
PDE SOFIW ARE: Modules, lntedaces and System;
B. Engquist and T. Smedsaas (eds.)
Elsevier Science Publishers B. V. (North-Holland)
©IFIP, 1984

A PORTABLE VECTOR-CODE FOR AUTONOMOUS MULTIGRID MODULES

P.W. Hemker, P. Wesseling & P.M. de Zeeuw

Centre for Mathematics and Computer Science, Amsterdam,

and University of Technology, Delft,

The Netherlands

The implementation is described of two multigrid algorithms for
use as standard subroutines for the efficient solution of linear
systems that arise from 7-point discretizations of elliptic PDEs
on a rectangle. For both algorithms a tuned scalar-version and a
tuned vector-version have been constructed and run on a CYBER 170,
a CRAY I and a CYBER 205. The CPU-times are given and compared.
The implementation is available in portable ANSI-FORTRAN.

INTRODUCTION

29

In this paper we describe software for the solution of discretized 2nd order linear
elliptic PDEs in two space dimensions. The domain of definition is assumed to be a
rectangle and the discretization is assumed to result in a regular 7-diagonal matrix.
The algorithms, based on multigrid cycling, are selected for efficiency. The aim

was to obtain software that is perceived and can be used just like any standard
subroutine for solving systems of linear equations. The user has to specify pnly
the matrix and the right-hand-side, and remains unaware of the underlying multi
grid method. Such a subroutine, that operates without outside interference, will
be called autonomous.·We find that a large class of equations can be solved effi
ciently by use of our autonomous multigrid subroutines. The equation may be non
self-adjoint, and its coefficients are arbitrary.
The two algorithms use saw-tooth multigrid cycles [8,9]. One algorithm is based
on !LU-relaxation, the other on ZEBRA- relaxation [7]. The discretization on coarse
grids is provided automatically by means of a built-in Galerkin approximation.
Various scalar- and vector-versions of the code have been constructed and run on
a CYBER 170, a CRAY 1 and a CYBER 205. It appeared that a code written for auto
matic vectorization in portable ANSI FORTRAN runs efficiently in all cases.
Specially tuned versions are only a small fraction more efficient.
In section 2 we describe the class of problems that can be solved. In section 3
we describe the general algorithm for multigrid cycling. In the sections 4, 5, 6
we specialize the general algorithm and come to the various versions of the codes.
In sections 7, 8 we compare the various programs. In the last sections we formu
late some conclusion.

2. THE PROBLEM

We consider the linear 2nd order elliptic PDE in two dimensions

(2. I .a) I a (-a-)(-a-) u + ~ a.(-i--) u+ a0 u = f on Q c JR2 ,
i,j=t ,2 ij axi ,axj i=l ,2 1 xi

with variable coefficients and with boundary conditions on on = rN u rD

(2. I .b)

The coefficients are arbitrary but should satisfy the ellipticity condition. If

30 P. W. Hemker et al.

this equation on a rectangle n is discretized on a regular triangularization of
the form

(0,0)

then the resulting discretization

(2.2)

can be a linear system with a regular 7-diagonal structure.

The shape of

a matrix~·

We consider codes for the solution of linear systems with a structure correspon
ding to this kind of 7-point discretization. On the rectangle n equidistant compu
tational grids nk, k = 1,2, ••• ,l, are defined

The user has to provide the discrete operator Ah and the data fh only on the finest
grid nl.
To solve the linear system efficiently, multigrid methods are used [2,7,8]. These
methods make also use of nk, k = 1,2, ••. ,l-1, but when using the autonomous sub
routines the user remains unaware of this fact. Much effort has been spent in the
search for efficient variants of the MG-method [3,4,5,6,7,8). In this paper we
onsider only two variants that are found to belong to the more promising ones.

