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This paper discusses the development of a programming language: ADDL
(Artifact and Design Description Language). ADDL is designed for the imple-
mentation of Intelligent CAD (Computer Aided Design) systems. Its explication
proceeds In three stages. First, we work out a model of the design process.
ADDL must have constructs to represent this model. Second, we formulate the
requirements ADDL must fulfill in order to describe the design process model
presented. Those requirements are expressed by means of design maxims.
Third, from these design maxims the language specifications are generated and
an experimental ADDL compiler and interpreter are built. In this paper, we deal
with the first two stages of the development of ADDL.

. INTRODUCTION

[.1. Subject of the paper

Although CAD (Computer Aided Design) systems have become an essential
tool for designers in various disciplines, it 1s also recognized that they are still
inflexible and task dependent. The purpose of a CAD system 1s to support a
designer 1n pertorming the design task. Certain routine tasks are delegated to
the system. However, the majority of existing CAD systems are merely sophis-
ticated workbenches for engineering drawing. As the application domain
becomes more complex, designing becomes unmanageable with only this type
of support. Therefore, we need a more sophisticated system which can assist a
designer m an inrelligent way, hence ICAD (Intelligent Computer Aided
Design). Furthermore, to obtain a good system 1t must be highly interactive
using the best human computer interaction techniques. Existing programming
languages do not have the special properties which ICAD systems require.
Therefore, we developed a spectal purpose programming language: ADDL
(Artifact and Design Description Language). This paper deals exclusively with
the design and implementation of ADDL.

[.2. History of CAD

Early CAD systems were biased towards geometric information. A user was
given a tool to generate a drawing of the artifact. A next generation was
equiped with a database where product data could be stored and retrieved.
However, during several stages of the design process a product’s specification
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needs to be verified. This can be achieved by a FEM (Finite Element Method)
analysis module, or by a cost analysis module, etc. These are separate tools,
forcing the CAD data to be transferred from one system to another, and back.
Thus, a future CAD system needs to be an inregrated system which contains a
central design-object model, and which has several application modules con-
nected to it, allowing the designer to analyse his product in several ways. Such
a system employs a uniform language which 1s used by all subparts,

[.5. Programming languages for CAD

From the above we may conclude that an ICAD system puts high demands on

the programming language that 1s used for 1ts implementation. Such a

language must have the following features:

® [t must provide a flexible design-object description, allowing for mcom-

plete and temporarily inconsistent descriptions. Incomplete 1n this context

means that certain attributes and parts of the design-object are not yet

determined. Inconsistent means that certain parts of the design-object

contain information which 1s 1n contradiction with other parts. This 1s

only temporary since the final design-object description needs to be com-

plete and consistent.

® |t must allow for design knowledge representation, both the design-object
knowledge and the design process knowledge. Design-object knowledge 1s
denoted by relations between several parts of the design-object. Design
process knowledge 1s represented by if-then rules and they describe how
to create a design-object and how to model it 1n order to obtain a com-
plete design-object description.

® It must provide a mechanism to integrate several sub-modules into the
main system. These are used for the evaluation of the central design-
object description.

® It must offer the means for high level interaction with a designer, i.e. good
human computer interaction facilities.

We believe that a language, which 1s based on both objects and logic, forms a

firm basis for implementing an ICAD system. In this section we shortly intro-

duce logic programming and object-oriented programming. In the next section

we present a language which 1s based on these paradigms.

1.5.1. Logic programming. The fundamental idea is that first order logic can be
used as a programming language. Logic consists of propositions and relations
among propositions [4,13]. Furthermore, there is an inference engine which
can infer propositions from others, and which can validate propositions. Pro-
positions consist of predicates and terms. Most inference engines of logic pro-
gramming systems are based on resolution theorem proving [15]. Our pro-
gramming language is equipped with logic for the representation of declarative
knowledge about design-objects, i.e. relationships among objects. We have
enriched our logic with modal operators [11] to add uncertainties and modali-
ties to these relationships.
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[.3.2. Object-oriented programming. An object-oriented programming language
Is based on a single universal data structure (the object), a general control
structure (message passing), and a general data description structure (the class
hierarchy). An object is a way to represent properties of a data structure and
operations allowed on that data structure in a single location. A program
obtains information from an object in answer to a message sent to that object.
Message passing may also be used to give a task to an object. Objects which
have a common behaviour and related properties are grouped together in a
uniform description, viz. a class. Classes are defined by means of other classes.
1.e., a hierarchical organization. The objects themselves are responsible for the
way a message 1s executed. Each object has an internal state where the effect
of all messages sent to it is stored [8,9]. Although we use well-established
object-oriented methods, the way we have combined them with logic program-
ming is especially designed with ICAD requirements in mind. We have imple-
mented our programming language in a Smalltalk-80' programming environ-
ment, using existing constructs as much as possible.

