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INTRODUCTION
Howard Aiken’s high place in computer history is given in the standard Ency-
clopedia of Computer Science and Engineering:

“The digital computer age began when the Automatic Sequence Controlled
Calculator [Harvard Mark I] started working in April 1944.” Another article 1n
the same Encyclopedia begins: “The Harvard Mark I, also called the IBM
Automatic Sequence Controlled Calculator... marked the beginning of the era
of the modern computer.” In 1964, AFIPS (the American Federation of Infor-
mation Processing Societies) established the Harry Goode Memorial Award to
honor 1ts second president, Harry H. Goode, by recognizing “outstanding
achievement in the field of information processing”: the first award (1964)
went to the recognized pioneer, the inventor whose giant machine had inau-
gurated the computer age: Howard H. Aiken.

In order to appreciate the nature and magnitude of Aiken’s achievement it 1s
necessary to find out how his contributions were related to other developments
of the same period and also how what he accomplished has been a force In
getting to the present computer age. Aiken’s career 1n computers began in the
late 1930s and came 1nto flower 1n the 1940s.

This first stage of computer history has some remarkable features that
differentiate it from conventional history of science and technology. In both
Germany and America in the 1940s, those who were developing the first com-
puters or protocomputers were ‘“‘new men’ in the arena of science and technol-
ogy, outsiders who had not been active or prominent members of any tradi-
tional ““old boy” network. J.V. Atanasoff received some nominal support from
Iowa State College, but his work was out of the mainstream of computer tech-
nology and was not very much known in wider circles. George Stibitz was a
member of a large and well established research and development organiza-
tion, the Bell Telephone Laboratories, but innovations in computing or
machine calculation were at most a peripheral concern of his fellow scientists
and engineers. Howard Aiken was a real outsider and upstart, only a graduate
student in physics, for numerical calculation. J.P. Eckert and John Mauchly,
working on ENIAC 1n the 1940s, were engineers 1n the Moore School, whose
project seemed to be of no interest to those who were concerned with methods
of practical computing. And in Germany, Konrad Zuse was a real “loner,”
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outsider with no academic affiliation and no industrial support. His pioneering
work in designing and building his first machines made use of scraps and
second-hand spare parts. He constructed his first machine in the living room of
his parents’ home.

EARLY STARTERS

In the 1920’s, most scientists and engineers had no use for the many decimal
places that would be made possible by an advanced automatic digital calcula-
tor; they were satisfied with the three-place accuracy provided by Vannevar
Bush’s Differential Analyzer and other analog devices. During this period the
major use of tables was, as it had been in the 19th century, by astronomers
and actuanies. In the 1930s, the great potential of business machines for
scientific calculation was only just being realized. The real pioneer in this area
was L.J. Comrie, a New Zealander established in London. Comrie, superinten-
dent of the British Nautical Almanac office, recognized that commercially pro-
duced business machines had the capability of being linked together and used
for scientific computing.

A fruitful ine of development in the 1930s made use of punched-card
machines. These had been developed in linear descent from the original data-
processing punched-card machines invented by Herman Hollerith to handle
the data accumulated in the 1890 census. Hollerith’s company became part of
IBM.

Here let me observe that punched-card machines are essentially cumulators.
hence, since multiplication is a form of controlled addition, and since addition
1S successive cumulation, a punched-card statistical or business machine may
easily be directed to perform additions and multiplications. In the IBM
punched-card business machines, subtraction was performed as addition, using
complement arithmetic.

The scientists associated with giant calculators or computing machines in the
late 1930s were not directly concerned with problems arising from practical
engineering needs or with military affairs. George Stibitz started out by amus-
ing himself with the analogies of relay circuits and binary arithmetical opera-
tions; he was then led to design and build his first practical machine in order
to facilitate computations with so-called complex numbers. In 1937, Stibitz was
exploring the common features of binary arithmetic and electric circuits con-
taining relays. He eventually designed a relay machine completed in October
1939 and put into regular use in January 1940; it was known as the “Complex
Number Computer” (later shortened to “Complex Computer”). It could speed-
ily and easily add, subtract, multiply, and divide complex numbers: “All it
requires of the operator is that she type the problem correctly”.

John V. Atanasoff, a professor at Iowa State College (now lowa State
University) was motivated by a concern with applied mathematics (systems of
linear equations in engineering problems) to go beyond the limits of analog
calculation and to explore the possibilities of digital calculating. A major prob-
lem for him was “the solution of systems of linear simultaneous algebraic
equations”. He was joined by Clifford Berry in 1939. The machine, intended to
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solve up to thirty simultaneous linear equations, was to be equipped with a
binary card-punch and reader developed by Berry. A “prototype computing
element” was demonstrated in autumn 1939, but the large-scale machine was
never completed. The project was abandoned when Atanasoff left lowa State
to join the staff of the Naval Ordnance Laboratory in 1942, at the same time
that Berry joined an engineering company in California.

The ABC achieved real fame during the famous 1971-73 court case,
Honeywell v. Sperry Rand, when the presiding trial judge declared that “Eck-
ert and Mauchly did not themselves first invent the automatic electronic digital
computer but instead derived the subject matter from one Dr. John Vincent
Atanasoff”™.

In Germany the beginnings of the modern computer centered on the work
of Konrad Zuse. After graduation from the Technische Hochschule in Berlin
Charlottenburg in 1935, Zuse started his career as a stress analyst for the Hen-
schel Aircraft Company in Berlin. Even before graduation, he had begun to
think about a universal calculator that would use binary arithmetic; so when
his work at Henschel led to a dreary sequence of setting up and subsequently
solving systems of simultaneous linear equations, Zuse — like Stibitz,
Atanasoff, and Aiken— decided that the calculations could and should be
mechanized. At the age of twenty-six, in 1936, he started to build his first
machine.