. THE GENERAL MULTIGRID ALGORITHM

.he general multigrid cycling algorithm for the solution of (2.2) is an iterative
process, which makes use of a sequence of discretizations on the grids
Ilk, k = 1,2, ..• ,.f.
Each multigrid iteration cycle consists of
(I) p relaxation sweeps, followed by
(2) a coarse grid correction, followed by
(3) q more relaxation sweeps.
The coarse grid correction consists of
a) the computation of the current residual rh = fh - Ahuh;
b) the restriction of the residual to the next coarser grid rH = RHhrh;
c) the computation of cH, an approximation to the solution of the correction

A Portable Multigrid Vector-Code

equation

(3.1)

This approximation is obtained by application of s multigrid iteration cycles
to this equation, and

(d) updating the current solution 'i\iby addition of the prolongated c~rrection

uh := uh + PhH~H.

31

On the coarsest grid the correction equation (3.1) has to be (approximately) solved
by another method (at choice). The coarse grid discrete operators ~ can be con
structed by analogy to (2.2) or by Galerkin approximation:

(3.2)

(cf. [8]).

4. THE ALGORITHMS

In this paper we consider the implementation of two particular instances of the
multigrid algorithms: MGDI and MGEOZ. Based on various comparisons [3,6,9], the
parameters p, q and s are chosen to be 0,1 and I respectively. The resulting
strategy is called a saw-tooth cycle [9]. For the prolongation and the restriction
7-point operators are chosen, that correspond to linear interpolation on coarse
grid triangles in the triangulation of Q (for PhH) and to its adjoint operator
(for ~h). The Galerkin approximation (3.2) is chosen for the construction of the
coarse grid operators AH. For an approximate solution on the coarsest grid a single
relaxation sweep is used. The two algorithms differ only with respect to he relax
ation method.
In MGDI the Incomplete LU (ILU-) relaxation is used [9]. For this relaxation the
7-diagonal matrix Ah is decomposed as

~=LU-C

where L is a lower-triangular matrix (with I for all main-diagonal elements) and
U is an upper triangular matrix. The requirement that L and U have non-zero diag
onals only where ~ has, determines L and U. The rest-matrix C has only two non
zero diagonals, of which the elements are easily derived from L and U. One relax
ation sweep of the Incomplete LU-relaxation is now the solution of the system

LU u(i+l) = f + C u(i).

After such a relaxation sweep a residual is efficiently computed by

r(i+l) := fh - ~uh (i+I) = C(u~i+l) - u~i))

In MGLOZ the ZEBRA-relaxation is used [7]. This is a line-Gauss-Seidel relaxation
in which first all points on even lines (lines that appear in the coarser grid)
are simultaneously relaxed and secondly all points on the odd lines. An important
advantage of this relaxation is the fact that many points can be relaxed simul
taneously and that the residual computation simplifies, because the residual
vanishes at all odd lines after a relaxation sweep. For ZEBRA relaxation tridia
gonal systems have to be solved. The solution of these systems can be accelerated
by storage of the decomposition of the tridiagonal matrices. We have chosen to do
this at an extra storage cost of 2 reals per grid-point.

5. THE STRUCTURE OF MGDI AND MGEOZ

The general structure of both MGDI and MGEOZ is the same. First, in the preparat
ional phase, the sequence of coarse grid discrete operators is constructed by

-------- ·--------------......_

32 P. W. Hemker et al.

a subroutine RAP, according to (3.2). Then the decomposition is performed (in
DECOMP or DECOMPZ) and the initial estimate of the solution is set to zero. Final
ly, in the cycling phase, at most MAXIT iterations of the cycling process are
performed. On the basis of intermediate results the iteration can be stopped ear
lier; this necessitates the computation of a vectornorm (in VL2NOR).
In the following the structure of the cycling process of MGDI is described in
quasi-FORTRAN.

DO I 0 k;l-1 (-1) I

CALL RESTRICTION (f,f,k).

