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The implementation is described of two multigrid algorithms for 
use as standard subroutines for the efficient solution of linear 
systems that arise from 7-point discretizations of elliptic PDEs 
on a rectangle. For both algorithms a tuned scalar-version and a 
tuned vector-version have been constructed and run on a CYBER 170, 
a CRAY I and a CYBER 205. The CPU-times are given and compared. 
The implementation is available in portable ANSI-FORTRAN. 

INTRODUCTION 

29 

In this paper we describe software for the solution of discretized 2nd order linear 
elliptic PDEs in two space dimensions. The domain of definition is assumed to be a 
rectangle and the discretization is assumed to result in a regular 7-diagonal matrix. 
The algorithms, based on multigrid cycling, are selected for efficiency. The aim 

was to obtain software that is perceived and can be used just like any standard 
subroutine for solving systems of linear equations. The user has to specify pnly 
the matrix and the right-hand-side, and remains unaware of the underlying multi
grid method. Such a subroutine, that operates without outside interference, will 
be called autonomous.·We find that a large class of equations can be solved effi
ciently by use of our autonomous multigrid subroutines. The equation may be non
self-adjoint, and its coefficients are arbitrary. 
The two algorithms use saw-tooth multigrid cycles [8,9]. One algorithm is based 
on !LU-relaxation, the other on ZEBRA- relaxation [7]. The discretization on coarse 
grids is provided automatically by means of a built-in Galerkin approximation. 
Various scalar- and vector-versions of the code have been constructed and run on 
a CYBER 170, a CRAY 1 and a CYBER 205. It appeared that a code written for auto
matic vectorization in portable ANSI FORTRAN runs efficiently in all cases. 
Specially tuned versions are only a small fraction more efficient. 
In section 2 we describe the class of problems that can be solved. In section 3 
we describe the general algorithm for multigrid cycling. In the sections 4, 5, 6 
we specialize the general algorithm and come to the various versions of the codes. 
In sections 7, 8 we compare the various programs. In the last sections we formu
late some conclusion. 

2. THE PROBLEM 

We consider the linear 2nd order elliptic PDE in two dimensions 

(2. I .a) I a (-a-)(-a-) u + ~ a.(-i--) u+ a0 u = f on Q c JR2 , 
i,j=t ,2 ij axi ,axj i=l ,2 1 xi 

with variable coefficients and with boundary conditions on on = rN u rD 

(2. I .b) 

The coefficients are arbitrary but should satisfy the ellipticity condition. If 
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this equation on a rectangle n is discretized on a regular triangularization of 
the form 

(0,0) 

then the resulting discretization 

(2.2) 

can be a linear system with a regular 7-diagonal structure. 

The shape of 

a matrix~· 

We consider codes for the solution of linear systems with a structure correspon
ding to this kind of 7-point discretization. On the rectangle n equidistant compu
tational grids nk, k = 1,2, ••• ,l, are defined 

The user has to provide the discrete operator Ah and the data fh only on the finest 
grid nl. 
To solve the linear system efficiently, multigrid methods are used [2,7,8]. These 
methods make also use of nk, k = 1,2, ••. ,l-1, but when using the autonomous sub
routines the user remains unaware of this fact. Much effort has been spent in the 
search for efficient variants of the MG-method [3,4,5,6,7,8). In this paper we 
onsider only two variants that are found to belong to the more promising ones. 

. THE GENERAL MULTIGRID ALGORITHM 

.he general multigrid cycling algorithm for the solution of (2.2) is an iterative 
process, which makes use of a sequence of discretizations on the grids 
Ilk, k = 1,2, ..• ,.f. 
Each multigrid iteration cycle consists of 
(I) p relaxation sweeps, followed by 
(2) a coarse grid correction, followed by 
(3) q more relaxation sweeps. 
The coarse grid correction consists of 
a) the computation of the current residual rh = fh - Ahuh; 
b) the restriction of the residual to the next coarser grid rH = RHhrh; 
c) the computation of cH, an approximation to the solution of the correction 
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equation 

(3.1) 

This approximation is obtained by application of s multigrid iteration cycles 
to this equation, and 

(d) updating the current solution 'i\iby addition of the prolongated c~rrection 

uh := uh + PhH~H. 
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On the coarsest grid the correction equation (3.1) has to be (approximately) solved 
by another method (at choice). The coarse grid discrete operators ~ can be con
structed by analogy to (2.2) or by Galerkin approximation: 

(3.2) 

(cf. [8]). 