1.4. The IIICAD system

The HHICAD (Intelligent Integrated Interactive CAD) system is a computer
system under development which assists the designer in such a way that he-
can fully employ his creative skills [3]. Such a system allows the designer to
create a central model of the object to be designed. From this model the
designer can derive several aspect models, e.g. a kinematic model, a geometric
model, a finite element model, etc. Aspect models highlight a certain aspect of
the design-object model. The design-object model is evaluated in stepwise
manner from a rough incomplete description to a detailed complete description
[1]. Routine tasks and labour intensive tasks are done by the system [18].

1.4.1. Design process model. The IIICAD architecture is derived from a model
of the design process. It is a general model which describes the way a designer
performs a certain design job. The design process is regarded as a mapping
from the function space, where the specifications are described in terms of
functions and behaviour, onto the attribute space, where the design solutions
are described in terms of attributes. Each function given by the initial
specification 1s mapped to an attribute of the resulting design-object model.
Roughly speaking, we state that a designer starts with a functional
specification of a design-object and ends with a manufacturable description
[19].

The basic 1deas behind the design process model are as follows. According
to the given functional specification a candidate for the design solution is
selected. This candidate has a very incomplete description. It is chosen from
a library of prototypes. This candidate 1s refined in a stepwise manner until the

I. Smalltalk-80 is a registered trademark of Xerox Corp. .
2. Throughout the paper the male form is used when both female and male are meant.
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solution is reached. The design process is thus regarded as an evolutionary
process which transfers the design-object model from one state to another.
Transfer of the model is accomplished by generating aspect models on the
current central model. New information i1s derived from these models and it is
added to the central model resulting 1n a new state.

[.4.2. Design maxims for an 1CAD language. The design process model is
based on a theory of design, 1.e. design process and design-object. Require-
ments for an Artifact and Design Description Language (ADDL) are derived
from the design process model. These requirements resulted in a number of
design maxims. The development of ADDL was done by collecting these
design maxims and converting them into language specifications.

[.4.3. An artifact and design description language. ADDL 1s a special purpose
programming language for implementing ICAD systems. It allows for dynamic
design-object descriptions and a flexible design process representation. ADDL
has it roots in both object-oriented and logic programming. Furthermore, it is
enriched with special constructs to meet the requirements posed by the above
mentioned design maxims. These extensions include: scenarios to describe the
design process, multiple worlds to model several aspects of the design-object
simultaneously, and default and assumed values to handle uncertainties [24].

1.44. ADDL vs. IDDL. ADDL 1s being developed at CWI. Originally it was
called IDDL (Integrated Data Description Language), but since there are now
two versions of IDDL 1n development (one at CWI, and one at the University
of Tokyo), we decided to change the name to ADDL [21,22]. ADDL and
IDDL denote in principle the same language, they only differ in certain
aspects.

2. DESIGN PROCESS MODEL

In this section we give a formalization of the design process. In the first sub-
section we subdivide the entire design process into several design phases from
the initial specification to a manufacturable description of the product. In §2.2
we present a model which gives a representation of the design process. This
model describes design as a stepwise refinement process where a central
description of the design-object (hereafter called: meta-model) is transferred
from one state to another. In §2.3 we show how a single step in that model is
performed by the meta-model evolution scheme.

