The Persistence of the Classical Computer Architecture
A Survey from 1950 to the Present’

G. A. Blaauw

INTRODUCTION

Before we can talk about computer architecture we must state what we mean
with these two terms. We then observe that at an early date a classical com-
puter architecture emerged which was challenged time and again, but still per-
sists until the present. In our historical survey we try to answer the question
why this 1s so.

WHAT 1S COMPUTER ARCHITECTURE?

The architecture of a computer system we define as its functional appearance to
its immediate user, that 1s, 1ts conceptual structure and functional behavior as
seen by one who programs in machine language. A computer’s architecture 1s
by this definition distinguished from other domains of computer design:

the logical organization of its data flow and controls, called the
implementation,

the physical structure embodying the implementation, called the
realization.

Architecture concerns the function that 1s provided to the programmer, such as
addressing, addition, interruption, and input/output. Implementation con-
cerns the method which is used to achieve this function, perhaps a parallel data
path and a microprogrammed control. Realization concerns the means used to
materialize this method, such as electrical, magnetic, mechanical, and optical
devices and the powering and packaging for them. Therefore the realization
also includes the visual appearance, the industrial design, of the computer. Fig-
ure 1 summarizes the distinctions among architecture, implementation, and
realization.

* Symposium on Computational Engines, CWI, Amsterdam, September 14, 1989. The material of
this presentation is from Computer Architecture by G.A. Blaauw and F.P. Brooks Jr, to be pub-
lished by Addison Wesley and is used with permission.

335

Design domain Question Description of
Architecture , .,, What? Function
Functional appearance .
(to the system programmer)

Implementation How? Method
Logical structure
(performs the architecture)

Realization Which? Means
Physical structure
(enbodies the implementation)

FIGURE 1. Domains of computer design.

ARCHITECTURE AS A GENERAL DESIGN CONCEPT

[t clarifies concepts to distinguish among the architecture, the implementation,
and the realization aspects of all kinds of designs: buildings, bridges, airplanes,
applances, cars, computer programs, operating systems, and computers them-
selves. To appreciate these distinctions, let us consider clocks. When children
are taught to tell time, they are taught the architecture of the analog clock: the
dial divided into twelfths and sixtieths, the short hand that goes around twice
a day, and the long hand that goes twelve times as fast. They learn first to dis-
tinguish the hands from each other and then to relate their positions to the
hours and minutes. Equally important, they learn to ignore all aspects of the
hands other than their lenghts and angular positions. They learn that the
minutes may be marked or not, and the hours may be labeled with arabic or
roman numerals, or not numbered at all but merely marked. Once children
learn to distinguish the architecture from the accidents of visual appearance,
they can tell time as easily from a wrist watch as from the clock on the church
tOwer.

The architecture of the clock, thus specifies the conceptual structure and
functional behavior as perceived by the user. The inner structure is not at all
specified by the architecture; one does not need to know what makes the clock
tick to know what time it is. '

Architecture tells us what happens; implementations tells us sow it is made
to happen. The implementation of a clock requires two major designs: how the
clock 1s powered and how its time-keeping precision is achieved. The standard
clock architecture has seen hundreds of different implementations, e.g.,

a weight, driving a pendulum,

a spring, driving a balance wheel,

a battery, driving a quartz oscillator, and

a remote electrical generator, driving a synchronous motor.

336

Any one of these implementations involves many design decisions. What
period shall the pendulum have? How many gears, of how many teeth, how
connected? How shall the escapement deliver power to the pendulum? How
shall the weights be wound? The implementation, then, is the logical organiza-
tion of the inner structure of a designed object.

Below the implementation lies the level of realization. Given the period of
the pendulum and the number of teeth of the gears, where are they placed in
relation to each other and which materials are to be used? With what

geometry, strength, tolerance, and finish? Clearly any one implementation may
have many dififerent realizations.