4. THE ALGORITHMS 

In this paper we consider the implementation of two particular instances of the 
multigrid algorithms: MGDI and MGEOZ. Based on various comparisons [3,6,9], the 
parameters p, q and s are chosen to be 0,1 and I respectively. The resulting 
strategy is called a saw-tooth cycle [9]. For the prolongation and the restriction 
7-point operators are chosen, that correspond to linear interpolation on coarse
grid triangles in the triangulation of Q (for PhH) and to its adjoint operator 
(for ~h). The Galerkin approximation (3.2) is chosen for the construction of the 
coarse grid operators AH. For an approximate solution on the coarsest grid a single 
relaxation sweep is used. The two algorithms differ only with respect to he relax
ation method. 
In MGDI the Incomplete LU (ILU-) relaxation is used [9]. For this relaxation the 
7-diagonal matrix Ah is decomposed as 

~=LU-C 

where L is a lower-triangular matrix (with I for all main-diagonal elements) and 
U is an upper triangular matrix. The requirement that L and U have non-zero diag
onals only where ~ has, determines L and U. The rest-matrix C has only two non
zero diagonals, of which the elements are easily derived from L and U. One relax
ation sweep of the Incomplete LU-relaxation is now the solution of the system 

LU u(i+l) = f + C u(i). 

After such a relaxation sweep a residual is efficiently computed by 

r(i+l) := fh - ~uh (i+I) = C(u~i+l) - u~i)) 

In MGLOZ the ZEBRA-relaxation is used [7]. This is a line-Gauss-Seidel relaxation 
in which first all points on even lines (lines that appear in the coarser grid) 
are simultaneously relaxed and secondly all points on the odd lines. An important 
advantage of this relaxation is the fact that many points can be relaxed simul
taneously and that the residual computation simplifies, because the residual 
vanishes at all odd lines after a relaxation sweep. For ZEBRA relaxation tridia
gonal systems have to be solved. The solution of these systems can be accelerated 
by storage of the decomposition of the tridiagonal matrices. We have chosen to do 
this at an extra storage cost of 2 reals per grid-point. 

5. THE STRUCTURE OF MGDI AND MGEOZ 

The general structure of both MGDI and MGEOZ is the same. First, in the preparat
ional phase, the sequence of coarse grid discrete operators is constructed by 
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a subroutine RAP, according to (3.2). Then the decomposition is performed (in 
DECOMP or DECOMPZ) and the initial estimate of the solution is set to zero. Final
ly, in the cycling phase, at most MAXIT iterations of the cycling process are 
performed. On the basis of intermediate results the iteration can be stopped ear
lier; this necessitates the computation of a vectornorm (in VL2NOR). 
In the following the structure of the cycling process of MGDI is described in 
quasi-FORTRAN. 

DO I 0 k;l-1 (-1) I 

CALL RESTRICTION (f,f,k). 

10 CONTINUE 

C START OF maxit MULTIGRID ITERATIONS 

c 

DO SO n;J, maxit 

IF (n.EQ.I) GO TO 30 

CALL CTUMV (C,u,v) 

vl IS THE NEW RESIDUE fl-Alul 

CAIL RESTRICTION (f,v,l-1) 

DO 20 k;l-2(-1) I 

CAIL RESTRICTION (f,f,k) 

20 CONTINUE 

30 CALL SOLVE (u,f,I) 

DO 40 k;2 (l)l-1 

CALL PROLONGATION (u,u,k) 

CALL CTUPF (v,u,f,k) 

CALL SOLVE (u,v,k) 

40 CONTINUE 

CALL PROLONGATION (v,u,l) 
l l l v =v +u 

CALL CTUPF (u,v,f,l) 