Zuse’s first two calculators were actually built in the living room of his
parents’ appartment with the help of friends. The first of these, the Z1, was a
binary machine, controlled by punched tape; it had a mechanical memory con-
sisting of a set of thin slotted metal plates, a thousand in number, in which the
position of a pin in the slot would indicate a 0 or a 1. Although 1t was never
fully operational, the Z1 convinced Zuse that he was on the right track. He
then began collaboration with a gifted electrical engineer, Helmut Schreyer,
with whom the produced the Z2. This machine was in many ways similar to
the machines of Stibitz and Aiken in that it used telephone relays.

In 1942, Zuse began to construct the Z3, a machine that used vacuum tubes
plus electro-mechanical relays. This machine may well be “the first operational
general-purpose program-controlled calculator”.

The Z3 was completely destroyed in an air attack on Berlin in Aprl 1945.
Zuse, undaunted began to build a larger version, the Z4. The Z3 and the Z4
did not influence the next stage of computer development, however, because
information about them became known until too late to have any effect.

T'he most significant wartime development in computing was ENIAC (Elec-
tronic Numerical Integrator and Computer), designed and produced at the
Moore School of the University of Pennsylvania under contract to the U.S.
The two men responsible for the new idea and its implementation were John
Mauchly and J. Prosper Eckert, the former a physicist, the latter an electronics
engineer. The degree of their achievement can be gauged by the fact that
ENIAC would be several orders of magnitude larger than any electronic device
ever concelved or manufactured, and it would have to be reliable.

ENIAC marked a turning point in the history of computers by proving that
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supercalculators could be built with speedy vacuum tubes rather than slow
relays and that the results would be reliable. By the time that ENIAC was
taken out of service on 2 October 1955, it had probably done “more arithmetic
than had been done by the whole human race prior to 1945".

Perhaps the most development during World War II was the Colossus series
of machines produced for encryption and decoding in Britian. Many very
talented British mathematicians, scientists, and engineers worked on this war-
time project, among them Alan M. Turing, H.A. Newman, and l.J. Good.
Only recently has full information about their activities come to light from
behind the screen of the Official Secrets Act.

Despite their priority with respect to electronics and programming, the
Colossus machines did not have any open and direct influence on the later
developments of computers because they were shrouded in secrecy until the
1980s. Yet some of the scientists and engineers assoclated with Bletchy Park
— e.g. Newman, Flowers, Turing— later applied their wartime experience to
computer design. The main lines of development, as history unfolded, thus go
back to Aiken and his Mark I, and especially to Eckert and Mauchly and
ENIAC.

AIKEN

Howard Aiken was a giant of a man, in body as well as in mind, towering six
feet four inches. A man of deep convictions, he had strong likes and dislikes.
He often formed his opinion of others at the instant of first encounter. It was
said that on a scale from 1 to 10 he rated people as either 0 or 11 — there was
no middle ground with people, as there was none in any aspect of his career.
Only such a man could have made a reluctant Harvard become a center for
the new science and art of computing. With all of his drive and 1magination,
however, Aiken could not achieve his ends alone. Harvard’s computer, or giant
calculator, was Aiken’s brainchild, but to bring 1t into being he had to effect
the collaboration and cooperation of Harvard, the International Business
Machines Company and, eventually, the U.S. Navy. This combination of not
always compatible actors, the special technological considerations involved, the
contingencies or world war, and the personality of Aiken combined to make
the process anything but trouble-free.

Although Aiken achieved world fame as a computer pioneer, he had no 1dea
that he would devote his career to computing or even to applied mathematics
when he entered Harvard’s Graduate School of Arts and Sciences in 1933 as a
candidate for the Ph.D. in physics. He was then 32 years of age, older than
most graduate students. He had obtained his undergraduate degree in electrical
engineering from the University of Wisconsin and had worked as a power
engineer before coming to Harvard.

During Aiken’s initial years as a Harvard graduate student, he followed the
usual program of studies; he then shifted his allegiance to the field of electron-
1cs, the physics of vacuum tubes and the properties of circuits. Aiken’s serious
interest 1n machine calculation can be traced back to his early graduate days.
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In the course of an oral-history interview that Henry Tropp and I conducted
with Aiken, shortly before his death in 1973, he explained that the area of his
thesis was “space charge” and that “this is a field where one runs into cylindri-
cal coordinates, or in a parallel case, into ordinary differential equations — in
nonlinear terms, of course.” “In actual fact” he continued, “the object of the
thesis almost became solving nonlinear [differential] equations: not completely.
but there was some of that in it.” The only methods available in those days
were methods of hand calculating and “they were extremely time consuming.”
S0 it became apparent ‘““at once, that this could be mechanized and pro-
grammed and that an individual didn’t have to do this.”

A former graduate student, James Hooper, recalls that what Aiken was
proudest of having done in his doctoral thesis was to have been able to find a
“closed form solution to a partial differential equation.” This solution was
worked out in terms of Bessel functions, so he “had to do an awful lot of
laborious work on a Marchant calculator, interpolating values found in the
tables.” So we may understand why Aiken decided “to construct a machine to
work out the most detailed tables of all the Bessel and related functions that
anyone could ever possibly want.”

Betore long Aiken had gone well beyond the immediate needs of his thesis
problem and had begun to think about large-scale calculation by machine. By
at least April 1937 Aiken had progressed sufficiently far in his general thinking
and design to be ready to seek support from industry. Knowing Aiken’s work
habits, it 1s not difficult to imagine that he would have drawn up a careful
memorandum stating the features of a proposed machine, its mode of opera-
tion, and its general method of solving problems. His philosophy was later
expressed 1n a student’s assignment that was drawn up for one of Aiken’s
classes — the design of an inexpensive laboratory computer (or calculator):
“The ‘design’ of a [...] computing machine is understood to consist in the out-
lining of its general specifications and the carrying through of a rational deter-
mination of its functions, but does not include the actual engineering design of
component units.”

Ailken thus assumed that the design of a computing machine includes the
specification of the logic or the sequence of controlled operations that the
machine will be programmed to perform. To judge from the information avail-
able, Aiken’s design would not have necessarily specified which particular com-
ponents ‘nor even what sorts of components’ would be used. The design could
apply equally to a machine that would be constructed of mechanical, electro-
magnetic, or electronic components.