The clock 1llustrates that application of the concept of an architecture, as dis-
tinct from implementations and realizations, is very old.

ARCHITECTURE AS APPLIED TO COMPUTERS

The architecture of a computer i1s a minimal behavioral specification -
behavioral 1n the sense that software can be written, minimal in the sense that
the widest possible range of excellence criteria can be chosen for implementa-
tions. Since the term architecrure can be applied to all kinds of designs we can
speak of the architecture of an application language, an operating system, a
programming language, a machine language, or a microcode language, as illus-
trated 1n Figure 2. In those cases where an architecture is implemented 1n
another architecture, as for example a compiler implemented in an assembly
language, we can speak of vertical recursion. Thus one or two levels of micro-
coding are often found below the machine-language level. Each of these levels
has an architecture and an implementation. Only the lowest has a realization.

We use the term architecture in this text only to refer to the machine-language
level of a computer system.

'""Applica“tviohwldélﬁgﬂhg;
¥

Compiler language

5

Assembler language

£

Machine language

7

Microcode language

F1GURE 2. Vertical recursion of architecture.

MACHINE LANGUAGE

We define machine language to be that representation of programs that resides
in memory and is interpreted (executed) directly by the hardware. It usually
consists of a string of bits. From this point of view, the design of a computer
architecture is the design of its machine language. If, however, we consider the

337

machine language to be just one of the many programming languages related
to a computer, as’ sketched in the vertical recursion of Figure 2, we must
answer the question of how and why machine languages differ from other pro-
gramming languages. | o

Although machine languages are often simpler and more constrained than

many other programming Janguages, there 1s only one essential difference: In
machine language the expressions are costly. 'The criterion of costliness is
measured in space (the number of components of logic and memory that are
used) and time (the delay caused by the components that are traversed). Each
operator and variable in the vocabulary must be implemented and realized by
the interpreting mechanism. Each bit in a machine-language program occupies
a costly memory: cell and must be obtained from that cell at the expense of
costly time. So costliness urges conciseness, €Conomy of expression. Concise-
ness is a central consideration in design. It manifests itself in compactness of
representation, sparsity and simplicity of constructs, and independence of
interpretation.
- Whereas the implementer counts logical elements, and the realizer counts
components, square microns of silicon, microns or millimeters of connection,
and watts, the architect counts bits of representation in his first-instance
budget, the bir budget. Furthermore, computer technologies from the very
beginning have been of such a nature that the critical factor limiting the per-
formance of a computer 18 the memory bandwidth, the number of bits per
second the memory subsystem can deliver. When memory bandwidth 1s limit-
ing, each additional bit in a machine-language program slows 1ts execution.
The architect therefore wants to reduce the bit traffic between the memory and
the processor.

The complexity and number of types of utterances affects cost, because each
type requires some interpretation activity unique to it. Specifying a type also
costs according to (the logarithm of) the number from which selection 1s made.
So sparsity of operations, addressing modes, and possible addresses all contri-
bute to conciseness. Finally the cost of executing machine-language statements
is sharply reduced if each statement can be interpreted independently. Compi-
lation, which requires scanning of the program as a whole, violates this cri-
terion. Interpretation of languages such as APL or Basic also violates it, in that
it requires symbol tables to be built and maintained.

COMPUTER GENERATIONS

To start our historic survey we first look at computer generations as listed 1n
Table 3. |

338

Architecture Implementation Realization - Date

Classical computer Series Electro-mechanical 1945
Parallel Vacuum tube
Interruption Pipeline Transistor 1955
Supervision Core storage
| Memory mapping Microcode Integrated circuit 1965
Peripheral processor
Vector arithmetic - Cache Very large scale 1975
. Network " | Integration :

TABLE 3. Computer generations.