CALL SOLVE (u,u,l) 

50 CONTINUE 

I 
u 

k 
u 

k 
v 

k 
u 

l 
v 

l 
u 
l 

u 

k-1 
u 

In the actual implementation of MGDI, the matrix ~ is not kept in storage, but is 
overwritten by L and U. At minimal costs, the rest-matrix C ; LU - '.'lJ is recomputed 
each time from Land U (in the subroutines CTUMV and CTUPF). All subroutines men
tioned have their own particular features that make them more or less feasible for 
vectorization. This can be seen in table (8.2). 
The structure of MGEOZ is more straightforward and follows directly from the MG
algorithm in section 3. Here the original matrix is not overwritten by the decom
position. 
Two main alternatives exist for the implementation of ZEBRA relaxation. The lines 
in the grid can be relaxed successively and vectorization can be applied to speed 
up the solution of each tridiagonal system. However, because the solution of tri
diagonal systems is not very suitable for vectorization, and all tridiagonal sys
tems have the same size, we have chosen the other possibility to exploit vectori
zation, namely we solve all linear systems in each half relaxation sweep simulta
neously by ~~eating the even (odd) systems in parallel. Because of the rectangular 
shape of n the data-structure both in MGDI and MGEOZ is simple. The grid-values of 
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uh.and fh_are store~ sequentially in one-dimensional arrays. They are ordered by 
grLd and in each grid they are ordered by meshline. The diagonals of A are stored 
similarly in a two-dimensional array; the columns of the array correspBnding to 
the diagonals of the matrix. 

6. VERSIONS OF THE PROGRAM 

To investigate the advantages of vectorization, different versions of the programs 
have been constructed. One version is written in portable FORTRAN and is tuned for 
execution on sequential hardware (MGDlS and MGEOZS). Another version, also written 
in portable FORTRAN was tuned for vectorization (MGDlV and MGEOZV). To keep the 
FORTRAN portable, we had to rely on the automatic vectorization capabilities of 
the compilers at hand. All loops for which vectorization was required could indeed 
be expressed in standard ANSI FORTRAN. 
Other versions of the programs were considered as well. An interesting variant was 
(not portable) MGDID. This version is the same as MGDlV except for two statements, 
containing a call to a STACK.LIB routine for the recursive parts of the routine 
SOLVE in MGDl. The STACKLIB library, supplied for the CYBER 200 series, contains 
particularly efficient routines for vector operations that are not vectorizable 
because of recursion. For the comparison of MGDlD and MGDIV see table (8.2) and 
(8.3). For details about the implementation of the vectorized versions cf. (10]. 

7 • THE TEST PROBLEM 

In this study we are not interested in the nwnePical behaviour of the algorithms 
for different problems. We consider here only the efficiency of their implementa
tion. Therefore, we may restrict ourselves to a single testproblem: the solution 
of Poisson's equation on the unit square with Dirichlet boundary conditions. Of 
course, for this problem other alternatives exist for its efficient solution.·A 
program implementing one cycle in a Full Multigrid (FMG) algorithm, specially tuned 
for this problem on a CYBER 205, is described in [l]. Such a program may run much 
faster than our generai purpose code. They report the solution on a 129 x 129 grid 
(with the usual 5-point discretization) in 0.006 sec. However, we did not adapt 
our codes in any way to this particular problem. For our codes the cost of one 
iteration is the same for any 7-point discretization of a problem (2. 1) on grids 
of a given size. 
In all cases reported here, the problem was solved on a mesh with 

(/-+1+1)2 

meshpoints. The length of most vectors in the program is (2n+l+ l )j, n = l ( l )l. j = 
I and j = 2 (i.e. they represent lines or complete grids on level n). We performed 
experiments for l = 4,5,6,7. For problems with l > 5 the size of the problem was 
too large to run on the available CYBER 170; for l > 6 The problem was too large 
for the available CRAY I (Daresbury 1983). 