10 CONTINUE

C START OF maxit MULTIGRID ITERATIONS

c

DO SO n;J, maxit

IF (n.EQ.I) GO TO 30

CALL CTUMV (C,u,v)

vl IS THE NEW RESIDUE fl-Alul

CAIL RESTRICTION (f,v,l-1)

DO 20 k;l-2(-1) I

CAIL RESTRICTION (f,f,k)

20 CONTINUE

30 CALL SOLVE (u,f,I)

DO 40 k;2 (l)l-1

CALL PROLONGATION (u,u,k)

CALL CTUPF (v,u,f,k)

CALL SOLVE (u,v,k)

40 CONTINUE

CALL PROLONGATION (v,u,l)
l l l v =v +u

CALL CTUPF (u,v,f,l)

CALL SOLVE (u,u,l)

50 CONTINUE

I
u

k
u

k
v

k
u

l
v

l
u
l

u

k-1
u

In the actual implementation of MGDI, the matrix ~ is not kept in storage, but is
overwritten by L and U. At minimal costs, the rest-matrix C ; LU - '.'lJ is recomputed
each time from Land U (in the subroutines CTUMV and CTUPF). All subroutines men
tioned have their own particular features that make them more or less feasible for
vectorization. This can be seen in table (8.2).
The structure of MGEOZ is more straightforward and follows directly from the MG
algorithm in section 3. Here the original matrix is not overwritten by the decom
position.
Two main alternatives exist for the implementation of ZEBRA relaxation. The lines
in the grid can be relaxed successively and vectorization can be applied to speed
up the solution of each tridiagonal system. However, because the solution of tri
diagonal systems is not very suitable for vectorization, and all tridiagonal sys
tems have the same size, we have chosen the other possibility to exploit vectori
zation, namely we solve all linear systems in each half relaxation sweep simulta
neously by ~~eating the even (odd) systems in parallel. Because of the rectangular
shape of n the data-structure both in MGDI and MGEOZ is simple. The grid-values of

A Portable Multigrid Vector-Code 33

uh.and fh_are store~ sequentially in one-dimensional arrays. They are ordered by
grLd and in each grid they are ordered by meshline. The diagonals of A are stored
similarly in a two-dimensional array; the columns of the array correspBnding to
the diagonals of the matrix.

6. VERSIONS OF THE PROGRAM

To investigate the advantages of vectorization, different versions of the programs
have been constructed. One version is written in portable FORTRAN and is tuned for
execution on sequential hardware (MGDlS and MGEOZS). Another version, also written
in portable FORTRAN was tuned for vectorization (MGDlV and MGEOZV). To keep the
FORTRAN portable, we had to rely on the automatic vectorization capabilities of
the compilers at hand. All loops for which vectorization was required could indeed
be expressed in standard ANSI FORTRAN.
Other versions of the programs were considered as well. An interesting variant was
(not portable) MGDID. This version is the same as MGDlV except for two statements,
containing a call to a STACK.LIB routine for the recursive parts of the routine
SOLVE in MGDl. The STACKLIB library, supplied for the CYBER 200 series, contains
particularly efficient routines for vector operations that are not vectorizable
because of recursion. For the comparison of MGDlD and MGDIV see table (8.2) and
(8.3). For details about the implementation of the vectorized versions cf. (10].

7 • THE TEST PROBLEM

In this study we are not interested in the nwnePical behaviour of the algorithms
for different problems. We consider here only the efficiency of their implementa
tion. Therefore, we may restrict ourselves to a single testproblem: the solution
of Poisson's equation on the unit square with Dirichlet boundary conditions. Of
course, for this problem other alternatives exist for its efficient solution.·A
program implementing one cycle in a Full Multigrid (FMG) algorithm, specially tuned
for this problem on a CYBER 205, is described in [l]. Such a program may run much
faster than our generai purpose code. They report the solution on a 129 x 129 grid
(with the usual 5-point discretization) in 0.006 sec. However, we did not adapt
our codes in any way to this particular problem. For our codes the cost of one
iteration is the same for any 7-point discretization of a problem (2. 1) on grids
of a given size.
In all cases reported here, the problem was solved on a mesh with

(/-+1+1)2

meshpoints. The length of most vectors in the program is (2n+l+ l)j, n = l (l)l. j =
I and j = 2 (i.e. they represent lines or complete grids on level n). We performed
experiments for l = 4,5,6,7. For problems with l > 5 the size of the problem was
too large to run on the available CYBER 170; for l > 6 The problem was too large
for the available CRAY I (Daresbury 1983).