Once Aiken had his plans worked up, he proceeded to seek industrial support
for the construction of his machine. The first company he approached was the
Monroe Calculating Machine Company, one of America’s foremost manufac-
turers of desk calculators. On 22 April 1937 Aiken had an interview with
George C. Chase, a distinguished inventor in the calculator field, who was then
Monroe’s director of research. Chase has recorded how Aiken outlined his
conception and “explained what it could accomplish in the fields of
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mathematics, science, and sociology.” The plan he outlined, according to
Chase, “was not restricted to any specific type of mechanism; it embraced a
broad coordination of components that could be resolved by various construc-
tive mediums.” This accords well with Aiken’s philosophy embodied in the
earlier quotation from a student’s assignment.

It is well known that Aiken’s early machines were equipped with electromag-
netic relays and switches. I myself was long puzzled by Aiken’s apparent
preference for relays over vacuum tubes. Accordingly, in the interview, I was
poised to discuss with him his reasons for choosing to build his computing
machine with relays rather than with vacuum tubes. As part of my prepara-
tion for the interview with Aiken, I reread Chase’s discussion of his encounter
with Aiken. And I even had a copy of Chase’s article in my pocket, as rein-
forcement for my pressing Aiken on the choice of electro-mechanical machine.
Early in the interview I raised the question I had prepared. Since Aiken’s
thesis was on the physics of vacuum tubes, specifically on space charge in the
field of electronics, had he ever considered using electronic systems rather than
electro-mechanical system? Why had he not contemplated using vacuum tubes?
[ confess that I had expected Aiken to frame his reply in terms of his great
often-expressed idea: reliability. I will even confess that 1 had, in part,
prepared the question less as a means of obtaining information than as an
opportunity to record on tape — directly from Aiken’s mouth — his thunder-
ing condemnation of supposedly unreliable vacuum tubes and his preference
tor slower and more reliable relays. So you may imagine my astonishment
when he replied that he had not been wedded to any particular technology. He
had been aware that the construction of his proposed computer would require
“money and a lot of it.” Since he was not then, nor was he ever, primarily
interested 1n technological innovation, it had seemed to him that the most sen-
sible course was to “build the first machine out of somebody’s existing parts,”
rather than to have to invent or construct parts on his own. Electro-
mechanical relays and step switches were already in wide use, teletype had
been developed, and there was punched tape or punched cards for input. “The
tape,” he said, “was harder to edit and you couldn’t sort with it, but neverthe-
less it would work and it had advantages.” These ‘“different techniques
— printing telegraph techniques — were,” he added, “all grist for my mill.” At
that time, Aiken said, he was “largely a promoter, trying to find out where to
get these pieces so that the machine could be put together.”

I was not completely satisfied by Aiken’s presentation. Accordingly, a little
later in the interview, I returned to the subject — why had he not made use of
vacuum tubes? This time I stressed the fact that, as a graduate student Aiken’s
specialty was vacuum tubes and vacuum tube circuits. I asked him specifically
whether some thought hadn’t been given to having quenching circuits in Mark
I, using vacuum tubes. Aiken replied: “Yes. But your question really is: since I
had grown up in ‘space charge’ in a laboratory like Cruft [at Harvard], why
wasn’t Mark I an electronic device? Again the answer is money. It was going
to take a lot of money. Thousands and thousands of parts! It was clear that
this thing could be done with electronic parts, too, using the techniques of the
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with vacuum tubes, jus
And than he concly >
S down to 18 1S M’ mroe had
1l ng would have been m & ¢ out of mec h amcaﬁ
parts. If RCA had bmn anmr%wdﬁ it might have been electronic. And |
made out of m.; ulating ni ' 111
bill.”

E, w hf; expunged f rom iht mcmd Tha;» mmﬁvm the t 1C 0? remys
rehiability. A aken s fierce nsistence on the Mdmddrds mf mhahahty 1S
well known. What E"S nm S0 well known is Ehat the onginal Marl
it came to Hze IBM's assembly system at Endicm'h was very unreli-
able. worst fedture of this umehabnm ty was that i1t seemed to occur m
random or sporadic way. Bob Campbell and m@ opummg
a the source of the unrelnablhty to the relays supplied to the Mark 1
IBM’s off-the-shelf inventory.

Designed for the relatwe]y light load of IBM tabulators and cumulators.
relays simply could not sumd up under the 24-hour-a-day 7-days-a-week
issignment of the Mdﬂ\ I and had to be replaced by heavy-duty components.
en Aaken planned the successor Mark 11, he asked the Autocall (Qmpany
to design and mf'_.nufacture wholly new types of relays, to take the place of

those which had not lived up to has standards for the Mark I.

?éo return to the chronology. When Monroe decided not to construct Aiken’s
dream machine, he went to IBM. His proposal to them, dated 1937, fills 23
] ped pages. The central portion discusses punched card
IBM type in terms of four design features that are different
DT | ac:couming “machinery” and “calculating machinery as
r*qulred in the sciences.” These are:

(1) A mthme intended for mathematics must “be able to handle both posi-
and negative quantities,” whereas accounting machinery is designed

almost enurely " for “problems of positive numbers.”

(2) Calculating machinery for mathematical purposes must “be able to sup-
and utilize” many kinds of transcendental functions (e.g. tri gonometric
functions), elliptic, Bessel, and probability functions.

(3) For mathematics, a calculating machine should *“be fully automatic in its
operation once a process is established.” In calculating the value of a function
in ats ex,ansion In a series, the evaluation of a formula, or numerical integra-
tion (m solution of a differential equation), the process, once established, con-
tinues “indefinitely until the range of the independent variables is covered”
— usually “by successive equal steps.”