8. THE EFFECT OF VECTORIZATION 

In the tables (8. 1)-(8.5) we give CPU-times for the programs mentioned in section 
6. On the CYBER 205 and the CRAY l the vector-tuned versions ran with the vector 
option, the CPU-times mentioned for the scalar-tuned versions ran wit~out. If we 
run the portable vector-code in scalar mode we sacrify about 5% CPU-time on the 
CYBER 205 (CRAY I: about 9%) when compared with the tuned scalar-code in scalar 
mode. 
In the tables we give the total CPU-time in seconds spent in runs with 10 iteration 
cycles, including the preparational work. Also t~e time s~ent in th: vari?us sub
routines is presented. From these numbers we derive the time.spent 7n a s7ngle . 
cycle. Additionally, we give the average convergence factor in the iterative cycling 
(CONV). 
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-
MGDIS CYBER 170 CRAY I CYBER 205 

LEVEL 5 5 6 5 6 7 

GRID 65 x 65 65 x 65 129 x 129 65 x 65 129 x 129 257 x 257 

CONV 4.7E-2 4.7E-2 4. 3E-2 4.7E-2 4.3E-2 4.3E-2 

RAP 0. 186 0.088 0.313 0.084 0.317 l. 232 

DECOMP 0.061 0.031 0.120 0.050 0. 195 0. 764 

SOLVE o. 311 o. 150 0.582 0. 153 0.594 2.265 

CTUMV 0.098 0.066 0.261 0.079 0.315 l. 134 

CTUPF o. 143 0.088 0.347 0.099 0.390 l .498 

PRO LON 0.041 0.030 0. 113 0.024 0.093 0.360 

RES TRI 0.066 0.017 0.062 0.014 0.054 0.202 

VL2NOR 0.030 0.022 0.087 0.015 0.059 0.233 

TOTAL 1.030 0.522 1.994 0.565 2. 141 8. 101 

CYCLE 0.066 0.035 0. 137 0.037 0. 145 0.546 

Table 8.1. CPU-times (in seconds) of the program MGDlS for problems with 

different sizes, run in scalar mode on different machines. 

MGDlV CRAY l CYBER 205 

LEVEL 5 6 5 6 7 

GRID 65 x 65 129xl29 65 x 65 129 x 129 257 x 257 

CONV 4.7E-2 4.3E-2 4.7E-2 4.3E-2 4.3E-2 

RAP 0.033 (2.7) 0.085 (3.7) 0.022 (3 .8) 0.053 (6. 0) . o. 151 (8.2) 

DE COMP 0.010 (3. I) 0.037 (3 .2) 0.012 ( 4. 2) 0.043 (4.5) o. 162 (4.7) 

SOLVE 0 .086 ( l. 7) 0.324 ( 1 . 8) 0.091 ( l. 7) 0.325 ( 1 . 8) 1.251 ( l. 8) 

CTUMV 0.008 (8.2) 0.032 (8. 2) 0.003 (26!) 0.010 (31 : ) 0.042 (27!) 

CTUPF 0.011 (8.0) 0.043 (8. I) 0.004 (25!) 0.014 (28 ! ) 0.059 (25!) 

PRO LON 0.007 (4.3) 0.018 (6. 3) 0.009 (2.7) 0.022 (4.2) 0.061 (5.9) 

RESTRI 0.004 (4.2) 0 .011 (5. 6) 0.012 (I. 2) 0.031 (I. 7) 0.092 (2.2) 
VL2NOR 0.003 (7. 3) 0.010 (8.7) 0.001 ( 15) 0.004 (15) 0.015 ( 16) 

TOTAL 0. 169 (3. l) 0.575 (3 .5) 0.177 (3.2) 0.533 (4.0) l .882 (4.3) 
CYCLE 0.012 (2.9) 0.043 (3. 2) 0.012 ( 3. I) 0.040 (3.6) o. 151 (3.6) 

Table 8.2. CPU-times (in seconds) of the program MGDIV run in vector-mode. 

