetry would be a bialgebra B (or Hopf algebra H) and the
‘representations’ to study would be the B-module algebras.

3.3 The g-disease

Special functions, such as various orthogonal polynomials like the Jacobi polyno-
mials, turn up all over mathematics and physics and they satisfy all kinds of nice
(differential or difference) relations. There are many aspects of special function
theory, but a central one, and the one that concerns us here, is the relation with
representation theory, a great discovery of the second half of this century (E.
Wigner, 1955; N. Ya. Vilenkin, 1967; W. Miller Jr., 1968; cf [34,32,21,33]). Mod-
ulo quite a large amount of nontrivial mathematics the central theme is that (at
least many) special functions occur as entries in the unitary representations of
Lie groups and that their orthogonality relations come from the orthogonality of
the matrix entries of unitary representations which comes from Schur’s orthog-
onality relations. In the case of a compact group G with Haar measure du(g)

thi'g takes the following form. If o = (af;(g)), p = (b},(9)) are two irreducible
unitary representations then

[ % (@gdue) = 0
aQ

unless p=o, 1=k, 7 = L.

An exception to this philosophy is formed by the generalized hypergeometric
functions themselves (from which most orthogonal polynomials are obtainable
through specialization). This adds perhaps (this is very speculative) one more
argument in favour of the idea of considering more general ‘symmetry structures’
than provided by group actions.

12



Quite early in the game (Heine, 1847) it was discovered that in many cases
1t was possible to insert an extra parameter ¢ in the formulas defining special
functions and orthogonal polynomials and to do it in such a w ay that many
characteristic relations and properties acquired a g-analogue, 2,8,10]. This be-

came a challenge and a sport; according to some, a disease: for all orthogonal

polynomials (special functions) find the appropriate g-analogue. This tremen-
dous amount of work has recently acquired additional significance. Not onl v
have g-series and polynomials popped up all over the place in lattice statistical
physics, field theory, Lie algebra, transcendental number theory, elliptic func-
tions, combinatorics,... but also a fundamental deeper understanding of their

(I

Basically g-special functions are to Hopf algebras as (ordinary) special funec-

tions are to Lie algebras. More precisely various classical groups like SU(2)
deform to quantum groups like SU,(2); this means that the commutative Hopf
algebra of functions on SU(2) can be deformed (in the technical sense of de-
formations of algebraic structures, [13]), ¢f. also below in section 3.4.9, to a

noncommutative Hopt algebra denoted SU,(2). It is perhaps noteworthy (his-
torically) that these quantum groups were discovered virtually simultaneously
and certainly independently by three different authors motivated by quite differ-
ent considerations [7,14,35,36]. The representations of SU(2) deform right along
(in a unique manner; a rather striking fact) and the entries ‘are’ the g-analogues.
T'here 1s still orthogonality, harmonic analysis, differential operators, and so on;
cf. [19] for an excellent recent survey:.

It 1s a curious historical accident that ¢ was used as a parameter for g-special
functions long before it was clear that they had to do anything with ‘quantum’.

There 1s little doubt that the ‘frequent popping up’ of g special functions in
many areas and problems has to do with (hidden) symmetry of the Hopf algebra
type (in the majority of cases). But in most instances the details, the precise
way 1n which such a symmetry is present, are largely, even totally, unclear. A
great deal of work remains to be done.

3.4 Dressing and quantization

Besides other reasons, such as the relation between Hopf algebras and Yang
Baxter solutions discussed in some detail below, a good reason for studying the
deformations of symmetry groups which are Hopf algebras is that otherwise the
so-called ‘dressing method’ of Zaharov-Shabat for classical integrable systems
does not quantize. In the following I try to explain this.