8. THE EFFECT OF VECTORIZATION

In the tables (8. 1)-(8.5) we give CPU-times for the programs mentioned in section
6. On the CYBER 205 and the CRAY l the vector-tuned versions ran with the vector
option, the CPU-times mentioned for the scalar-tuned versions ran wit~out. If we
run the portable vector-code in scalar mode we sacrify about 5% CPU-time on the
CYBER 205 (CRAY I: about 9%) when compared with the tuned scalar-code in scalar
mode.
In the tables we give the total CPU-time in seconds spent in runs with 10 iteration
cycles, including the preparational work. Also t~e time s~ent in th: vari?us sub
routines is presented. From these numbers we derive the time.spent 7n a s7ngle .
cycle. Additionally, we give the average convergence factor in the iterative cycling
(CONV).

34 P. W. Hemker et al.

-
MGDIS CYBER 170 CRAY I CYBER 205

LEVEL 5 5 6 5 6 7

GRID 65 x 65 65 x 65 129 x 129 65 x 65 129 x 129 257 x 257

CONV 4.7E-2 4.7E-2 4. 3E-2 4.7E-2 4.3E-2 4.3E-2

RAP 0. 186 0.088 0.313 0.084 0.317 l. 232

DECOMP 0.061 0.031 0.120 0.050 0. 195 0. 764

SOLVE o. 311 o. 150 0.582 0. 153 0.594 2.265

CTUMV 0.098 0.066 0.261 0.079 0.315 l. 134

CTUPF o. 143 0.088 0.347 0.099 0.390 l .498

PRO LON 0.041 0.030 0. 113 0.024 0.093 0.360

RES TRI 0.066 0.017 0.062 0.014 0.054 0.202

VL2NOR 0.030 0.022 0.087 0.015 0.059 0.233

TOTAL 1.030 0.522 1.994 0.565 2. 141 8. 101

CYCLE 0.066 0.035 0. 137 0.037 0. 145 0.546

Table 8.1. CPU-times (in seconds) of the program MGDlS for problems with

different sizes, run in scalar mode on different machines.

MGDlV CRAY l CYBER 205

LEVEL 5 6 5 6 7

GRID 65 x 65 129xl29 65 x 65 129 x 129 257 x 257

CONV 4.7E-2 4.3E-2 4.7E-2 4.3E-2 4.3E-2

RAP 0.033 (2.7) 0.085 (3.7) 0.022 (3 .8) 0.053 (6. 0) . o. 151 (8.2)

DE COMP 0.010 (3. I) 0.037 (3 .2) 0.012 (4. 2) 0.043 (4.5) o. 162 (4.7)

SOLVE 0 .086 (l. 7) 0.324 (1 . 8) 0.091 (l. 7) 0.325 (1 . 8) 1.251 (l. 8)

CTUMV 0.008 (8.2) 0.032 (8. 2) 0.003 (26!) 0.010 (31 :) 0.042 (27!)

CTUPF 0.011 (8.0) 0.043 (8. I) 0.004 (25!) 0.014 (28 !) 0.059 (25!)

PRO LON 0.007 (4.3) 0.018 (6. 3) 0.009 (2.7) 0.022 (4.2) 0.061 (5.9)

RESTRI 0.004 (4.2) 0 .011 (5. 6) 0.012 (I. 2) 0.031 (I. 7) 0.092 (2.2)
VL2NOR 0.003 (7. 3) 0.010 (8.7) 0.001 (15) 0.004 (15) 0.015 (16)

TOTAL 0. 169 (3. l) 0.575 (3 .5) 0.177 (3.2) 0.533 (4.0) l .882 (4.3)
CYCLE 0.012 (2.9) 0.043 (3. 2) 0.012 (3. I) 0.040 (3.6) o. 151 (3.6)

Table 8.2. CPU-times (in seconds) of the program MGDIV run in vector-mode.