(4) Calculating machinery designed for mathematics “should

omputing lines instead of columns,”

HV’@

be capable of
since vcry often, in the numerical solu-

ler n p ng values. This is dctually “the reverse’” of the way in which
emstmg ca lculating machines™ are capable of evaluating a function by steps.




Aiken concluded this section with the bold statement that these four features
are “all that are required” to convert existing punched-card calculating
machines (“such as those manufactured by the International Business
Machines Company”) into machines ‘“specially adapted for scientific pur-
poses.” This statement minimized the engineering and design problems that
would have to be solved in order to produce Aiken’s proposed machine. We
cannot tell whether this simple optimism was a reflection of his technological
innocence or whether he purposely was making the practical problem of design
and construction seem simple in order to convince the executives of IBM that
his project as feasible — a gigantic conversion of existing commercial elements
rather than the production of something rather essentially new.

In the event, this distinction was to be the central issue in the strong diver-
gence of opinion as to whether Aiken or the IBM engineers should receive pri-
mary credit for the invention. IBM eventually produced the machine to fulfill
Aiken’s expectations. It embodied many new IBM innovations, such as ways
of dividing. In the years to come there was considerable acrimony between
IBM and Aiken on the question of who had invented the machine — Aiken or
the IBM engineers? In retrospect, however, that quarrel has only an anti-
quarian interest. ’

But two observations may be made. For IBM this was a one of a kind
machine — no one at IBM ever conceived that the ASCC would 1nauguarate a
new product line. The ASCC was to be IBM’s contribution to science and 1ts
only profit was to be the good publicity resulting from this noble gesture.
Aiken, however, saw the machine as only a beginning, the first in a line of
machines that would be increasingly powerful and more versatile. For 1BM
this machine was (and still is) always referred to as the ASCC, the Automatic

Sequenced Controlled Calculator; but for Aiken it soon became the Harvard
Mark I — the first of a series.

Mark I and its operation
‘Mark I was enormous, about 20 meters long, 2.5 meters high and almost a
meter in width. It was made up of 22 panels, all in a line, plus two supplemen-
tary panels jutting out at 90°. Three additional panels, containing a subsidiary
mechanism, where added later. Panels 1 and 2 contained 60 constant registers
for the input of problems. Each register was controlled by a row of 24 ten-
position switches, so that an operator could set by hand as many as 60 23-
place constants (23, not 24, since one position was reserved for O or 9 to indi-
cate positive or negative numbers). Panels 3 to 11 contained 72 storage regis-
ters, each of which also was composed of 24 ten-position switches and was the
memory. Three tape readers could feed in values needed for special operations,
while another read the instructions. Panels 16 and 17 contained 2 punched
card readers and a card punch plus 2 electric typewriters. Thus 1nstructions
could take the form of punched tape or punched cards and the output could
be type-written tables or punched cards.

Mark I thus embodied a 20th-century variant of an important innovation in
making tables that had been suggested by Charles Babbage. The latter, aware
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that errors were introduced whenever tables were copied by hand (as in type-
setting and proof-reading), designed his analytical engine to stamp out the
results on a papier maché moulage, from which a stereotype plate could then
be cast. Mark I used two IBM electric typewriters to type out its results in
tabular form on sheets which were then placed in order, photographed, and
transferred to special zinc plates for printing. Aiken used to complain that the
operation of the typewriters was lower than the computation and set the max-
imum speed of production of tables. It may be noted that the operator could
watch the numbers being types out as a visual check on the accuracy of the
calculation.

In order to see how Mark I was programmed, a few words must first be said
about the actual mechanism. Every register had 24 rotating counters, each of
which had ten positions, numbered from 0 to 9. Each of these 1 O-place
counters was connected to a shaft that was linked by gears and clutches to
central drives that were continually whirring. For every electrical impulse
received by a counter, the clutch would engage for an instant, long enough to
produce a partial movement equal to a tenth of a complete rotation, advancing
the number (or number-position) by 1. The number of such electrical impulses
would derive from the instructions on the command tapes. Thus if storage
register no. 3 contained the quantity 73,965 (the 19 numbers to the left of the
7 being zeros), and the instruction on the command tape was to add 431, a
single pulse would be sent to the counter reading 5, so as advance it one poOSI-
tion to 6; three pulses would be sent to the counter reading 6, so as to advance
1t three positions to 9; and four pulses would be sent to the counter reading 9,
so as advance it four positions to 3, while a carry mechanism would advance
the next counter from 3 to 4.

A characteristic of Mark I, remembered by anyone who ever witnessed its
operation, was the constant humming or whirring sound of the main drive
shafts. This pleasant sound has been described as like that of a giant sewing
machine. Aiken sat in an office near Mark I, with his door always open, SO
that he could hear the constant sound of the machine. I well remember being
with him one time when he detected a variation in the sound. He leapt out of
his seat, ran to a main switch, and stopped the operation until the fault could
be located and corrected.

The program for Mark I was entered on a long segment of a roll of paper
tape. Each line of the program—that is, each individual command—occupied a
horizontal line with twenty-four spaces. These twenty-four spaces were divided
Into three groups (or fields) of eight spaces each, designated by the letters A,
B, and C. The spaces in each field were numbered from 1 to 8, reading from
right to left. The tape-reader had twenty-four brush contacts, in positions
corresponding to the twenty-four spaces on each line of the tape. The program
was entered on the tape by means of holes punched in the tape in the
appropriate spaces. When the punched tape was fed through the tape reader, a
surge of electric current would pass through each space where there was a hole,
sending the appropriate number of electrical impulses to the designated
counter and therefore advancing it by the assigned number. No current would
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pass through the tape at positions for which there was no punched hole.

Essentially, the counters in each register acted as accumulators, performing
stages of successive addition. Hence multiplication could be performed as a
function of addition. Subtraction required the use of nines-complements, as in
tabulators then in use in business machines. Division presented a problem in
the stages of the original design. Aiken originally proposed using the famous
Newton-Raphson method but the IBM engineers later found that a different
set of operations would reduce the number of machine operations.