This customary division into generations has nothing to do with computer
architecture; it is a division based on realization technology alone. Not only is
there a dramatic difference in capability and appearance from one realization
generation to the next, but once a new realization generation emerges it
replaces the preceding generation. Vacuum tubes were completely displaced by
discrete transistors and core storage, only to be in turn displaced by integrated
logic and memory circuits. '

The picture i1s quite different for architecture. A classical architecture was
established 1n the first generation, and it has endured until the present. New
functions, such as those for supervision, memory management, and communi-
cation with peripheral devices, have appeared, but they have been orthogonal
to the functions of the classical architecture, and have been added to it. Even
details of the architecture often survive several generations of implementation
and realization. One reason is that useful programs have very long lifetimes.
As a program 1s used, 1t 1s usually extended and modified. Because reprogram-
ming old applications is distasteful and expensive, there is a ready market for
new computers that extend an old architecture. |

Therefore, an architecture appears to be timeless in contrast to its transient
realizations. The fundamental implementation techniques are also timeless. The
basic algorithms were all developed in the first generation, with macro
techniques—such as pipelining, microcoding, and lookaside—exploited on top
of these algorithms. Since the implementation must match a stable architecture
to a changing realization, different demands are made in each generation upon
the wide arsenal of techniques of implementation.

The stability of computer architecture is not merely caused by the inertia of
programming mvestment. One can identify several eras in computer architec-
ture, each marked by an entirely new field of application or way of using the
computer. Table 4 shows some of the more important architectural eras, giving
typical examples. Thus the minicomputer era, which placed the computer as an
instrument in the laboratory, started afresh with new architectures and new

339

programs, not tied to previous practice. Yet the minicomputer architecture was
at the start not that different from the classical architecture and indeed con-
verged to 1t 1n time.

Era Type ' Example Date
0 Pioneer computer Z4, Mark 1, ENIAC 1940
1 Classical computer MU1, Univac, IBM 704 1950
2 Supervised computer IBM Stretch 1955
3 Supercomputer IBM Stretch, CDC 6600 1960
4 Timeshared computer GE 645 1965
5 Minicomputer DEC PDPg, PDP11 1970
6 Microprocessor Intel 8008 1975
7 Workstation Motorola MC68000 1980

TABLE 4. Architectural eras.

THE CLASSICAL COMPUTER

What then 1s this classical computer and what causes its stability? Table 5
shows its emergence in the first generation and the contributions of the
pioneers of that period. It may be surprising that Von Neumann does not
appear in this table; his contribution is in a different direction. His well-known

paper with Burks and Goldstine (1946) constitutes the beginning of computer
science.

Concept a Innovator Date
Arithmetic Schickard 1624
| Sequence control Jacquard et al. 1804
Decision Babbage 1867
Binary radix Atanasof et al. 1940
Floating-point Zuse 1941
| Stored program Mauchly 1944
Multiple processors Aiken 1947
Logic Kilburn 1949
Indexing Kilburn 1949
Byte addressing Buchholz 1954
Directly-addressed registers Buchholz 1956

T'aBLE 5. Classical computer architecture.

In his thorough study of Babbage’s Analytical Engine (1867), Bromley
(1982) remarks that this computer is too much like a modern computer (his
italics). A similar remark could be made about most pioneering computer
designs. Indeed it is remarkable how quickly the progression of Babbage’s
Difference and Analytical Engine, Aiken’s Mark I, Zuse’s Z4, Kilburn’s Mark
1, and Eckert and Mauchly’s Univac converges toward the classical computer.