Between brackets: the acceleration factor by vectorization (compared

with the tuned scalar version).

A Portable Multigrid Vector-Code 35

MGDID CYBER 205

GRID 65 x 65 129 x 129 257 x 257

SOLVE 0.094 (I. 6) 0.263 (2.3) 0.831 (2. 7)

TOTAL o. 181 (3. I) 0. 469 (4.6) I .442 (5.6)

CYCLE 0.012 (3. I) 0.034 (4. 3) o. 108 (5. I)

Table 8.3. CPU-times in seconds of the program MGDID run in vector-mode

MGEOZS CYBER 170 CRAY I CYBER 205

LEVEL 6 6 7 6 7 8

GRID 65 x 65 65 x 65 129 x 129 65 x 65 129 x 129 257 x 257

CONV 2.3E-l 2.3E-l 2.2E-l 2.3E-l 2.2E-l

RAP 0. 188 0.089 0.315 0.085 0. 319

DECOMPZ 0.012 0.006 0.023 0.011 0.044

ZEBRA 0.333 0. 135 0.511 0. 148 o. 585

RESIDU o. 106 0.049 0. 191 0.045 0. 180

PRO LON 0.058 0.035 o. 131 0.027 0. 100

RES TRI 0.030 0 .013 0.049 0.010 0.037

VL2NOR 0.018 0.013 0.048 0.008 0.033

I TOTAL 0.797 0.348 1.286 0. 353 l. 333

CYCLE 0.053 0.023 0.088 0.023 0.090

Table 8.4. CPU-times (in seconds) of the program MGEOZS for problems with

different sizes, run in scalar-mode on different machines.

2.02E-I

I. 240

o. 175

2.309

0. 733

o. 390

0.142

0.128

5.216

0.357

36 P. W. Hemker et al.

MGEOZV CRAY I CYBER 205

LEVEL 6 7 6 7 8

GRID 65 x 65 129 x 129 65 x 65 129 x 129 257 x 257

CONV 2.3E-1 2.2E-1 2.3E-1 2.2E-1 2.0E-1

RAP 0.033 (2.7) 0.085 (3. 7) 0.022 (3.9) 0.054 (5. 9) 0. 151 (8. 2)

DECOMPZ 0.006 (1.0) 0.023 (1.0) 0.010 (I. I) 0.040 (I. I) 0. 158 (J. I)

ZEBRA 0.034 (4.0) 0.103 (5 .0) 0.084 (1.8) 0.210 (2. 8) 0.623 (3. 7)

RESIDU 0.010 (4.9) 0.034 (5 .6) 0.007 (6.4) 0.020 (9.0) G.OE7 (I O. 9)

PROLON 0.008 (4.4) 0.022 (6. 0) 0.013 (2. I) 0.032 (3. I) 0.093 (4.2)

RES TRI 0.004 (3.2) 0.009 (5 .4) 0.009 (I. I) 0.022 (I . 7) 0.059 (2.4)

VL2NOR 0.003 (4.3) 0.009 (5. 3) 0.002 (4.0) 0.004 (8.3) 0.012 (JO. 7)

TOTAL 0. 102 (3. 4) 0.293 (4. 4) o. 162 (2.2) 0.400 (3.3) I. 190 (4. 4)

CYCLE 0.006 (3.8) 0.017 (5. 2) 0.011 (2. 1) 0.028 (3.2) 0.084 ~

Table 8.5. CPU-times (in seconds) of the program MGEOZV run in vector-mode.

Between brackets the acceleration by vectorization.