3.4.1 The dressing method [37]
T'his technique is most easily understood at the most general ‘generic’ level.
Consider an overdetermined system of equations

(3.4.2) @, = uwp, ©v; = v,

where ¢, u, and v are N X N matrix valued functions. The necessary and suffi-
cient solvability condition 1s that the Zaharov-Shabat equation

13



'r A with

ti

(possib % trivial) solution (2o. wo. v0) of (3.4.2)-(3.4.3) now g
ke our I' in the A-plane which avoids the poles a,,b,.
. say, piece-wise differentiable, function gy(A) on I' with values in
Now solve the family of Riemann Hllbmt boundary value problems

) posed by the functions pogoy, That means, find @~ (., A)

(and invertible) and " x,t, A) holomorphic inside

It
€

u, v have the same pole structure in A as ug, g
and 4.3). Moreover this defines an action of, say.
¢ L( ’V %‘{ A A ) -( t h ¢ E ourier transforms of two functions in the circle) on the
solutions of (3. i 3) (and (3.4.2)).

Many classical integrable s y s-t elns can h e obta i ned h V C;p 3 (""iali Z111
Shabat system (3.4.3); e.g .
s Vg, ...y, The pmblc—.m remains Wh-@‘?lﬁl the &(_TUOM ] u.st (iesg.n})e(_;l ((t)r };;)zz-eu t (;)f
it ) 1s compatible with such a specialization. This certainly happens in a number
of cases. The general problem is known as the specialization problem and it is
very far from being solved.

1 the Zaharov-

1.4.6 Double Lie algebra and bi-Lie-algebras

\mw let us turn to one of the more general families of constructions known (so

ﬂu} fm classical completely integrable systems. The setting is a semi-simple real
gebra g with a decomposition g = ad:p where a and p are sub-Lie-algebras.

[OW, qmw generally, given a Lie algebra b, there is a Poisson structure on §* the

dual of . Le., there is a bracket {f, ¢} on the differentiable functions ><(h*)

on b" which satisfies the Leibniz identity

(" (h*) a Lie algebra. The definition goes back to Lie and
iscovered several times (Kostant, Kirillov, Berezin, ... ). The




definition 1s

(3.4.8) {f,9}(X) = ([df(X), dg(X)], X).

Note that this makes sense df (X ), the differential of f at X € h* is an ele-
ment of the cotangent space of g* at X, hence an element of h** = §. Thus
the bracket |,| makes sense and gives an element of § which can be evaluated
at X € b™. It turns out that on the orbits of the coadjoint action of h on b~
this defines a symplectic structure, so that the symplectic leaves of the Poisson
structure (3.4.8) are the coadjoint orbits.

Now let f be any coadjoint invariant function on g* where g has a decompo-
sition g = a®d p as above. Restrict f to an orbit O of a in a*. As just explained
there 1s a symplectic structure on O. This defines a Hamiltonian system on
O which 1s completely integrable. The reason is the so-called Adler-Kostant-
Symes lemma which says that ad® invariant functions on g* when restricted to
an a orbit O in a® are in involution with respect to the symplectic structure on
a*. (Here a* is identified with the orthogonal complement, p”, of p C g.) One
class of systems which arises this way is the class of Toda lattices. In the case
g = sl,(R) we have g = a®p, with p lower triangular of trace zero, a orthogonal.

Parenthetically let me remark here that there is as yet no clear way of recover-
ing the Lie algebra g = a®p from the equations of the corresponding completely
integrable system.

The details are not too important for what I want to describe next. What is
important is that in fact on g we have two Lie-algebra structures: the original
one, and the one on the vector space g obtained by taking the Lie algebra direct
sum of a and p. Moreover these two are compatible in a certain technical sense
making g of a so-called double Lie algebra, [28]. Take the invariant nondegen-
erate bilinear form on g and i1dentify g and g* using it. Then the second Lie
algebra structure on g defines a Lie algebra structure on g* or, equivalently, a
co-Lie-algebra structure pu: g — g ® g. The result is a bi-Lie-algebra which, by
definition, 1s a vector space V with a multiplication m : V © V — V making
V' a Lie-algebra, a comultiplication ¢z : V — V © V making V' a co-Lie-algebra
(i.e. V* a Lie algebra) such that m and p are compatible in the sense that o is
a 1-cocycle (for the adjoint action of V on V ® V). In the case just discussed
where V' is semi-simple as a Lie algebra g every cocycle is a coboundary and

al

classical Yang Baxter equation. J

The second important point is, cf. [28,29], that also in this setting there are
dressing transformations. These are linked to those discussed above in 3.4.1 but,
as far as I know, the specialization details still need to be worked out.