I have mentioned that the paper tape directing the operations of Mark I
used a single horizontal line for each individual instruction and that each such
line of instruction consisted of 24 places divided into three groups of eight,
known as the A, B, and C fields. The programmer would assign to each field a
numerical value determined from the code book, which gave the code numbers
for all the different kinds of operations the machine could perform. For exam-
ple, such a set of three code numbers could be 21; 7321; 32. That 1s, the A-
field would have the numerical value 21; the B-field 7321; the C-field 32. This
would be written out symbolically on a form with three columns

OUT IN | MISC.
21 | 7321 32

which would designate the register (OUT) from which a number or quantity
was to be taken, the operation (MISC.) to be performed, and the register (IN)
into which the result of the operation was to be entered. A key-punch operator

would convert each line of a program into a set of corresponding punched
holes, as in the diagram

A B C
O O O O 0O O @ @ O @ O O 0O & @& o O O ® @ O

O O O
8 7 6 5 4 3 2 1 87 6 5 4 3 2 1 3 76 5 43 2 1

In this diagram, 1 have separated the three fields for ease of explanation, but

on the tapes used in Mark I there would be an equal distance between each
assigned space or place and 1ts neighbor.

The code book for programming Mark I was later published in the Manual

of Operations. Each program consisted of a sequence of commands or instruc-
tions. A coded one-line instruction of the form A4; B; C could be read: Take

the quantity in register A, perform the operation designated by C, and put the
result in register B. A typical line of instruction might be coded

OuUT IN MISC.

21 7321

which translates as: Take the quantity in the register with code number 21

(register no. 3) and add i1t to the quantity in the register with code number
7321 (register no. 71).
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Aiken devised an ingenious coding system, which provided code designa-
tions for each register or storage counter and for a large variety of operations.
The registers or storage counters were assigned the following numbers:

Registers Code Numbers

| ]
2 2
3 21
4 3
B 31
6 32
7 321
3 4
9 41
71 7321
712 74

Operations were divided into two classes. One was called the “non-automatic”
operations. For these the machine would read a line of instruction, perform the
designated command, and then step ahead to the next line of the program and
stop—not reading that next line and, accordingly, not performing the desig-
nated operation. The other set, called the “automatic” operations, were more
like those of the computers we know today. That is, the machine would not
stop after performing a single operation, but go on to the next command, read
the command and perform what was indicated. This automatic procedure
could go on for as many steps as were built into the instruction code. For a
non-automatic operation to continue, it was necessary to introduce a seven (7),
the coding for reading the next line of instruction and performing the desig-
nated operation or operations.
Some of the automatic codes were:

divide 76
multiply 761
logarithm 762
exponential 7621
Interpolate 763
sine 7631

and some non-automatic codes were:

Read out negative absolute value from storage counter 1
Read out positive absolute value from storage counter

Invert read-out of storage counter 32
Step interpolator I ahead 53
Step interpolator I1I back 542
Print on typewriter I 752
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The first example given above represents a typical line of coding for Mark I:

OUT IN | MISC.
21 7321 32

The operation being called for is coded as 32: to take the number from the
storage counter and ““invert” it. That is, the machine i1s instructed to take the
quantity in register 3 (code 21) and by means of the invert relay (code 32) find
its complement on 9 and add it to the quantity in register 71 (code 7321). It
may noted that an operation coding (in the MISC. column) can be assigned
the same number as a register (in the IN or OUT columns) without confusion.

In actual practice, however, the machine would rarely be asked to perform a
single line of instruction. Thus, in the case of “non-automatic” operations, a 7
would almost always be added in the C-field, unless the line was the final one
INn a sequence.

The first example above would thus become

OUT | IN | MISC.
21 | 7321 7

which translates as: Take the quantity from register 3 (code 21) and add it to
whatever quantity 1s in register 71 (code 7321); go on to next line of code, read
the 1nstruction and proceed to carry out the designated operation. But 1n the
next example, a 7 1s not needed, because the designed operation 1s automatic:

P B
OUT IN MISC.

S I R
21 7321 32

which (in full detail) translates as: Take x from register 3 (code 21) and sub-
tract 1t from yp 1n register 71 (code 7321); go on to next line, read the instruc-
tion and carry out the designated operation. (Again it should be noted that the
32 in the MISC column refers to the operation of subtraction and does not
designate a register as it would if it were in either the OUT or the IN
columns.) It should be noted that when the command was to take a quantity
from one register, say no. 3, to another, say no. 72, the content of register no.
3 would either be simply entered into register no. 71 or added to whatever
number was already there.

Subtraction was performed on Mark I by way of complement arithmetic.
The Manual of Operations explained the use of complement arithmetic more or
less as follows. The complement of any number W X Y Z can be found by
taking the complement on nine of each successive digit except the last one on

the right, for which the complement on ren must be taken. Thus the comple-
ment of ten of W X Y Z 1s

5S—W 95—X 9-—Y 10—Z
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or, to use a numerical example, the complement on ten of 7528 is 2472
(because 9-7=2, 9-5=4, 9-2=7, 10-8=2). Let us now subtract 7528 from any
number, say 38421. Then, since

33421 — 7528 = (38421 — 1000) + (1000 — 7528)
it follows that

33421 — 7528 = 28421 + 2472 = 30893

In applying this method to machine operation, the process is simplified by
using complements on nine and “‘end-around carry.” In this process a 1 is
automatically carried from the highest column (left-most place) of a machine
to the lowest (right-most). The reason is that the complement on fen of any
number, say ABCD is greater by one than the complement on nine. The com-
plement on ten of ABCD is

9O—4 9—B 9—C 10—D
while the complement on nine is
9—A4 9—B 9—C 9—D

The 1 from the end-around carry raises 9—A4 to 10— A.
As an example consider a six-column machine, that is. a machine which
operates with six significant digits. The complement on nine of 7528 is

999999 — 007528 = 992741
Subtracting 7528 from 38421 now becomes

038421
+ 992471

1 030892
— 4

Since the machine has only six significant places, there is no seventh left-most
or highest place in the sum for the 1 and so this 1 is carried around the end to
the right-most or lowest place to raise the sum from 030892 to 030893, which
1s the correct answer. Thus our problem of subtraction becomes

038421 — 007528 = 038421 + 992471 + 000001 = 030893

where the third term (000001) comes from an end-around carry.