340

The floating point of Konrad Zuse’s Z3 and Z4 was way ahead of its time.
A complete set of extrema: infinity, negative infinity, zero or negligible, and
indefinite, were part of the representation and were consistently used in arith-
metic. This design predates the incomplete set of extrema of the IBM Stretch
(1961) by more then 15 years and the complete set of extrema of the CDC
6600 (1964) by about 20 years; these extrema are now part of the IEEE
Floating-point Standard (1981). Normalized representation with binary radix
makes the leftmost coefficient bit redundant. Zuse eliminated this bit, as did
Gordon Bell in the PDP11 (1970). This hidden bit is also part of the IEEE
standard. -

The Z4 1nstruction set includes Negate, Add, Substract, Multiply, Divide,
Square, Square Root, Times Two, Times Ten, Times One-half, Times One-
tenth; more than a classical machine demands, but quite suitable for a
machine without subroutine facilities. Numbers are converted from decimal to
floating point on input and back to decimal on output. The Z4 working store
1s a stack with a maximum depth of two. This function fits well in a design
with a relatively fast memory; it predates the stack of the English Electric
KDF9 (1963) and of the Burroughs B5000 (1964) by more then 15 years.

Why did the classical computer emerge so rapidly and persist so tena-
ciously? We believe the answer is found in the costliness constraint mentioned
above. Costliness, and its various ramifications, explain why the classical direct
addressing was not abandoned for associative addressing, why the classical
machine language level was not abandoned upward towards a high-level
language nor downward by adopting microcoding as the machine language. It
also explains why elaborate and unbalanced instruction sets quickly converge
to the almost standard instruction set of the classical computer. Even for
parallelism, currently much in discussion, costliness supplies the most promis-
ing answer, that of networks of classical computers. '

The classical computer survived certainly not for lack of ideas. Even if we

consider only general-purpose mass-produced commercial products, we find

enough contenders. Table 6 lists a few of them. We briefly look at each in
turn.

Abundant function ' 1955
Associative main memory 1960
Microcode as machine language 1970
High-level machine language 1975
Concurrency 1980

TABLE 6. Attacks on the classical computer.

ABUNDANT FUNCTION
A repeatedly recurring idea is to give the user function directly in the machine
language through many operations, options, and formats.

Strangely enough some of the oldest computers were more richly endowed
with arithmetic operations than the modern computer. As stated, the Z4 had

341

square root as a machine-language operation; so had the ENIAC (1946). The
‘Harvard Mark I (1944) even had operations for sine, exponentiation, loga-
rithm, and interpolation. By 1950 these complex operations had been removed
from the Mark I. The reasons were in part peculiar to Mark I circumstances.
Some operations were infrequently used and hence, when used, proved unreli-
able due to dust on the electromechanical contacts. More seriously, the
hardware operations were provided in full 24-decimal-digit precision, which
was rarely needed, so programmed subroutines could usually outrun them. To

a surprising extent, however, the reasons for removing these advanced opera-
tions are universally valid. Their 5pec1allzed hardware was rebuilt into gen-
erally useful registers, thus increasing the size of memory. This is an example
of the principle of costliness working on too rich an operation set.

The Mark I example reminds us that all such choices involve a quid pro
quo. Although a bodily conversion of components as in the Mark I is not
likely to occur again, the designer in fact trades one function for another. The
hardware which an operation requires and the software it entails can with
equal total cost also be applied to improvements of the remaining functions,
perhaps to better over-all advantage. An operation is never free.

Once 1t was understood that a compiler can provide as rich a set of func-
tions as desired by means of subroutines, it became clear that making a limited
Instruction set more effective is more profitable than extending it. Nevertheless,

at times the rich instruction (and option) set re-emerges, most noticably in the
IBM Stretch (Buchholz, 1962) and to a minor degree in the DEC VAXII
(1977)

ASSOCIATIVE MAIN MEMORY

In programming-languages, names frequently refer to groups of data and
instructions, such as files, tables, arrays, and procedures. In the machine
language, however, the address is normally linear; addresses are integers and
can be computed by regular arithmetic.