manifold O. If this action would preserve the symplectic structure one could
hope to quantize the whole situation, keeping the symmetry. It is a profound
observation of Michael Semenov-Tian-Shansky, loc.cit., that in fact the action
does not preserve the symplectic structure. Instead we have a Poisson group
acting on a Poisson manifold and to preserve symmetry both must be simulta-
neously deformed: the Poisson group to a Hopf algebra and the manifold (or
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rather the functions on it) to some associative algebra (of operators maybe).
What all these phrases mean is the subject of the next subsubsection.

3.4.9 Poisson groups and quantization

A Poisson algebra A over A" is a commutative-associative algebra with unit with
a second multiplication A @ A — A, (f,g) — {f,g} which makes the vector
space A a Lie algebra and which moreover satisfies the Leibniz rule

{fg*}}l} — f{g.,h} T {fv h}g*

A Poisson manifold is a smooth manifold A with a Poisson algebra structure
on the algebra C'>(Al) of smooth functions on M (pointwise addition and mul-
tiplication). This is the natural setting for classical mechanics: one considers a
Poisson algebra (Poisson manifold) A over R, an element f € A, the Hamilto-
nian, differentiable functions R — A and the equation to be studied 1is

(3.4.10) ¢ = {f, ¢}

Given Poisson algebras A, B, the tensor product A ® B carries a Poisson struc-
ture defined by {a © b, c©d} = {a,c} @ bd + ac ® {b,d}. Modulo a bit of fid-
dling with completions this determines a Poisson manifold structure on Al X N
given Poisson structures on the manifolds A/ and N. A Poisson algebra ho-
momorphism ¢ : A — B is, of course, a homomorphism of algebras such that
{pla), p(b)} = p{a,b} for all a,b € A.

A Poisson Lie group is now a Lie group G with a Poisson structure (on its
underlying manifold) such that the multiplication m : G x G — G, and the
mverse ¢ : ¢ — ( are mappings of Poisson manifolds.

Lie theory applies. The Lie algebra of a Poisson Lie group inherits a bi-Lie
algebra structure and the Lie algebra Lie group correspondence makes bi-Lie
algebras correspond with Poisson Lie groups.

Now let us turn to quantization. Given a Poisson algebra A over A’, a quan-
tization of it is an associative algebra S;, over A'[[h]] such that

(3.4.11) Ap Qrpup K = A

1.e. 1f one sets h = 0 the original algebra is recovered, and such that
(3.4.12) {f,g} = class(h™'(fg - 3f)), f.g € A.

Here ‘class’ is the quotient homomorphism A4;, — A and f,§ are any two el-
ements of A, such that class(f) = f, class(§) = g. Note that (3.4.12) makes
sense because A Is commutative and because of (3.4.11).

A quantization of (3.4.10) consists of a Hamiltonian F € Aj with class(F)
and one studies differentiable functions ® : R — A, such that

|

f

(3.4.13) &= [F.®] = Fd - OF.
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In the present setting it is immaterial whether A4, is an algebra of operators
or not (though of course it can be). And, indeed, in some of the approaches to
quantization, cf e.g. a number of articles in [13], this is not the case.

Note that, apart from the fact that general associative algebras are a bit harder
to understand than commutative ones, conceptually, the underlying situation ot
(3.4.13), an associative algebra, is a rather simpler object than that of (3.4.10).
a Poisson algebra. From this point of view the Poisson structure (and hence
the classical dynamics) are an infinitesimal (semiclassical) residues of the basic
noncommutativeness of an algebra of observables.

Now, to conclude this section, let us turn back to the case of Adler, Kostant,

Symes, Reiman, Semenov-Tian-Shansky integrable systems as described above.
Here the situation is that of a Poisson Lie group G (whose algebra of functions
1s a commutative Poisson Hopf algebra) acting on a Poisson manifold MM:
G x M = M and instead of G preserving the symplectic structure on the sym-
plectic leaves of M one has that 7 1s a morphism of Poisson manifolds. To
quantize this both A and G must be quantized simultaneously which in the
case of G asks for a Hopf algebra which is a deformation (in the sense explained
above) of the Poisson Hopf algebra C">(G).