Next let us seen how a machine can be programmed to deal with algebraic
sign, that 1s, with negative as well as positive numbers. Once again, consider
the example of a six-digit machine. Suppose that our six-digit machine is asked
to add any number greater than or equal to 1, say 007364, to 999999. This
operation will always produce a 1 in the “seventh” place, which would be lost
if there were not an end-around carry to make use of it. Thus in machine
operation, with an end-around carry,
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999999
+ 007364

1 00736
| 4

This addition may also be written as
999999 + 007364 + 000001 = 007364

This example shows that for machine purposes, the number 999999 has the
properties of zero (so long as there is an end-around carry). In general, any
machine with end-around carry, can consider a number composed of a string
of nines as a zero.

Because subtraction from zero gives a negative number, for machine pur-
poses the complement on nine of any number may be used for the negative of
that number. That is, in the case of a six-place machine, we can form
— 038421 by subtraction from zero

—038421 = 000000 — 038421 = 999999 + 007364 + 000001

If we add to the machine a supplementary seventh place, in the highest (or
left-most) column, which is restricted so that it can read only zero or nine,
then we can deal automatically with positive and negative numbers, or with
the problems of algebraic sign, by using the zero as the algebraic sign of a
positive number and the nine as a negative sign. In general, in order to deal
with negative numbers in an automatic manner, “an n-digit calculating
machine must be supplied with (n + 1) columns, the highest being reserved for
the algebraic sign.” On Mark I, the A-field thus had only seven usetul places
or columns, the eighth being reserved for the zero or nine which served as alge-
braic sign. The zero or nine would be called for by having a hole punched in
the eighth place or not.

To see how the algebraic sign worked in practice, consider two examples
from a four-place machine. The problem 1s to subtract 2361 from 7465 by
adding —2361 to 7465. The complement on nine of 2361 is 7638 and a nine In

the algebraic sign indicates a negative number. Hence this operation may be
written as

9 7633
+ 7465

10 5103
T |

where the 1 1n the non-existent place provides the end-around carry to raise
5103 to the correct answer of 5104. This result can be read as follows: the
answer 1S + 5103 because the number in the algebraic sign place or column 1s
a zero.

Now let us attempt to add —2361 to 1465 (or to subtract 2361 from 1465).
This time we have
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9 7638
+ 1465

9 9103

in which there is no 1 for an end-around carry. The result will be negative,
since the algebraic sign number is 9. But negative numbers are complements
on nine so that 9 9103 reduces to —0896 (just as 9 7638 was formed from
— 2361 at the start of the problem).

Multiplication required several steps. Let it be desired to multiply some
number x by y. The first line of code might read

OUT | IN MISC.
654 761 7

take the number X in register 56 (with code number 654) and enter it (code

761) as the multiplicand, go to the next line of code, read and carry out
INSIrUCtions.

The second line might be

OUT | IN | MISC.
52 | 0 7

take the number Y in register 18 (code number 52) and enter it as multi-
plier.

Finally,

OUT | IN MISC.
0 | 431 7

take the product XY and deliver it to register 13 (code number 431);
proceed to the next line of code.

In practice, however, this would be written more simply in three lines of code
as follows:

OUT | IN | MISC.

654 761
d2

431 7
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1. Take gquantity in register 56 (code 654) as multiplicand (code 761)

2. Take quantity in register 18 (code 52) as multiplier

3. Deliver product to register (13) (code 431) and go to next line of
code and read instructions

Note that the first 2 lines of coding do not contain a 7. The reason is that the
operation of multiplication (code number 761) contains the “automatic”
instruction to proceed. Aiken described this feature by noting that “the multi-
ply code is an automatic continue code and therefore replaces the 7’s.”

Mark 1 was a decimal machine and had a fixed decimal point. There were a
number of built-in sequences of operations or functions, including logarithms
to the base 10, sines, exponentials to base 10, and interpolations. These were
officially designated in the Manual of Operating as “built-in subroutines.”

THE PERFORMANCE OF THE MACHINE THAT BEGAN THE COMPUTER AGE

Mark 1 became operative in 1943 and was shipped to Harvard in summer
1944. It was immediately turned over to the Navy and used constantly, almost
24 hours a day, 7 days a week, to produce tables of Bessel and Hankel func-
tions and to solve specific problems. Aiken had a large staff provided by the
Navy, 1including 3 programmers — Robert Campbell, Richard Bloch, and
Grace Hopper. The mode of solving problems was to have a mathematician
decide what numerical method was best adapted to computation by the
machine. Then each of the steps had to be written down and translated line by
line 1into numerically coded statements, plus switch-settings needed for the con-
stantsregisters, and so on. The mathematician or programmer worked with the
code book at his or her side. Before long, it was seen that certain parts of the
instructions occurred again and again. So the practice began of writing such
partial programs into a notebook. The most extensive such collection was
assembled by Dick Bloch, who was the primary programmer. Aiken told us
that Bloch was so skilled a programmer that he would write out his programs
in ink! Grace Hopper informs me that she and others also kept private
libraries of partial programs. Years later, such collections of partial programs
became known as libraries of subroutines, but their origin goes back to the
actual programming practices of those who were working on Mark 1. These
coded subroutines, or “canned” elements of programs, are to be distinguished
from the subroutines built into the machine, such as those for logarithms,
exponentials, and trigonometric functions.

As originally conceived, Mark I had no conditional or branching circuits.
These were added later. Other later enhancements included an electronic
multiply/divide unit, additional storage registers, and an improved interpolator
tape unit. Throughout its whole life, Mark [ operated with a fixed decimal
point. Needless to say, Mark I was a strictly decimal machine.