The basic and major impropriety of addressing is to map group names upon
the linear address space. All the programmer wants to specify is a set of
named Ob_]CCtS The allocation of space for these ObJCCtS In a memory 1S not his
concern and in some languages such as APL, he is not even confronted with
this issue. Moreover, since the size of named objects may change in time, the
allocation problem is very complex. The driving problem of addressing thus
turns out to be the mapping of names upon a linear address space - the bind-
ing of names to addresses. =

The most extreme solution to the binding problem is a store in which each
location is independently bound to its name. In such a store each physical
location is built to contain not only a datum, but a name as well. When a par-
ticular name 1s specified for access, the name fields of all storage locations are
searched, and the datum whose stored name matches the search name is
acccessed. Because the data are associated with more or less arbitrary names,
this 1s commonly called associative addressing.

Associative addressing attacks the memory allocation problem by concealmg

342

all physical adjacency and contiguity. The store itself consists of named objects
bearing no relationship to one another. Since the associative store removes the
need for programmed allocation it appears as a perfect solution, except that
each memory location contains an address next to the stored information.
Hence in comparison to the regular directly addressed memory the bit budget
i1s seriously impaired. As a consequence its implementation is either not simple
Or not fast.

The fastest associative addressing implementations provide a l-bit compara-
tor for each of the M bits of the name field of each word. In comparison to a
directly-addressed memory, each word has M extra bits of memory. If a com-
parator takes twice the circuitry of a memory bit, the additional cost per word
1s 3 x M bits. If, for example, the datum length is also M, such a Memory
takes four times as much circuitry as a directly-addressed memory of compar-
able speed and capacity. Put more vividly, one could have a directly-addressed
memory of four times the capacity for the same cost.

Through the years proponents of associative main memory have done cost
estimates in current technology and been appalled. Yet they have asserted that
an associative memory would become attractive when the next technology
appeared and made components cheap. This fallacy confuses the properties of
the implementations with those of their realizations.

In any technology suitable for realizing the simultaneous comparison imple-
mentation, and for any number of circuits one can assemble and afford, one
could alternatively use the circuits for associative addressing or for about four
times the capacity in directly-addressed memory. Regardless of technology the
architect must choose between function or capacity (Brooks, 1965).

The answer to the binding problem has been the paging and segmentation
functions that can be added to a classical architecture. Kilburn had the first
ghimpse of this function in his Mark 1 (1949); it was more fully present in his
Atlas design (1962) and has since been used extensively in many designs.

MICROCODE AS MACHINE LANGUAGE

The two basic parts in processor implementation are data path and control.
The datapath is made up of the components holding and transforming data.
The control specifies the use of these components in time. This specification is
done by gate signals that originate in the control and activate the gates of the
datapath; conversely the outcome of the datapath action, such as a positive or
negative sign, may be used as a rest signal to affect the sequence generated by
the control. Early designs aimed to minimize the number of components.
Hence a great variety of encodings in which little structure could be recognized
was used for the control.

In 1951 Wilkes pointed out that the task of the control is similar to the task
of a computer: Specific actions are to be performed in a proper sequence. The
actions are simply the opening and closing of gates; the sequence includes fre-
quent, but simple, decision-making based upon the test signals. The gate sig-
nals and decision specifications are combined as a microinstruction; the
microinstructions necessary for the proper computer action constitute a

343

microprogram; the microprogram is placed in a storage, the microstore. This
method of control is called microcoding (Wilkes, 1951). Why not use this
microcode as machine language? It might give an adaptable computer geared
to a given application or compiler language. Thus the Burroughs B1700
(Wilner, 1972) was considered a microcoded machine that interpreted a variety
of S-languages, each atuned to a compiler language.

The machine language is the interface offered to the user and maintained
with stability by the manufacturer. Since microcode is by definition
implementation-derived, language stability at this level implies much more seri-
ous constraints on implementations than apply today. This means original
costs will be higher and that cost-savings due to implementation changes must
be foregone. If on the other hand the architecture is not kept stable and the
machine language changes with the implementation needs, the user must repro-
gram his applications as time goes on.