Though it is quite well known what the quantum versions of, for instance
the Toda lattices are, and though there is also no doubt whatever that the
deformation of the group involved will be SL,(n;R) (or more precisely the loop

algebra version) in that case, the program sketched above still remains to be
carried out.

3.5 Quantum inverse scattering method and Hopf algebras

In the quantum inverse scattering method constructed by L.D. Faddeev, E.K.
Sklyanin, L.A. Tahtadzyan a.o., cf. e.g. [9], a very important role is played by
relations of the following form (fundamental commutation relations)

(3.5.1) RO\, 1) (T(A) x T(w)) = (T(r) x T(N)) R\, ).

Here T'()\) is a matrix of operators

T (N) ... T, (M)
(3.5.2) T()\) = -

I ... TP

R(\, 1) is an n? x n? matrix of scalars, and T'(\) x T'(u) stands for the Kronecker
product. Thus

(3-5.3) . , o _.
Tl_l ()\)Tf)(ﬂ) T (A)Tgl(ﬂ) T.zl(/\)Tli(ﬂ) T_;z} ()\)T%(H)
T(\) x T(u) = Tll()ﬁ\)Tf(Nf) Tf ()\)Téz(ﬂf) T_;;(/\)Tf (1) Té()\)fj(u)
MUT TEOTH ) TENT3 () TSNTE (1) T35 (AT (k)
TENTE () TENTE () TENTE () T3 (N5 ()

in the case of 2 x 2 matrices of operators. Finally in (3.5.1) the entries of R(A, )
are supposed to be scalars so that they commute with the operators T’ ().
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In an actual ‘integrable’ quantum system such as the Heisenberg chain, the

trace of T'(\)

(3.5.4) t(\) = Tr(T()\)) = ;1 Ti(\)

Ky

1s the Hamiltonian operator of which it is desired to calculate the elgenvalues
and eigenvectors (as functions of ). Now take the trace of (3.5.1) to find that
(if R(A, i) is invertible (which can be assured))

(3:5.5) #(A) t(w) = () t(N)

so that the #()) are a commuting family of operators. Actually in concrete
situations such as the Heisenberg chains, (3.5.1) implies a good deal more and
forms the basis for a procedure to obtain eigenvalues and eigenvectors which goes
by the name ‘algebraic Bethe Ansatz’ which does vield a full set of elgenvectors

and eigenvalues in many cases though it has not been proved that it will always
work.

Thus it is interesting to find many examples of matrices of operators 71'(\)
for which there is an R-matrix such that (3.5.1) holds. For the R-matrix in
question this has to do with the Yang Baxter equation. Indeed view R, which
s an n? x n® matrix, as giving an isomorphism

R: C"9C" — C"oC"
and also as giving the corresponding isomorphism
R:V'QV" - VieVv"®
where V is the space on which the Tj(A) act, and where on each copy of
V'Vt =y"
(the direct sum of n* copies of V) each R%) acts as a scalar. Let R(12) = RQid:
VIQVTOV!T - VP V?"® V" and R(23) = i d®R: V'V V" —
Vi V" V", Then
F2(12) R(23) R(12) (T(\) x T(p) x T(v)) R(12)? R(23)"!' R(12)7! =
R(12) R(23) (T'(1) x T(X) x T(v)) R(23)~* R(12)~! =
R(12) (T'(u) x T'(v) x T(A\)) R(12)7 ! =
I'(v) x T(u) x T(A)

and also

R(23) R(12) R(23) (T(\) x T(u) x T(v)) R(23)~! R(12)~! R(23)~! —



T(v) x T(pu) x T(N).

Thus (R(12) R(23) R(12)) (R(23) R(12) R(23))~! commutes with T'(\) x T'(x) x
T'(v). So generically it is a polynomial in T(\) x T'(;) x T'(v) and being a matrix
of scalars it therefore must be a multiple of the identity. The factor involved often
can be seen to be one because (as a rule) one requires R(\, u) = R(A — p) = Id
if A = p. Thus ‘morally’ R has to satisfy the Yang Baxter equation

(3.5.6) R(12) R(23) R(12) = R(23) R(12) R(23).