One of Aiken’s students (in 1949-1950), Jack Palmer, remembers his experi-
ence 1n programming (coding) Mark I, which he found to have been very
“similar to coding modern stored-program computers.” The programmer wrote
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down sequences of codes for addresses and operations in the appropriate
columns of a coding form, following which these codes or their equivalents
would be punched into a program tape — “a strikingly similar procedure to
that which programmers who programmed the early stored-program computers
did when they were programming in machine language.” They too “needed to
know the codes for the addresses of the words in storage and the codes for the
operations to be performed,” which they would write down “in a strict instruc-
tion format on a coding form” and which would later be punched on cards. In
both cases, Mark I and the later stored-program computers, the numerical
codes were obtained from a coding book.

There is no doubt in the minds of anyone who programmed Mark I that in
many ways 1t was more like a modern computer than other early machines.
Where Mark I differed in a fundamental way from later computers was, there-
fore, not so much in its slower speed (as compared with electronic machines)
as 1n its initial lack of conditional branching and in the complete separation of
data and instructions. This latter feature, more than the choice of electronics
over electromagnetic relay systems, was and remained central to Aiken’s think-
Ing about computers.

Mark I was an extraordinary machine in many ways. It had a long active
life from 1944 until it was dismantled 15 years later in 1959. No other of the
early giants operated continuously, as Mark I did, for so long at time, 24 hours
a day for 7 days of the week. What is even more significant is the fact that
Mark I could run so constantly and so long and be relatively free from the
kinds of errors that plagued such machines. I have mentioned that Aiken’s key
word in all his career was reliability. He would gladly sacrifice speed for relia-
bility, if he had been forced to make a choice between them. |

In our interview, Aiken recalled that he always tried to find “an identity or
some kind of algorithm in the mathematics so that when you compute the
number x, you can subject the number x to mathematical scrutiny to show
that 1t’s right.” As a simple example, he recalled the computation of tri-
gonometric tables “for our own use.” “We wanted sinx,” but “we computed
cosx too, and we squared and added them to make sure they were equal to
one.” Even then Mark I was tabulating results for internal use, that is, for
direct storage on tape or cards, the results were also typed so that a visual
check could be made. Aiken also noted, ‘We had a check counter, and if you
subtracted two numbers in that check counter, and the absolute value of the
difference was greater than the preassigned value the machine stopped.”

In 1944, Aiken was asked to build a new machine for the Navy. Since Mark I
functioning well, he did not modify the basic design; accordingly, it too func-
tioned by relays. Mark II was considerably faster than Mark I, in part because
the mechanical register system was replaced by a relay-system. Furthermore,
the relays themselves were faster. From the point of view of computer history,
Mark II was mnovative in that it could be split into two separately operative
machines that could work independently on smaller problems. Each half 50
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storage registers, two multiplication units, 1 addition unit, two separate tape
readers for instructions and four more for data. Mark II was decimal, with ten
digit numbers, and had a floating decimal point; the digits were stored in a
specially devised binary-coded decimal system. The hardwired subroutines
were extended to include

1/x; 1/sqrt(x); In(x); exp(x) cos(x) and arc tan(x).

The two halves, furthermore, could be joined in serial or parallel connection.

SPEEDS

Mark 1 Mark I  Mark III Mark IV
addition 0.3 sec(1u) 0.2 sec 4 msec 3.6 msec
multiplication  up to 6 sec(20u) 0.7 sec 12 msec 12 ms
division up to 15.6 sec(S2u) 26.4 ms
look up
built 1n
functions 60-89.4 sec 5-12 sec

(199u-298u)

Mark III was designed in 1949 for the Navy. It differed from Mark I and II in
using magnetic drums. A special feature was a mathematical button board, to
put in subroutines automatically. The speed of performing multiplication was
12.75 milliseconds. Aiken called 1t the ‘slowest electronic machine’ 1n existence.
It had 5000 vacuum tubes and 200 relays.

Mark IV used ferrite magnetic cores. It was built for the Air Force and sig-
nalled Aiken’s departure from the field of machine building.

How shall credit be apportioned for the pioneering machine — the Mark
[/IBM ASCC? Aiken was always aware that the IBM engineers and their asso-
ciates would never have invented, much less ever have thought of, the ASCC if
he hadn’t come along with his proposal. In this sense how could he not have
considered himself the first mover, the instigator, the primary inventor! He
was, to use a mathematical expression, the necessary condition. In the sense of
having conceived an automatic sequenced calculator, Aiken was the progenitor,
the inventor of the idea and the function. But he was also unable — of and by
himself — to convert his 1deas into a machine; he was not, to use the other
part of that mathematical expression, sufficient. He needed IBM or some other
company with practical experience 1n electrical and electro-mechanical devices.
From the IBM point of view the ASCC had been put together by IBM
engineers, using standard IBM parts and significant new devices invented at
IBM and not at Harvard. On the practical side of invention, Aiken’s contribu-
tion would have appeared minimal, even though his initiative and general pro-
posal had been responsible for the project that produced the machine.

Frederic P. Brooks, Jr. had suggested “a technical reason for some of the
misunderstanding” that arose between IBM and Aiken with respect to credit.
He notes that “Gerrit Blaauw’s distinction between the architecture, the
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Implementation, and the realization of computers was by no means understood
at that time.” Today “its clear that with the Mark I the architecture, and what
we today would call a good bit of the implementation, had been designed by
Aiken.” And “the rest of the implementation and all of the realization had
been designed by Durfee, Lake and Hamilton” at IBM. Brooks concludes that
“a distinction between those roles, if it had been clear at the time, would prob-
ably have diffused some of the bitter emotional feeling over the question of
credit.” ‘

The Harvard Mark I, the IBM Automatic Sequence Controlled Calculator,
was not a machine that set design standards for an industry, but rather was
the first real demonstration that such machines were practicable. It is a fact of
historical record that Mark I was the machine that first proved to the world at
large that a complex calculating engine could function automatically, perform-
Ing operations in sequence, and could follow a predetermined program from
the entry of the data to the production of the final results. The world-wide
publicity attendant on these achievements. aggrandized by the stark fact of
regular and continuous operation to produce reliable and accurate results, con-
vinced any last doubters that large-scale automatically sequenced calculators
were practical and could perform a major role in our technical world. In this
sense, 1t 1s certainly correct to say that when the switch on Mark I was thrown
the Computer Age began.