2.1. Design theory

There are three distinguishable successive stages in the design process: concep-
tual design, fundamental design, and detailed design. Each of these stages has
its own demands on design-object representation. The design process represen-
tation, however, can be captured by the meta-model evolution scheme

presented in §2.2. The sub-sections below treat each of the design stages
separately.
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Plate VII - Radiosity

This plate visualizes the iterative approach of a
parallel implementation of the radiosity algo-
rithm. Radiosity 1s a realistic shading method
based on simulation of the balanced flow of
energy within a scene. The parallel implementa-
tion runs on a number of workstations that are
connected via a network. The top windows show
a sequence of progressively improving partia
solutions of the scene. At first the flow of energy
s highly unbalanced, but with each iteration step
a better approximation of the equilibrium 1s
found. The bottom window shows the scene after
a number of iterations. The panels on the right
hand side allows a user to control certain crucial
parameters during the rendering process.

Plate VIII - DICE interface

A simple user interface for a solid modelling sys-
tem programmed in the DICE user interfac
language showing a 3-D object, simulated dials
and pushbuttons to control viewing and option
selection respectively. The DICE system allows
the user interface to perform all the manipulation
without the necessity for the application to inter-
fere, even when such operations are combined.

Plate IX - Design

The current IIICAD (Intelligent Integrated
Interactive CAD) system 1s a pilot system for
future design systems. Such systems act as ‘intel-
ligent apprentices’ to the designers rather than as
‘automated design systems’. The picture shows
the configuration of a bedroom. The actual
design 1s carried out with the aid of a prototype
IIICAD system developed at CWI. The system
employs a library of standard components for
the selection of the parts of the room, and parts
of these. The designer can freely choose com-
ponents from the library and can adjust them as
(s)he likes. The 3-D viewing and illumination 1s
accomplished by a proprietary visualization tool
using Silicon Graphics’” GL library. (Courtesy J.
Rogier and F. Kuijk)



Plate 1 - Antialiasin

This plate shows the result of antialiasing by exact area sampling. The image on the upper righ
hand side 1s aliased. Pixels are simply taken to be either in- or outside a polygon, resulting i
‘staircase’ like edges. This is clearly visible in the 20-fold magnified image shown at the bottom. B
weighing the pixel intensity based on the pixel-area actually covered by the polygon, we obtain :
more attractive, smooth edged image. Note that the bottom-line of pixels of the polygon shown on
the magnified image on the left have a reduced intensity. This illustrates the ability to handle sub-

ixel positioning. As a consequence the apparent resolution is higher, even objects smaller than the
size of a pixel become ‘visible’.

Plate Il - Flat shaded model

This 3D model of a teapot has become a standard reference model to compare different shading
algorithms. To be able to visualize a smoothly shaped teapot, the model is represented by a
number of trniangular facets. In this image each facet is simply shaded with a constant color. This
color 1s calculated based on the orientation of the facet (i.e. its surface normal) with respect to the

position of two light sources and the point of view. As a result the visualized model is far from be-
Ing smooth.



ate lIl - Gouraud shaded model

The improved quality of this image ompared to the previous one is obtained by performing
similar calculation of the color as in the above, but then for each individual corner of the triangle.
For this, on each corner the average of the normals of all adjacent facets is taken as input for the
calculaunon. The color of the interior points are obtained by linear interpolation of the colors

found at each corner. In spite of this rather smooth shading at some points of the visualized model
individual facets can still be identified.

Plate IV - Phong shaded model

A further improvement can be obtained by again applying the same color calculation but then for
each individual interior point. A ‘surface normal’ vector needed for the calculation at each interior
point i1s obtained by interpolating the averaged normal vectors found on each corner. The im-
proved quality 1s most apparent for highlights, a peak in the intensity caused by the reflective pro-
perty of the surface. In contrast with the previous method, a highlight is guaranteed to be visible
even 1f 1t would fall in the middle of a facet, individual facets can no longer be distinguished
surfaces become more shiny. The computational costs however are substantially higher.




Plate V - Simulated hardware shaded model

This plate shows the result of an incremental method to calculate the color at each interior point.
This method, although generally applicable, was developed at CWI to be implemented on special
purpose hardware. The result is competitive with respect to the more costly Phong shading
method, in fact it 1s even more smooth.
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Plate VI - Chip layout

Here we see the layout of a chip designed for incremental color evaluation based on forward
differencing. An array of processors (nine per chip) is able to produce a continuous pixel stream at
a rate of 90 MHz, which 1s sufficiently fast to be able to generate the video signal of a high resolu-
tion display. As a result, pixel storage in the form of a frame buffer is not needed.