Now suppose we have a Hopf algebra H, together with an element R € H ® H
which satisfies the following identity

(3.5.7) p'(a) R= Ru(a), a € H

where /' : H - H® Hisequalto HS HoOH L H o H.

Let px : H — M,,(C) be a family of representations of H as an algebra. Each
entry of the matrix py(a) is linear as a function of ¢ € H and hence defines an
element T}"()\) € H™, the dual Hopf algebra of H. Recall that the multiplication
in H™* is defined by the comultiplication on H via the identity

(TS,a) = (T®S,ula)), T,SeH* acH.

It follows immediately that

(T(A) x T(A))(a)
(T(N) x T(X))(a).

(pr @ par)p(a)
(Pr @ par )i’ (a)

(Note that we are in a slightly more general situation in that T:(A) need not be
operators but are simply elements of the abstract algebra H*.)
Now let

R(A, M) = (pr® pa)(R) € M,2(C).

Then i1t follows immediately from (3.5.6) that
(3.5.8) (T'(N) xT(N) RIAN) = RIAMXN)(T (M) x T(X))

so that we find (a more abstract version) of the Fundamental Commutation
Relations (3.5.1).
Indeed let a € H and p(a) = >, al ® !/, then

1

() (a) -
(T(\) x T(X))(a) | )

>~ tr(A)(ag) tr(N)(a) ...

1

]
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ti(\) @ tp(N) (> a) ®al) ...

|

= (pxr @ pxr)u(a)

and similarly (T'(XN) x T(A\))a = (px ® px) pla) = (px @ par) p'(a).
The inverse is also true. Indeed let R be any n? x n? of scalars. Consider the
matrix function Hopt algebra H,

H, = k(t; 5, =1,...,n)

where the tj are n? noncommuting (but associative) variables. The comultipli-
cation is given by (the ‘matrix comultiplication’)
ti— > ti: o2y t;‘i’ (summation convention)
and the counit 1s given by the (Kronecker index)
It 1s easy to verify that this is indeed a Hopf algebra. Let T be the matrix
tto... t)
I = :
T o-..
and define

In=Tx1I,, Ty=1,xT

where I,, is the n x n identity matrix. Now consider the n? x n? matrix

(3.5.9) RTW'T» — T>T,R.

It the entries of R are labelled as indicated in the n = 2 case below
RI R RYl RY

12 12 12 12

R=| g pi gl o
R pE B

RiY R13 R37 R

then the entries of (3.5.9) are equal to (summation convention).

(3510) Rab til tff — RJIJ), tb tq,

1122 “C cd 712 “Nn

Let I(R) be the ideal in the algebra H, generated by the elements (3.5.10).

3.5.11 LEMMA. I(R) is a Hopf-ideal, i.e. u(I(R)) C H,® I(R)+ I(R) ® H,, and
e(I(R)) = 0.

Thus there is an induced structure of a Hopf algebra on H,(R)=H,/I(R).
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3.9.12 EXAMPLE.

0 O 0 0

{0 1 —gt 0
= 0 —gq 1 0
0 O 0 0

T'he relations turn out to be

taty = qiyty, Uity = qiity, t5t; = qtsts, t313 = qtit3
tltg — t2t1 | ‘
2,1 2L — e
tati— tits = (g — g7 ")ty

T'his is the well-known quantum matrix algebra Af,(2) from which the quan-
tum group SL,(2) is obtained by imposing the extra ‘quantum determinant =
1’ relation tit3 — gqtit? = 1.

3.5.13 EXAMPLE.

R =

— O O O
O = O O

1
0
0
0

OO = O

This yields a Hopf algebra, which, as an algebra, has four generators wu,, u_,
vy, V- and the relations are

UpVyp = VipUp, UV = V_U—y, UV = —V_U4,V_Up = — ULV _,
UpU = —U_U4p, V4V = —V_V4

Both these examples have no zero divisors in H,, (R). However as a rule zero
divisors will occur in H,(R).