By far the most serious drawback is the effect on the size of the user com-
munities. A major conceptual advance made by the IBM System/360 - indeed,
the major advance - was the establishing of a single machine language as an
architecture against which a variety of implementations of different perfor-
mances were built. This meant that all of these implementations constituted a
single base for software support. Software costs are a very substantial part of
both manufacturer and user costs for computers. Consider how much worse
this would be if the base for sharing were fragmented.

A microcode allows a user to design his own machine. But, this puts him a
position of splendid isolation, a position which moreover is very short-lived.
Worse, the freedom to build your own machine is sharply limited. A micro-
code is highly specialized towards its target: the machine language for which 1t
was intended in the first place. Many functions we may want to perform by
microcoding may prove to be awkward or 1nefficient.

The architecture of the B1700 was wisely kept stable through six implemen-
tation changes; so programming investment was protected. The S-languages
turned out to be a compiler designer’s option, only marginally influenced by
the underlying machine language. Most important, on closer inspection the

B1700 machine language proved to be very much that of a classical machine,
with its bit addressing reminiscent of the IBM Stretch.

HI1GH-LEVEL MACHINE LANGUAGE

Why have assembly-level machine language? Is it not the outworn relic of out-
moded thinking? Since most applications are programmed in Fortran, Cobol,
Pascal, C, etc., why not implement these directly in microcode?

Even if all applications were written in high-level languages, there would still
be strong reasons for defining a computer architecture at a lower level. The
most compelling reason arises from the properties of the high-level languages
themselves. For most such, translation to execution ideally involves two steps,
one at compile time and one at execute time. An alphanumeric mnemonic
name, for example, can obtain a compactly represented name at compile time.
This in turn can be related to a memory address (itself a compact name) at

344

load time. Such early, one-time compilation vastly reduces the work the inter-
preter must do 1teratively. Ideally, a machine language should stand precisely
between compilation and interpretation such that the architectural cost cri-
terilum of independent interpretation of the machine language is maintained.

The semantics of the high-level language and the machine language are basi-
cally difterent. The first assumes global knowledge of the program, the second
assume only local knowledge. This difference has been called the semantic gap
(Gogliardi, 1973).

Many have proposed reducing, if not eliminating the ‘“semantic gap”
(Myers, 1973). The foregoing considerations, however, show that it is inherent
—such a gap must occur in the language hierarchy. We believe it not only
proper, but indeed natural and perhaps optimal for the semantic gap to serve
as the upper bound of the machine language level (Blaauw, 1980). The experi-
ence with machines that drastically raised the machine-language level and at
the same time tried to preserve generality with respect to user languages seems
to confirm this (e.g., the Burroughs 5500 (1964) and the Intel 432 (1980)).

Interpretation of a high-level language is split into two parts by the machine
language. The compiler takes care of one part, for instance from Fortran to
machine language; the implementation takes care of the second part, for
instance via microcode. The implementation can optimize better when it gets a
larger part of the interpretation process because it can know run-time informa-
tion. The compiler, on the other hand, can know global information about the
entire program. It can exploit its knowledge of the algorithm and the operands
in the optimization (for example, substituting a shift for multiplication by a
constant power of two). Thus a low-level architecture is more attractive as the
target of compilation than a high-level architecture. _

An architecture in which most, if not all, operations can be implemented in
a single datapath action and which has few constructs is called a reduced
instruction set computer (RISC). Early examples are Van der Poel’s Zebra
(1959), and first-generation microprocessors such as the Intel 8080 (1974) and
the Motorola 6800 (1975).

‘The absence of operations requiring subcycles, such as multiply, divide, and
multiple-bit shifts creates a programming inconvenience; a RISC architecture
explicitly assumes a compiler or macroassembler that can eliminate it. The
Instruction set 1s furthermore designed to be a suitable target for an optimizing
compiler. At the same time the operation set allows a fast implementation with

the majority of the circuits serving the data flow rather than the control
thereoff (Radin, 1982).

CONCURRENCY
Concurrency can occur in the design domains of architecture and implementa-
tion.