2.1.1. Conceptual design. 'The conceptual phase of the design process deals
with the translation of the initial specifications, given to the designer, into a
representation of the functions and behaviour of an artifact. The core system
we present in this paper is developed to represent the second and third stage
of the design process. It starts with a given functional specification of an
artifact. The conceptual design is captured by a separate module which
transforms —in dialogue with the designer— the initial specification to a func-
tional specification. The functional specification is then further processed by
the core system.

2.1.2. Fundamental design. During the course of the fundamental phase the
functional specifications are converted into something we can actually make; a
rough decomposition of the artifact is created. The principal shape and con-
crete structure without details is the result. The physical embodiment may
require or introduce new constraints on the design-object. The design-object
model 1s represented by a decomposition containing empty and fuzzy parts.
The behaviour of the model 1s simulated by assuming default behaviour for the
parts which are uncertain or unknown. Several possible design strategies may
be applied simultaneously, resulting in either single or multiple models.

2.1.3. Detailed design. During the detailed design stage, the decomposed model
1s further refined. Dimensions and tolerances are now set and a complete
description of the design-object is produced. All constraints are satisfied and
all parts are integrated into a single coherent model. The design focuses on
specific parts of the design-object model without worrying about global issues.
Local optimizations are achieved which result in small changes. There is thus
a need for multiple viewpoints of specific parts of a common representation,
1.e. a multiple focus of attention.

2.2. Design process representation

In this section we give a general model of the design process which 1s applica-
ble to the fundamental and detailed stages of the design process [23]. This
model 1s employed 1n the IIICAD system to define the system architecture and
develop language constructs for ADDL.” The model guides the design process
as 1t 18 executed by the system in order to understand the designer’s demands.
In other words, the designer decides how to perform the design and the
[IICAD system 1s an intelligent aid to the designer to assist him in achieving
his goal [2].

3. Note that the first stage, conceptual design, i1s captured in the IIICAD system as well. It 1s
defined as a front-end to the system covered by the Intelligent User Interface (IUI). The designer’s
specifications are transformed to functional spectfications through a dialogue between the designer
and the system.
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2.2.1. From specification to solution. We use General Design Theory as a basis
for giving a formalization of the design processes and knowledge. The theory
is based on axiomatic set theory and models design as a mapping from the
function space where the specifications are described in terms of functions,
onto the attribute space where the design solutions are described in terms of
attributes (see Fig. 2.1). Roughly speaking, one starts with a functional
specification of the design-object and ends up with a manufacturable descrip-
ton.

( Attribute
Space

( Function

FIGURE 2.1. Design process model

The basic ideas behind a logical formalization of design processes are as fol-

lows:

® From the given functional specifications a candidate 1s selected and
refined in a stepwise manner until the solution 1s reached, rather than by
trying to get the solution directly from the specifications. The latter 1s not
possible in a non-trivial design problem, since it involves a very complex
object with a multitude of parts.

® The design process is regarded as an evolutionary process which transfers
the model of the design-object from one state to another, gradually
obtaining a more detailed description.

® To evaluate the current state of the design-object model, various interpre-
tations of the design-object model need to be derived in order to see
whether the object satisfies the specifications or not. We call those
interpretations of the design-object model worlds and they can be
regarded as interpretations of the design-object observed from different
points of view.

2.2.2. Stepwise refinement of meta-model. Considering the general design
model, the system starts from the specification S of the design-object and con-
tinues the design process until the goal G 1s reached (see Fig. 2.2 below).

Attribute

( Function ) ;
' Space

o Space

FIGURE 2.2. Stepwise refinement of the meta-model

At a certain stage of the design process the design-object model M, _ | is the
current, incomplete description of the artifact. In order to get a more detailed
description some information is added to the design-object model. After this
refinement the design-object model M, _, is transferred to M,, if it 1s evaluated
and approved. This process 1s continued, obtaining M, ,, etc., until the
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design-object model is a complete and satisfactory description of the artifact.
[n Fig. 2.3 an example of this process is depicted.

,-
||!rff

FIGURE 2.3. Example of stepwise refinement

2.2.3. Multiple models. The process as described above deals with the ideal
situation in which the stepwise refinement process is a linear process. It can be
regarded as a sketch of the design process in retrospect. In practice, it is a pro-
cess of trial and error, rather than the straightforward process shown in Fig.
2.2. The designer might not be satisfied with a certain version and wants to
redo the design from a certain point. Moreover, the designer might not be sure
about the direction the design should go at a certain point and wants to model
some possibilities in parallel. Therefore, we extent the stepwise refinement
model with multiple models presented below.