Between brackets: the acceleration factor by vectorization (compared 

with the tuned scalar version). 
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MGDID CYBER 205 

GRID 65 x 65 129 x 129 257 x 257 

SOLVE 0.094 (I. 6) 0.263 (2.3) 0.831 (2. 7) 

TOTAL o. 181 (3. I) 0. 469 (4.6) I .442 (5.6) 

CYCLE 0.012 (3. I) 0.034 ( 4. 3) o. 108 (5. I) 

Table 8.3. CPU-times in seconds of the program MGDID run in vector-mode 

MGEOZS CYBER 170 CRAY I CYBER 205 

LEVEL 6 6 7 6 7 8 

GRID 65 x 65 65 x 65 129 x 129 65 x 65 129 x 129 257 x 257 

CONV 2.3E-l 2.3E-l 2.2E-l 2.3E-l 2.2E-l 

RAP 0. 188 0.089 0.315 0.085 0. 319 

DECOMPZ 0.012 0.006 0.023 0.011 0.044 

ZEBRA 0.333 0. 135 0.511 0. 148 o. 585 

RESIDU o. 106 0.049 0. 191 0.045 0. 180 

PRO LON 0.058 0.035 o. 131 0.027 0. 100 

RES TRI 0.030 0 .013 0.049 0.010 0.037 

VL2NOR 0.018 0.013 0.048 0.008 0.033 

I TOTAL 0.797 0.348 1.286 0. 353 l. 333 

CYCLE 0.053 0.023 0.088 0.023 0.090 

Table 8.4. CPU-times (in seconds) of the program MGEOZS for problems with 

different sizes, run in scalar-mode on different machines. 

2.02E-I 

I. 240 

o. 175 

2.309 

0. 733 

o. 390 

0.142 

0.128 

5.216 

0.357 
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MGEOZV CRAY I CYBER 205 

LEVEL 6 7 6 7 8 

GRID 65 x 65 129 x 129 65 x 65 129 x 129 257 x 257 

CONV 2.3E-1 2.2E-1 2.3E-1 2.2E-1 2.0E-1 

RAP 0.033 (2.7) 0.085 (3. 7) 0.022 (3.9) 0.054 (5. 9) 0. 151 (8. 2) 

DECOMPZ 0.006 (1.0) 0.023 (1.0) 0.010 (I. I) 0.040 (I. I) 0. 158 (J. I) 

ZEBRA 0.034 (4.0) 0.103 (5 .0) 0.084 ( 1.8) 0.210 (2. 8) 0.623 (3. 7) 

RESIDU 0.010 (4.9) 0.034 (5 .6) 0.007 (6.4) 0.020 (9.0) G.OE7 (I O. 9) 

PROLON 0.008 (4.4) 0.022 (6. 0) 0.013 (2. I) 0.032 (3. I) 0.093 (4.2) 

RES TRI 0.004 (3.2) 0.009 (5 .4) 0.009 (I. I) 0.022 (I . 7) 0.059 (2.4) 

VL2NOR 0.003 (4.3) 0.009 (5. 3) 0.002 (4.0) 0.004 (8.3) 0.012 (JO. 7) 

TOTAL 0. 102 (3. 4) 0.293 (4. 4) o. 162 (2.2) 0.400 (3.3) I. 190 (4. 4) 

CYCLE 0.006 (3.8) 0.017 (5. 2) 0.011 (2. 1) 0.028 (3.2) 0.084 ~ 

Table 8.5. CPU-times (in seconds) of the program MGEOZV run in vector-mode. 

Between brackets the acceleration by vectorization. 

We see that certain parts of the algorithms benefit greatly from vectorization viz. 
CTUMV and CTUPF (a factor 25-30 on CYBER 205, a factor 8-9 on CRAY I). Other parts 
vectorize also well: VL2NOR, RAP, DECOMP, PROLON, RESIDU (on CRAY I also RESTRI and 
ZEBRA, in which vectoroperations with stride 2 occur). Other parts hardly benefit 
because of their recursive structure (DECOMPZ and SOLVE). If we give up portability, 
SOLVE can be speeded up on the CYBER 205 by use of the STACKLIB library. 