Architectural concurrency 1S visible to the user and should match the inherent
independencies of parts of his computing task. The most familiar example is
the concurrency of a central processing unit (CPU) for general processing and
a peripheral processing unit (PPU) for the input/output actions.

345

Implementation concurrency is invisible to the user; he cannot see whether
the implementation is concurrent or not. Implementation concurrency arises
from independencies that follow from the definition of the computer architec-
ture. A 32-bit fixed-point Load instruction, for example, allows the implemen-
tation complete freedom to fetch 1, 2, 4, ..., 128, or some other number of bits
at a time; it also permits the implementation to process this instruction con-
current with preceding and following instructions in a pipelined fashion.

There need not be a one-to-one correspondence between architectural con-
currency and implementation concurrency. A multiprocessor architecture may
quite feasibly be implemented by a single processor. Thus the ten PPUs of the
CDC 6600 (1964) are really virtual machines whose arithmetic functions are
implemented by one common processor. Conversely, a single processor archi-
tecture may be implemented by several concurrent processors. The CDC 6600
CPU, for instance, incorporates one logical unit, one integer add unit, one
floating-point add unit, two multiply units, one divide unit, two Increment
units, one shift unit, and a branch unit. All of these can operate concurrently,
even though the machine language invokes them sequentially (Thornton, 1970).

Inherent concurrency in an application always allows but never demands
full architectural concurrency in the system designed to perform that applica-
tion. Processors are digital and operate with discrete actions; they sample and
change the processes they control at discrete intervals. Because of this discreti-
zation, a single time-sliced system has the same effect as a set of concurrent
processors so long as 1t maintains the necessary rates observed external to the
system. Because concurrent subprocesses are easily simulated on a single cen-
tral processor, the decision to provide multiple processors in the architecture is
dominated by the implementation questions: How fast? How efficient? In our
historic survey we just mention a key problem, a common fallacy, and a prel-
Iminary answer.

Many attempts at concurrency have failed by paying insufficient attention to
the bit trathic. Main memory 1s the most critical resource to be shared. The
speed with which the total bit traffic of an application can be handled is to a
major degree determined by the time required for memory access. Adding
more processors does not help once memory access 1s saturated. This design
error 18 sometimes erroneously called the Von Neumann bottleneck.

It would be nice if memory access were so fast that it could naturally satisfy
a multitude of processors. The realization technology of memory, however, is
similar to that of processors. For such a technology the implementation can
nicely match the access offered by a memory system with the memory access
required by one or two processors and their peripheral processors. But sharing
that access with more processors only lowers the effective performance of the
processors. A faster technology does no good: The processor-memory balance
1s determined by the implementation, not the realization. Bit traffic also
affects the choice between fine granularity (where each processor is capable
only of one or a few actions) and coarse granularity (where all processors have
a classical architecture). *

The concurrency of processing and input/output operation went through

346

four stages: a. direct input/output, with the general (arithmetic and logical)
processor waiting while an input/output operation proceeds, as in Kilburns
MUT (1949); b. overlapped input/output, where single input/output operations
are concurrent with each other and with general processing, as in the IBM 701
(1953); c¢. channel, or direct memory access (DMA), where streams of
Input/output instructions are concurrent with each other and with central pro-
cessing, as in the IBM 709 (1959); d. peripheral processors, which have full
Input/output and general power and can operate concurrently with each other
and with the central general processors, as in the CDC 6600 (1964). This
development from a single action, via a specialized processor, to a classical
computer illustrates the move from fine granularity to coarse granularity to
reduce bit traffic.

A second example 1s the Bull Gamma 60 (1959). This computer comprised
an arithmetic processor, a logic processor, a compare processor, and several
Input/output processors, all capable of functioning concurrently, each with its
own instruction stream. The processors had fine granularity: The arithmetic
processor could not perform logic, nor could it compare (Dreyfuss, 1958).
Hence, the instruction sequences that each processor handled did not match
the instruction sequences that are natural in a computation. Comparisons nor-
mally are intermixed with arithmetic and logic; they are not separate activities.
As a consequence the programs constantly switched from processor to proces-
sor, at the expense of extra bit traffic.