There is nothing particularly u111que about the R matrix defining a given
H, (R). In particular if Rg(n) is the n? x n? matrix

Ro(n)ia = 63,

then R and R + ARg(n) define the same H, (R). This can be used to make R
an invertible matrix.

Let H° be the dual Hopf algebra of H, ‘and H,(R) c HY the dual Hopf
algebra of H,(R).

Consider the element

(3.5.14) R — RUI12¢ ~“ R e ~’-

113?

in H). Here, quite generally, 6’ ‘-’ " is the element of HY defined by

4

-/ | ‘ . ' \ .
Ji-- Jr ( 1 3’5) sl £ Ly g1 o
e (1) = Gnb by G050



(Note that this is indeed in H) ¢ H*.)

-

Ru(a) = u'(a)R
tor all a € H,,(R)".

Putting all this together we see that the search for Fundamental Commu-
tation Relations (3.5.1) amounts to the systematic study of the Hopf algebra
t,,(R) (and their duals H,(R)") and the representation theory of the H, (R)°
(as algebras).

4  MORE ON HOPF AND BIALGEBRAS IN MATHEMATICS

L'his section contains brief, almost telegraphic, sections devoted to some (by
no means all) other parts of mathematics where Hopf and bialgebras play a
significant role.

4.1 Niceness theorems

4.1.1 Freeness over sub Hopf algebras. Lagrange’s theorem for subgroups H of
a finite group G says that the order of G is a multiple of the order H. At the
level of functions on G and H this translates to (the more precise statement)
that the algebra Func(G) is free as a module over its subalgebra Func(H).

The situation is that of a Hopf algebra B containing a sub Hopf algebra A
and 1n this more general setting there is a whole slew of theorems saying that as
an A-module B is free [24,25,26].

4.1.2 Hopf-Borel structure theorems. Hopf algebras first arose in work of Heinz
Hopt who studied the cohomology algebra of Lie groups and more generally H-
spaces GG (topological spaces with a homotopy associative multiplication, a ho-
motopy inverse, and a homotopy unit). Actually Hopf worked with the homology
coalgebra. There is a graded commutative algebra structure on H “(G; K). This
means that H*(G) = @} _ H"(G) where n = dim(G), that the multiplication is
grade preserving, Le. if r € H?(G), y € HY(G), then xy € HPT4(Q), and finally
that the multiplication is graded commutative i.e. ry = (—=1)P?yz for r and y
as before. The H-space structure on G, i.e. the multiplication map G x G — G
induces an algebra homomorphism H*(G;A) — H*(G;K) ® H*(G; K) and
H*(G: i) becomes a Hopf algebra. The graded commutative Hopf algebra struc-
ture 1s a very powerfull structure. So much so that these algebras are completely
known; they are tensor products of Hopf algebras which as algebras have one gen-
erator and these algebras are very simple ones. They are of the form KA[z]/(z")
where for char(A’) # 2, n is two if x has odd degree and n is a power of char(A’)
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or oo if n is even, and for char(A) = 2, n is oo or a power of 2. Cf [22,17] for
details.

Some of the terminology in Hopf algebra theory still reflects the topological
origin. Thus the property ‘connected’ of a Hopt algebra generalizes a property
of the H*(G; K') when G is a connected H-space.

4.2 The algebra of representations of the symmetric groups

Let S,, be the symmetric group of permutations on n letters and let R(S),)
be its algebra of complex representations. l.e. the elements of R(S,, ) are the
integral linear combinations of the irreducible complex representations of S,,.
Consider the free abelian group &>, R(S,), R(Sy) = Z. We are going to define
a Hopf algebra structure on ®5%,R(S,). First the multiplication. Let p and
o be respectively a representation of S, and of §5,,, in V and W respectively.
Taking the tensor product gives a representation of S,, x §,, in V®@W. Consider
S, X S,, as a subgroup of S,,.,, in the natural way and obtain a representation
of S, +.n by inducing p ® ¢ up to S,,4,,. This defines the multiplication, 1.e.

po = Ind2"4% (p & o).