2.2.3.1. Trial and error. During the design process an achieved subgoal might
not be satisfactory and the designer might want to restart from a previous state
of the design-object model M,. In thdt case, the current design-object model

M; 1s discarded and the deslgn process 1s continued from M, | taking a
dlﬁ‘erent direction (see Fig. 2.4).

Attribute

Function - }
N Space /

Space

FIGURE 2.4. Backtracking to a previous meta-model

2.2.3.2. Dependent models. From the above we can conclude that at a certain
state M; more than one possible way exists to model the design-object. One of
the alternatives is chosen and further refined, eventually resulting in an unsa-
tisfactory solution. Instead of forcing a designer to take a decision at an early
stage of the design process, the system must allow him to postpone such a
decision and let him model more than one version of the design-object simul-
taneously. A distinction is made between dependent and independent models.
Dependent models are alternatives which converge into one meta-model.
Therefore, dependent models are only a temporary fork in the design process
(see Fig. 2.9).
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> ( Attribute

Function

FIGURE 2.5. Dependent models

2.2.3.2. Independent models. Independent models allow the user to create alter-
natives which actually result in different design solutions. Each of the indepen-
dent models follows i1ts own path and has nothing in common with other
models. An example 1s depicted in Fig. 2.6. In some cases the designer likes
some of the ideas in each independent model. Then, the system has a mechan-
ism allowing the designer to merge several independent models into a single
coherent model, eliminating conflicts and unwanted properties. Such a join
operation 18 executed 1n dialogue with the designer. Again, the decision In
which way the design process should be directed is totally the responsibility of
the designer. The IIICAD system provides the designer with a framework
which assists him 1n his design activities.

Function
_Space /S

~E2n.. I Aﬂ ri bUte
N Spacei J/

FIGURE 2.6. Independent models result in different solutions

2.3. Meta-model evolution scheme

The general design model as we have introduced it so far, is mainly concerned
with the overall design process. We now focus on how to transfer from one
meta-model to the next, i.e. how do we perform a design step? Here we intro-
duce the concept of a world. Through the creation of a world the designer
gives an interpretation of a meta-model in a certain context, i.e. he provides an
aspect model. In a world new information about a design-object is obtained.
The current meta-model together with the new information form the next
meta-model. |

2.3.1. World mechanism. The design process is regarded as a continuous mani-
pulation of the design-object model. A certain aspect of the artifact is
highlighted and some properties about the design-object are changed. This
highlighting 1s done by worlds; the attention is focussed on a specific part of
the design-object model. A world is a part of the design-object model together
with a context and some design rules (an interpretation of the design-object
model in a particular context). It is used to derive new properties or update
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uncertain/unknown properties about the design-object model in order to get a
more detailed description. The new properties about the design-object, which
are derived in a world, are merged with the original design-object model when
the modeling 1s completed.

A world consists of (a part of) the design-object description together with
knowledge about the design object being valid in that particular world. A sim-
ple example of such a world is a graphical representation of the design-object.
A part of the design-object description is taken and is processed in a world
with graphical knowledge in order to generate an image of that part. Such a
world needs to know how to map the general design-object description to a
description suitable for generating such an image. The designer can now
Interact with this world and change its contents. After the session the contents
of the world being evaluated is mapped back to a new design-obiject descrip-
tion.

2.3.2. World evolution. This mechanism is called meta-model evolution (see
Fig. 2.7). From the current design-object model, M,. a world, w,, is taken and
some action 1s performed in it. The world is evaluated after its termination.
This evaluation checks for consistency with M,, i.e. there are no facts that con-
tradict each other and all constraints over the design-object model are still
met. The design object model M, is transferred to M, ., if the evaluation
succeeds. In case of failure, all results of w; are discarded and the process will
restart from M,. This backtracking is performed in dialogue with the users, so
that the next attempt can be more successful.