More recent examples of fine-grained processors are the data-flow computer
proposed by Dennis (1974) and Hillis’ Connection Machine (1985).

Human communication can result in synergism: Jointly people can achieve
more than the sum of their separate efforts. A gifted song writer and a gifted
composer may jointly produce musicals of a level that they could not reach
when working at it sequentially. To expect synergism from communicating
processors, however, 1s an anthropomorphism: The joint performance of com-
municating processors 1s never more than the sum of their individual
performances—rather, it i1s always less because of the hardware and software
costs of communication.

Multiple processors concurrently executing a single task may, however,
significantly reduce the elapsed time required for that task. This time reduction
may well be worth the loss of efficiency caused by extra programming and
hardware costs.

Communicating processors with coarse granularity constitute a network of
classical machines. Although achieving a rapid response with such a network is
still a major effort, fortunately no special processor hardware need be designed
(for instance, a supercomputer may be used).

CONCLUSION

Our brief historic survey shows that a classical computer architecture was esta-
blished during the first computer generation. It was enhanced with orthogonal
functions, as for supervision and memory management. It was used as main
processor, peripheral processor, super-, mini- and microprocessor. It can

347

provide fast concurrent operation in a network. We claim that the classical
computer architecture has survived many attacks upon its design because in
computer architecture expressions are costly.

REFERENCES

1.

10.

11.

12.

13.

14.

BLaauw, G.A., 1980: Hogere Programmeertalen Gezien vanuit de
Machinetaal. Colloguium Hogere Programmeertalen en Computerarchitek-
tuur, MC Syllabus 45, 149-162.

Brooks, F.P., Jr., 1965: The Future of Computer Architecture. Proceed-
ings of the IFIP Congress 65, 87-91.

Buchuorz, W., ed., 1962: Planning a Computer System, McGraw Hill,
New York, New York.

BURKS, A.W., HH. GOLDSTINE, and J. VON NEUMANN, 1946 Preliminary
Discussion of the Logical Design of an Electronic Computing Instrument.
Report to U.S. Army Ordnance Department, reprinted in Bell and Newell,
1971, 92-119.

BROMLEY, A.G., 1982: Charles Babbage’s Analytical Engine. Annals of
the History of Computing, vol. 4, no. 3, 196-217.

DeNNis, J.B. and R.P. MisuNas, 1974: A Preliminary Architecture for a
Basic Data Flow Processor. Second International Symposium on Computer
Architecture, Computer Architecture News, vol. 3 no. 4. 126-132.

DREYFUS, P. 1958: System Design of the Gamma 60. Proceedings of the
Western Joint Computer Conference, 130-133.

GoGLIARDI, U. O., 1973: Report on Software Related Advances in Com-
puter Hardware. Proceedings of a Symposium on the High Cost of
Software, Stanford Research Institute, Menlo Park, California.

Hivris, W.D. 1985: The Connection Machine, The MIT Press, Cambridge,
Massachusetts.

MYERS, G.J., 1978: Advances in Computer Architecture, Wiley, New York,
New York.

RADIN, G., 1983: The 801 Minicomputer. IBM Journal of Research and
Developmment, vol. 27, no. 3, 837-847.

THORNTON, J.E., 1970: The Control Data 6600, Scott Foresman and Com-
pany, Glenview, 111111018 '

WILKES, M.V, 1951: The Best Way to Design an Automatic Calculating
Machine. Manchester University Computer Inaugural Conference, Man-
chester, 16-21.

WILNER, W.T., 1972: Design of the B1700. AFIPS Conference Proceed-
ings, vol. 41, part 1, 489-497.

348