LRl

For the comultiplication we use restriction. Let p be a representation of 5,,. For
every p,q € {0,1,...}, p + ¢ = n. Consider the restriction of p to Sy, X Sy to

obtain an element in R(S, x S,) = R(S5,) @ R(S,). The comultiplication 1s now
defined by

p(p)= > Resg', g (p).

D-+g=T

The theorem is that all this (plus an antipode) defines a Hopt algebra structure
(over Z) on &> oR(S,).

There is more. This Hopf algebra can be explicitly described. Consider the
commutative ring of polynomials in infinitely many variables ¢, ca, ... over Z.

U= 7 [(31, Cory.. .y Ct,,].

The coalgebra structure is given by (¢y = 1)

The next theorem is that U and ®R(S,, ) are isomorphic as Hopf algebras. (One
of the possible isomorphisms lets ¢, correspond with the trivial representation

of 5,,..)
That they are isomorphic as algebras (or modules) is (in one form or another)
an old well-known story. But this is of limited use because there are very many

automorphisms of U as an algebra. The situation is different at the Hopt algebra
level, [20]:

Autponf(U) =~ Z/(2) © Z/(2);



Thus there are precisely four ‘natural’ isomorphisms U ~ ®R(S,,). It is an inter-
esting fact (and a compliment to the natural taste of the giants who developed
the representation theory of the S, ) that precisely these isomorphisms (or at
least three of them) have been selected in the past.

As a matter of fact U and ®R(S,,) have even more structure. For & R(S,,) we
did not at all use that the R(S,,) themselves are also rings. This defines a second
multiplication on B R(S,,) which is distributive over the first one, thus making
B R(S,) a ring object in the category of coalgebras (over Z). In the setting of U
this second multiplication has also turned up before in combinatorial symmetric
functions settings. If this additional bit of structure is also taken into account
the automorphism group becomes {id}.

There is still more. There is a notion of positivity on & R(S,): the actual (not
virtual) representations are positive. And the various structure maps res-pect
positivity. There is also an inner product: (p, o) counts the number of irreducible
representations that p and ¢ have in common. Finally the multiplication m and
comultiplication p are adjoint to each other

(p,oT) = (u(p), o @ T)

which is the same as Frobenius reciprocity. This situation has been axiomatized
38] as a PSH algebra (which stands for Positive Selfadjoint Hopf algebra).
Under mild assumptions they can be classified. There is one on one generator,
viz. the Hopf algebra U described above, and apart from the grading all are
tensor products of U's.

Even this does not exhaust the structures of U. It is also a boring object in the
category of rings; it has the structure of a A-ring; it is selfdual; in the category
of rings it defines a A-ring valued functor R — Ring(U, R) which means that U
has a second level A and co-\ structure; ....

I doubt, that, essentially, there is more then one object like this. Zelevinsky
38| proves this for PSH algebras, but a similar uniqueness should hold without
positivity and the assumption that there is an adapted Z-basis, assumptions
which are not always natural.

The above and the niceness theorems of 4.1 illustrate a still very poorly un-
derstood (if at all) metamathematical observation (or rather two): objects with
several different but compatible structures tend to be nice; universal objects -
U has several universality and freeness properties - tend to be very nice. Here
‘nice’ is undefined. What is meant is something like a situation where there are,
say, seven independent agreable properties and if two or three hold the others
all follow. For some more details on the things touched upon in this section see
18,20,38]; not everything I mentioned has been written up.

5 CobA

In the above I have indicated some areas in mathematics and physics where
Hopt algebras and bialgebras play a role. I have by no means mentioned all.
For instance the role of Hopf algebras in combinatorics. Decompositions, hence
coalgebras, are a natural way of life in combinatorics. It has been sald, with
some justice, that the so-called umbral calculus is simply the study of the Hopt
algebra £[X]|, X — 1® X + X ® 1. See [16] for an Inspiring account of possible
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roles for Hopt algebra and coalgebras in combinatorics; a gread deal remains to
be done.

Quite generally the study of Hopf algebras and their applications has essen-
tially only just started. Things already look good though.
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