M : Meta-model

- Backtrack e : evaluation
' —— w . world

FIGURE 2.7. Meta-model evolution

2.3.3. Mu/tzj)le worlds. The multi-world mechanism enables the system to
create alternative descriptions of the design-object model. This leads to two or
more worlds being active at the same time. Concerning this mechanism we dis-
tinguish between two types of alternatives: dependenr and independent worlds.

The first option offers the possibility to regard the design-object model from
different viewpoints and to model the design-object in various ways. In this
case each world is an interpretation of the design-object in a certain context.
Each interpretation may change some properties of the design-object model,
but changes propagate to all other active worlds. Hence, the worlds are depen-
dent on each other. '
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- The second option allows the designer to model the design-object in
different directions by following distinct paths. In this case the worlds refer to
different design-object models and -hence the worlds are independent. In the
following two sub-sections we will expand on both concepts. . . . |

2.3.3.1. Evolution of dependent worlds. We call two or more worlds dependent
if they refer to the same design-object description. They are concerned with the
same set of data, but seen in a different context. They can be regarded as
different views on the same model. The user can interact with these worlds
separately. The dependency of the worlds comes into being when the worlds
are closed. After the closure of dependent worlds these worlds are compared
with each other for consistency. Note that worlds can only be compared with
each other when they are all closed. If so, the contents of the worlds is merged
into a single world containing all the changes. This resulting world is then
checked for consistency with the design-object model, resulting 1n a next
design-object model M, ., (see Fig. 2.8). Sometimes there 1S a need for an
intermediate check for consistency. This can be done with an explicit update
call from a world. When such a call occurs, all dependent worlds, including the
one that called, are checked for consistency. A permanent change in one of the
worlds is transferred to the others if appropriate. A change is appropriate 1f 1t
fits in the context of all dependent worlds.

o

- M : Meta-model
e - evaluation
w : world

| Backtrack. |

FIGURE 2.8. Dependent worlds

2.3.3.2. Evolution of independent worlds. . The-independent-world mechanism 1s
used to generate alternative design solutions. Two worlds are called indepen-
dent if they refer to different meta-models. The designer can then compare
those -worlds and choose the best design solution. After the closure of indepen-
dent worlds each world is checked for consistency separately. This may result
in multiple distinct design-object models, say M, and M; . (see kg 2.9).
Each of them can then be further processed as a candidate for the design solu-
tion. | _

The independent-world mechanism differs from the dependent world
mechanism in the sense that the independent-world mechanism may lead to
more than one design-object model being active at the same time. And hence a
lot of extra administration has to be kept since more copies of the design-
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object description have to be maintained. We are very well aware of the com-
binatorial explosion which might be caused by applying the independent-world
mechanism. However, we consider it to be the responsibility of the designer to
use the independent-world mechanism with care. The decision to continue
with multiple design-object models in parallel i1s always taken by the designer.
There 1s an intelligent user interface as part of the system, which allows the
designer to take such a decision in dialogue with the system.

M : Meta-model
e : evaluation
wW . world

FIGURE 2.9. Independent worlds

3. REQUIREMENTS OF A DESIGN LANGUAGE ,

This section deals with the architecture of the IIICAD system and the require-
ments for a programming language to implement it. Both the system architec-
ture and the language requirements rely heavily on the concepts presented in
the previous section. In the first sub-section we give a representation of the
[IICAD system. In §3.2 we specify the requirements of the design process
representation imposed by the general design model. The resulting program-
ming language constructs are presented. In §3.3 language constructs for the
spectfication of the design-object are given. These are derived from the general
design model as well. All derived language constructs are prefixed with DM
(Design Maxim) [25].

3.1. Representation of the I1I1I1CAD system

We want [IICAD to be a system based on expandable 1deas and a framework
where designers can exercise their faculties at large. We believe that the essen-
tial thing 1n designing 1s that a designer creates his own design environment
and the IIICAD system must give him the freedom to do so [17,20]. An
important concept of the IIICAD system is a scenario. A design scenario 1s a
piece of design knowledge which is used to perform a design step as mentioned
in §2.2.2. It consists of a set of methods and rules which are applied on the
design-object model. Scenarios determine the way the design process 1s
directed. The IIICAD system consists of 1) a supervisor, which drives the
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design scenarios and controls the flow of information between the components
of the system and the meta-model [7], i1) a knowledge-base, which contains an
objects-base and a facts-base describing the meta-model, iii) an Intelligent
User Interface (IUI), which controls the flow of information between the
designer and the supervisor, and iv) an Application Program Interface (API),

supervisor. Fig. 3.1 shows the preceding elements of the framework in a block
diagram.