We see that certain parts of the algorithms benefit greatly from vectorization viz.
CTUMV and CTUPF (a factor 25-30 on CYBER 205, a factor 8-9 on CRAY I). Other parts
vectorize also well: VL2NOR, RAP, DECOMP, PROLON, RESIDU (on CRAY I also RESTRI and
ZEBRA, in which vectoroperations with stride 2 occur). Other parts hardly benefit
because of their recursive structure (DECOMPZ and SOLVE). If we give up portability,
SOLVE can be speeded up on the CYBER 205 by use of the STACKLIB library.

9. CONCLUSIONS

Implementation of general-purpose multigrid solvers on vectorcomputers is feasible.
Efficient programs in portable FORTRAN are now available for variable coefficient
elliptic problems in a rectangular domain, discretized by a 7-point difference mole
cule. For the implementation implicit vectorization (auto-vectorization) can be used.
The effect of vectorization (the factor by which the program accelerates) depends
strongly on the size of the problem and, of course, on the algorithm used.
Our implementation with !LU-relaxation vectorized well on the CYBER 205 (factor 3.2-
4. 3) but slightly worse on a CRAY I (factor 3.I-3.5). The implementation with ZEBRA
relaxation vectorized better on a CRAY I (3.4-4.4) and less well on a CYBER 205
(factor 2.2-4.4), The reduced vectorizability of MGEOZ on the CYBER 205 is due to
the frequent occurance of vectors with stride unequal I. For MGEOZV the CRAY I is
faster than the CYBER 205; for MGDIV the CYBER 205 is faster for large problems.
We notice that for the determination of the efficiency of an algorithm on a vector-
machine the usual measure of complexity - the operations count appears to be
completely irrelevant. Many more aspects have to be taken into account such as:
are the computations arranged in small or large do-loops, are they recursive, vector
izable, how are the data stored etc •.
The relative efficiency of the various algorithms depends - of course - on the com
plexity of the algorithms and on the rate of convergence. The complexity of MGEOZ
is less, but generally MGDl has a better convergence rate. Based on the present ex
periments we see that roughly one iteration with MGDI takes twice the CPU-time of a
MGEOZ iteration. On the other hand, in our Poisson testproblem, ·the empirical con
vergence rate of MGDI is twice the rate of MGEOZ, so that both algorithms appear

A Portable Multigrid Vector-Code 37

equally efficient in this case. In general, the relative efficiency of MGDl and
MGEOZ depends on the difference problem to solve, the size of the system of equa
tions and on the machine used.

ACKNOWLEDGEMENT

We are indebted to Mr. W. Lioen who constructed different versions of MGEOZ.

NOTE

The codes discussed in the paper can be obtained by sending a tape to Mr. A. van
Deursen, Dept. of Mathematics and Informations, Delft University of Technology,
Julianalaan 132, 2628 Delft, The Netherlands.

REFERENCES

[1J Barkai, D. and Brandt, A., Vectorized Multigrid Poisson Solver for the CDC
CYBER 205, In: Procs. Int. MG-Conference, Copper Mountain, Colorado, April
6-8, 1983.

[2] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math.
Comp. l.!_, 333-390, 1977.

[3] Hemker, P.W., On the comparison of line-Gauss-Seidel and ILU relaxation in
multigrid algorithms, In: J.J.H. Miller (ed.), Computational and asymptotic
methods for ~oundary and interior layers, pp. 269-277. Boole Press, Dublin,
1982.

[4] Hemker, P.W., Multigrid methods for problems with a small parameter, To appear
in: Procs. Dundee. Conf. 1983, LNM, Springer-Verlag.

[5] .Hemker, P.W., Wesseling, P. and De Zeeuw, P.M., 11ultigrid methods: development
of fast solvers. In: Procs. Int. MG-Conference, Copper Mountain, Colorado,
April 6-8, 1983.

[6] Kettler, R., Analysis and comparison of relaxation schemes in robust multigrid
and preconditioned conjugate gradient methods. In: W. Hackbusch and
U. Trottenberg (eds.), Multigrid methods. Proceedings, Koln-Porz, 1981. Leet.
Notes in Math. 960, pp. 502-534, Springer-Verlag, Berlin etc., 1982.