AIKEN’S SIGNIFIANCE

Aiken 1s sometimes held to be reactionary because he was always weary of the
concept of the “stored program” and did not Incorporate it into any of his
later machines. This stance did put him out of step with the main lines of com-
puter architecture in what we may call the post-Aiken era. It must be kept 1n
mind, however, that there are vast fields of computer application today in
which separate identity of programs and data must be maintained. for exam-
ple, in telephone technology and in what is known as ROM (“read-only
memory”). In fact, computers without the stored-program feature are often
designated today (for instance, by Texas Instruments Corporation) as embody-
ing what 1s called “Harvard architecture,” by which is meant “Aiken architec-
ture.”

Howard Aiken’s place in the history of computers, however, cannot be
measured by his four machines, important as they may have been. He recog-
nized from the start that the computers being planned and constructed would
require mathematicians to program them, and he was aware of the shortage of
such mathematically trained men and women. To fill this need Aiken con-
vinced Harvard — against its will — to establish a course of studies leading to
the master’s degree and eventually also the doctorate in what has become
known as computer science. Just as Aiken — by the force of his success, abet-
ted by his ability to find outside funding for his programs— achieved tenure
and rose to become the first full professor in the new domain of computer Sci-
ence, so he inaugurated at Harvard what appears to have been the first such
academic program to be put in place anywhere in the world. The roster of his
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students contains the names of many who became well known 1n this subject,
including Gerrit Blaauw, Frederick Brooks junior, Kenneth Iverson, and
Anthony Oettinger. As other academic programs came into being, they drew
directly or indirectly on Aiken’s experience at Harvard.

A third area of archievement, one of real significance, was his organization
at Harvard, in the post-World War II years, of a series of international conter-
ences which brought together almost everyone of any significance in the gen-
eral area of the new science and art of computers. This was part of his general
course of action to forward the design, manufacture, and use of computers.

A fourth area was his constant search of new applications for computers and
ways of enticing scholars to use the new machines. For example he sought out
his colleague in the Economics Department, Wassily Leontief, and got him to
use the Mark II for his input-output economics. He lectured extensively in
Europe and in America on Computers and their possible applications. As an
enthusiast he always sought out and welcomed new fields of applications for
computers and encouraged his students and others to be on the constant
lookout for new applications that would enhance the potentialities of this new
instrument. He pioneered the new world of application of computers to busi-
ness at a time when the computer world was almost exclusively concentrated
on problems arising in science and engineering or in government (national
security and the military). Aiken’s research under contracts with the American
Gas Institute and the Bell Telephone Laboratories inaugurated the present sys-
tem of computer billing.

Fred Brooks has summarized this part of Aiken’s activites as follows:

“He was one of the very first to realize the important potential of
computers for business, and that business applications would com-
pletely dominate scientific applications. He insisted that the busi-
ness applications would require usability of decimal among other
things, and he turned his attention to forging the ties with the utili-
ties, the business organizations, that would first have the need

— insurance companies, and that kind...— In order to make sure
that the mathematical approach was carried over into the business
problem.”

Alken was a visionary, a man apt to be ahead of his times. Grace Hopper and
others remember his prediction in the late 1940s, even before the vacuum tube
had been wholly replaced by the transistor, that the time would come when a
machine even more powerful than the giant machines of those days could be
fitted into a space as small as a shoe-box. His students and associates did not
know whether to take him seriously. Toward the end of our interview, just
weeks before his death 1n 1973, Aiken made another prediction. We were talk-
ing about how the cost of computing power had been constantly and rapidly
decreasing. Aiken pointed out that hardware considerations alone did not give
a true picture of computer costs. As hardware has become cheaper, software
has become more expensive. And then he gave us his final prediction: “The
day will come,” he said, “when manufactures will give away hardware in order
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to sell software.” Time alone will tell whether or not his final look-ahead into
the future was correct.

STORAGE COUNTERS
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No. Code No. Code I; No. |

Code
1 541 49 | 651
2 542 50 | 652
3 5421 51 | 6521
4 | 3 28 | 543 52 | 653
5 | 31 29 | 543] 53 | 6531
6 | 32 30 | 5432 54 | 6532
7 | 321 31 | 5431 55 | 65321
8 | 4 32 | 6 56 | 654
9 | 41 33 | 61 57 | 6541
10 | 42 34 | 62 58 | 6542
11 | 421 35 | 621 59 | 65421
12 | 43 36 | 63 60 | 6543
13 | 431 37 | 631 61 | 65431
14 | 432 38 | 632 62 | 65432
15 | 4321 39 | 6321 63 | 654321
16 | 5 40 | 64 64 | 7
17 | 51 41 | 641 65 | 71
18 | 52 42 | 642 66 | 72
19 | 521 43 | 6421 67 | 721
20 | 53 44 | 643 68 | 73
21 | 531 45 | 6431 69 | 731
22 | 532 46 | 6432 70 | 732
23 | 5321 47 | 64321 71 | 7321
24 | 54 48 | 65 72 | 74




DO
-

No Code
] 741
2 742
3 7421
4 743
5 7431
6 7432
7 74321
8 75
9 751
10 | 752
11 7521
12 753
13 7531
14 7532
15 75321
16 754
17 7541
18 7542
19 75421
7543

SWITCHES

Code

75431
75432
754321
76
761
762
7621
763
7631
7632

76321

764
7641
7642
76421
7643
76431

- 76432
| 764321

765
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Code

7651
76352
76521
7653
76531
76532
765321
7654

76541

76542
765421
76543
765431
765432
7654321
3

31

32

321

83