FIGURE 3.1. IIICAD architecture

s.1.1. Supervisor and scenarios. The supervisor is at the core of the IIICAD
system and controls all information flow. It adds intelligence to the system by
comparing user actions with scenarios which describe design procedures and
by performing error handling when necessary. A design scenario is a piece of
design knowledge employed by the system to perform a design step as
described in the previous section [6,10].

DM 1. ADDL should have a construct to describe status and control informa-
tion for driving the design process.

While the supervisor corrects the obvious designer’s errors, it does not have the
initiative for the design process itself because IIICAD is envisaged to be a
designer’s apprentice, not an automatic design environment.

3.1.2. Knowledge-base. While scenarios encode the design process representa-
tion, the knowledge-base represents the design-object model. A functional
separation of the knowledge-base is to call the set of available objects an
objects-base and the relationships among them a facts-base. Both the objects-
base and the facts-base can only be accessed via scenarios.
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DM 2. ADDL should have constructs to build and to access both an objects-
base and a facts-base.

3.1.3. Intelligent user interface. The Intelhigent User Interface (IUI) is driven
by scenarios and maintains the dialogue with the designer. The TUI itself is not
written mm ADDL (neither are the apphcation programs). The TUI contains
knowledge about both the designer and the system. It acts as an intermediary
between the designer and the system. It understands and translates the ques-
tions and commands of both the designer and the system.

DM 3. ADDL should have constructs to instruct and query the 1UI

3.1.4. Application programs. The Application Program Interface (API) secures
the mapping between the meta-model description of the design-object and
individual models used by application programs. An application program is
not necessarily written in ADDL. The API 1s capable of translating the meta-
model 1nto code understandable by a certain modeler. Examples of modelers
are: a geometric modeler, a feature modeler, a finite element analyzer, a
kinematic modeler, etc.

DM 4. ADDIL. should have a construct to rransiare ADDIL. code into other
code.

3.2. Specification of the design process .

The design process model presented in the previous section imposes 1ts require-
ments on the design process representation in ADDL. To mmplement the
[ITICAD. system, which inhabits a meta-model and a design process model
based on stepwise refinement, special language constructs are needed.

DM 5. ADDL should have constructs to describe not only design-objects but
also design processes.

3.2.1. Description of the stepwise nature of the design processes. A designer,
given some functional specifications, tries to select a candidate solution, and
refines it in a stepwise manner, rather than trying to get the solution directly
from the specifications. Therefore, a design process is regarded as an evolution-
ary process with a series of intermediate descriptions of a design-object.

DM 6. ADDL should have constructs to describe the stepwise nature of the
design process.

DM 7. ADDL should have constructs to describe knowledge to detail the

design-object model, to check its feasibility, and to control the detail-
INg process.
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3.2.2. Meta-model description. To illustrate a design process, we need to recog-
nize three major components: entities, attributes of entities, and relationships
among entities. A design process is thus a collection of small steps to obtain
complete information about these three components. An intermediate descrip-
tion is used as a central model for the design solution and we call 1t meta-
model.

DM &. ADDL should have constructs to describe a meta-model which can
easily be changed and extended

3.2.3. World mechanism. The designer evaluates the candidate for the design
solution to see whether it satisfies the specifications or not. To do so, he
derives various kinds of models of the design-object from the meta-model.

DM 9. ADDL should have constructs to describe knowledge to derive models

(for evaluation) from the meta-model and knowledge to evaluate
models.

DM 10. ADDL should have constructs to allow multiple views of a design
object, which are possibly independent but still correlated

3.2.4. Default and uncertain facts. During the course of a design process the
design-object description changes constantly. To control the stepwise
refinement of the design process there is a need to express unknown, uncertain,
default, and temporal information about the design-object [14,16 |. A world 1s
a derived model from the meta-model. The inside of a world needs to be con-
sistent, but we do allow temporal inconsistencies between worlds. However,

when worlds are evaluated in order to derive a new meta-model they need to
be consistent.

DM 11.  ADDL should have constructs to describe unknown, uncertain, default
and temporal information.