[7] Stuben, K. and Trottenberg U., Multigrid methods: fundamental algorithms,
model problem analysis and applications. In: W. Hackbusch and U. Trottenberg
(eds.), Multigrid methods. Proceedings, Koln~Porz, 1981. Leet. Notes in Math.
960, pp. 1-176, Springer-Verlag, Berlin etc. 1982.

[8] Wesseling, P., Theoretical and practical aspects of a multigrid method. Siam J.
Sci. Stat. Comp. 1• 387-407, 1982.

[9] Wesseling, P., A robust and efficient multigrid method. In: W. Hackbusch and
U. Trottenberg (eds.), Multigrid methods. Proceedings, Koln-Porz, 1981. Leet.
Notes in Math. 960, pp. 614-630, Springer-Verlag, Berlin etc., 1982.

[10] De Zeeuw, P.M., Lioen, W. and Hemker, P.W., Vectorized Multigrid Codes, To
appear as Mathematical Centre report, Amsterdam, 1983.

38 P. W. Hemker et al.

DISCUSSION

Speaker: P. Hemker

Gorenflo: You intend your method to be robust. Then it should also work when in
your equation convection is large compared to diffusion, that is in the nearly
singular case. But I do not see how. Can you comment on this?

Hemker: We have to distinguish between nearly singular and singularly perturbed
problems. In the first case (an eigenvalue almost equal zero) any iterative solver
will run into problems. In the second case, for instance for the ·Convection
diffusion equation, if properly discretized (e.g. by an upwind discretization),
the Incomplete LU relaxation and even more the Incomplete Line LU relaxation have
execellent smoothing properties.
References:
P. w. Hemker: On the comparision of line Gauss-Seidel and ILU relaxation in
multigrid algorithms. In: J. J. H. Miller (Ed.). Computational and asymptotic
methods for boundary and interior layers, pp. 269-277, Boole Press, Dublin, 1982.
P. W. Hemker. Multigrid methods for problems with a small parameter in the
highest derivative. To appear in: Numerical Analysis, Proc. of the Dundee 1983
Conference, D. F. Griffiths (Ed). Springer-Verlag.

Brandt: You gave examples of computing times for your software. For some of these
problems there are vectorized multi-grid algorithms which are - 100 times as fast.
Considering relaxation methods, I should like to emphasise that when one wishes to
solve only to truncation error level then simple direction free, high vectorizable
point relaxation (e.g. red-black or-Oering) is quite sufficient and adequate when
the equations are highly anisotropic, unless there is one dominant (i.e.
throughout most of the domain) alignment between one particular characteristic
direction and a specific grid direction. Such dominant alignment must be known to
the user and can be communicated to the system, in which case the latter would use
simple, highly vectorized line relaxation.

Hemker: As far as I know there is one program, which has been referenced in my
paper (Barkai and Brandt), which is specially designed for the CYBER 205 and
solves the Poisson equation up to truncation error with a speed of 0.36 µsec/grid
point. This is about 30 times as fast as our program. When we take into account
that our program is designed for variable coefficient problems (and hence all the
matrix entries have to be used explicitly) and that it is written in portable
FORTRAN (and hence is not bound to one particular machine), we see that its
existence is sufficiently justified. Possibly/probably you are right. However, we
want to make available a routine which yields the solution of the linear system
up to an arbitrary small residual, that can be specified by the user.

Hackney: It would appear that quite different strategies are best for different
machines. For example, on the CYBER 205 it may pay to iterate more in the fine
mesh because of the greater length of vectors involved. Have you any theory for
estimating the run time on vector processors a priori?

Hemker: Indeed we find that different variants of the MG-method are best for
C!Tl't'erent machines. So we find that the variant with ZEBRA-relaxation runs better
on a CRAY l, whereas the variant with !LU-relaxation runs better on the CYBER 205.
We have no general theory for estimating the run time on vector processors,
neither do we search for the optimal variants (or strategies) for the various
different machines.