DM 12.  ADDL should have constructs to let the inconsistency between worlds

be represented, but this inconsistency needs to be resolved when
transferring to the next meta-model.

3.3. Specification of the design-object

So far we have given language constructs for the design-object description 1n
terms of design process specification. In this section we introduce ADDL con-
structs which are concerned with design-object specification. Since design 1s
regarded as a mapping from function space onto attribute space, it requires
ADDL to have both attributive and functional representations. There are
several issues in representing attributive information. First, an attribute
represents the value of a certain property of an entity. Such properties define
the internal specification of an object. Second, attributive information refers to
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the structure of an entity. The structure of an entity 1s characterized by a

decomposition of sub-structures and by relationships among sub-structures.

The structural decomposition defines the external spectfication of an object.

DM 13. ADDL should have constructs to describe both the-internal and exter-
nal specification of objects.

3.3.1. Internal state of objects. Internally an object 1s specified by its attributes,
but an attribute i1s not necessarily represented by a value. An attribute may
either be a value, or a relation between other attributes, or a constraint on
other attributes. An object’s attributes cannot be accessed directly, but only
through functions. Hence, an object 1s an abstract data type

DM 14.  ADDL should have constructs to s*pe’cz]_‘y azmbute values az‘tr'zbure
D relations, and constraints on attributes.. -"

DM 15.  ADDL should have data abstraction, the object’s internal state can
only be accessed through functions. .

3.3.2. Relations berween' objects. The specification of a design-object: decompo-
sition in ADDL is done through objects and relationships among objects. Each
ADDL object represents a part of the entire design-object model. First. order
predicate logic is used to represent the relationships among the objects... Part-
whole relationships, denoting the design-object decomposition, are gftected by
has-pirt predicates€e.g: the proposition has—part(table, leg) expresses
that thé object Leg is"a part of the object table). Pﬁredlcates are a lso used
to descrlbe the facts whlch are known about an obJect . '

DM 1.6. ADDL Should be based on ﬁrst order predzcaz‘e logzc 10 speczfy facts
Ry = about 01)/6'61‘.5' ' S SR

3.3.3. Prototype definition of objects. For the construction of a design-object
model a designer employs so-called ‘building blocks’. Existing entities are
taken from a library of building blocks and modified in such a way-that they
are suitable to form a new design-object structure. In ADDL" such building
blocks are called prototypes [12]. When the design-object model is created dur-
ing fundamental design, it is made by copying prototypes from the prototype
library. We call this copying the instantiation of an object. The object can
further be modified accordmg to the designer’s wishes without affecting the ori-
ginal prototype. R SO

DM 17.  ADDL should have a prototype library for the instantiation of objects.
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3.3.4. Delegation to prototypes. A non-trivial design problem easily results in a
design-object model which consists of an enormous number of objects. A lot of
these objects have the same prototype as their parent. Therefore, objects in
ADDL which have the same prototype share the common code. Certain opera-
tions (functions) performed on objects are delegated to the object’s prototype.

DM 18.  ADDL should have a delegation mechanism to achieve code sharing

3.3.5. Hierarchy of prototypes and inheritance. The prototype library contains a
hierarchy of prototype definitions. Prototypes are defined in terms of other
prototypes. Therefore, if a prototype is a sub-type of another prototype, the
former inherits properties from the latter [5]. This allows the system designer
to reuse previously defined code and to specialize a certain prototype.

DM 19.  ADDL should have constructs for the definition of a prototype nierar-
chy, and for an inheritance mechanism.

4. CONCLUSIONS

In this paper we have presented an analysis of the design process, and a for-
malization according to the analysis. Although the design process consists of
several distinguishable stages, it was possible to build a general design process
model which covers all stages. From the model we extracted design maxims for
the development of ADDL. These design maxims represent the requirements
which a programming language for implementing the IIICAD system must
fulfill. They serve as a basis for the formal language specifications of ADDL.

A prototype version of ADDL has now been developed, and a first experi-
mental IIICAD is being built (see plate 1X). The result of the experiments will
be used to evaluate the general design model. It might be possible that either
the general design model, or the language specifications should be adapted to
the changed needs. For the time being we have succeeded in giving a formali-
zation of the design process and in producing language specifications accord-
ingly. '
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