Duff: Your package is designed for linear problems but unfortunately life is
nonl inear. In the solution of a nonl inear problem would you advocate using your
package on the linearized problem obtained, for example, through a Newton-type

A Portable Multigrid Vector-Code

solution scheme? How would this compare with solving the nonlinear problem on
each grid as recommended by Achi Brandt.

Hemker: Both approaches are possible. It is claimed that the FAS multigrid
approach can be more efficient. On the other hand there are arguments in favour
of the Newton approach_ In the latter case, if the iterative process does not
converge - as sometimes happens fornonlinear problems - one may obtain better
insight of the reason for the divergence.

39

Young: You talked about achieving 50% vectorization using the LU algorithm. Since
tfi"e"Solution of a triangular system is not inherently vectorizable how were you
able to achieve this?

Hemker: In the solution process for the LU-relaxation forward and backward
substitution are performed with L (or U) being 4-diagonal triangular matrices. If
we execute the substitution blockwise, the two diagonals in the off-main-diagonal
blocks can be eliminated by vector-operations. Only the (non-vectorizable)
solution of simple bidiagonal systems is left.

Reid: I am on the X3J3 Fortran committee and have a special interest on the
incorporation of array facilities in the future Fortran (BX) standard.
You seemed to have some trouble with differences between the scalar and vector
versions of your routines. Do you think that facilities such as array or array
section assignments could help you to avoid some of these problems?

Hemker: Yes, I think they may do so. But there is more to say about this. In my
op1n1on a real prograrrrning language should in the first place provide a level of
abstraction (abstraction from the machine architecture), in such a way that we can
conveniently express our mathematical, algorithmical and "software engineering"
thoughts in it. In this sense FORTRAN is a poor language. Therefore, for research
work we prefer ALGOL 68. We use FORTRAN only because it is - unfortunately - the
only language that is widely available for numerical computation. We would not be
helped at all by FORTRAN extensions that would not be widely used and certainly
not by extensions that would be implemented only on vector machines. In the
present work we could write our program in a most elementary but portable FORTRAN
and on the vector machines the compilers were clever enough to vectorize where it
was necessary.

Reid: We are not designing extensions for a manufacturer or set of manufacturers,
but for the standard itself and our hope and belief is that by the 1990s Fortran
BX will be as widely available as Fortran 66 was in the 1970s. Brian Smith,
Laurie Schonfelder and I are the only representatives of the mathematical software
community on the committee and our aim is to add to Fortran those facilities that
have proved valuable in more powerful languages. One cannot "wipe the slate clean"
because of the vast number of large working Fortran programs, whose owners are
desperately anxious to continue to use them for ten or even twenty years. We need
support and constructive criticism from those who are daily using other languages.

Rice: My experience of vectorizing compilers is that they are not very clever and
many loops are not vectorized automatically. One must then rewrite the
non-vectorized loops so that they can be recognized as vectorizable. This is
rather inelegant. Have you encountered this problem?

Hemker: Yes, we have indeed. However, in our case, we were able to rewrite the
programs in a portable FORTRAN in such a way that all the necessary vectorization
was recognized by the compiler. In this sense the compiler was clever enough: we
did not have to resort to special machine/compiler dependent vector language.

Brandt: It is at the algorithmic design stage that one thinks about
vectorizability. It would be very good to have facilities to communicate these

,40 P. W. Hemker et al.

design features directly to the machine. I would welcome features in extensions
to Fortran to accommodate this.

Hockney: It is not only vectorization which is important but also how long the
vectors are. This effect is characterized by the n112 parameter of the computer,
about which I will talk more later this week.

Hemker: This is perfectly true. In the given examples this also explains the
behaviour of the speed-up factors on the CYBER 205, in particular for the
prolongation and restriction routines.
Further, for the CYBER 205, it is important whether the vectors are contiguously
stored or not.