9. CONCLUSIONS 

Implementation of general-purpose multigrid solvers on vectorcomputers is feasible. 
Efficient programs in portable FORTRAN are now available for variable coefficient 
elliptic problems in a rectangular domain, discretized by a 7-point difference mole
cule. For the implementation implicit vectorization (auto-vectorization) can be used. 
The effect of vectorization (the factor by which the program accelerates) depends 
strongly on the size of the problem and, of course, on the algorithm used. 
Our implementation with !LU-relaxation vectorized well on the CYBER 205 (factor 3.2-
4. 3) but slightly worse on a CRAY I (factor 3.I-3.5). The implementation with ZEBRA 
relaxation vectorized better on a CRAY I (3.4-4.4) and less well on a CYBER 205 
(factor 2.2-4.4), The reduced vectorizability of MGEOZ on the CYBER 205 is due to 
the frequent occurance of vectors with stride unequal I. For MGEOZV the CRAY I is 
faster than the CYBER 205; for MGDIV the CYBER 205 is faster for large problems. 
We notice that for the determination of the efficiency of an algorithm on a vector-
machine the usual measure of complexity - the operations count appears to be 
completely irrelevant. Many more aspects have to be taken into account such as: 
are the computations arranged in small or large do-loops, are they recursive, vector
izable, how are the data stored etc •. 
The relative efficiency of the various algorithms depends - of course - on the com
plexity of the algorithms and on the rate of convergence. The complexity of MGEOZ 
is less, but generally MGDl has a better convergence rate. Based on the present ex
periments we see that roughly one iteration with MGDI takes twice the CPU-time of a 
MGEOZ iteration. On the other hand, in our Poisson testproblem, ·the empirical con
vergence rate of MGDI is twice the rate of MGEOZ, so that both algorithms appear 
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equally efficient in this case. In general, the relative efficiency of MGDl and 
MGEOZ depends on the difference problem to solve, the size of the system of equa
tions and on the machine used. 
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The codes discussed in the paper can be obtained by sending a tape to Mr. A. van 
Deursen, Dept. of Mathematics and Informations, Delft University of Technology, 
Julianalaan 132, 2628 Delft, The Netherlands. 

REFERENCES 

[1J Barkai, D. and Brandt, A., Vectorized Multigrid Poisson Solver for the CDC 
CYBER 205, In: Procs. Int. MG-Conference, Copper Mountain, Colorado, April 
6-8, 1983. 

[2] Brandt, A., Multi-level adaptive solutions to boundary-value problems, Math. 
Comp. l.!_, 333-390, 1977. 

[3] Hemker, P.W., On the comparison of line-Gauss-Seidel and ILU relaxation in 
multigrid algorithms, In: J.J.H. Miller (ed.), Computational and asymptotic 
methods for ~oundary and interior layers, pp. 269-277. Boole Press, Dublin, 
1982. 

[4] Hemker, P.W., Multigrid methods for problems with a small parameter, To appear 
in: Procs. Dundee. Conf. 1983, LNM, Springer-Verlag. 

[5] .Hemker, P.W., Wesseling, P. and De Zeeuw, P.M., 11ultigrid methods: development 
of fast solvers. In: Procs. Int. MG-Conference, Copper Mountain, Colorado, 
April 6-8, 1983. 

[6] Kettler, R., Analysis and comparison of relaxation schemes in robust multigrid 
and preconditioned conjugate gradient methods. In: W. Hackbusch and 
U. Trottenberg (eds.), Multigrid methods. Proceedings, Koln-Porz, 1981. Leet. 
Notes in Math. 960, pp. 502-534, Springer-Verlag, Berlin etc., 1982. 

[7] Stuben, K. and Trottenberg U., Multigrid methods: fundamental algorithms, 
model problem analysis and applications. In: W. Hackbusch and U. Trottenberg 
(eds.), Multigrid methods. Proceedings, Koln~Porz, 1981. Leet. Notes in Math. 
960, pp. 1-176, Springer-Verlag, Berlin etc. 1982. 

[8] Wesseling, P., Theoretical and practical aspects of a multigrid method. Siam J. 
Sci. Stat. Comp. 1• 387-407, 1982. 

[9] Wesseling, P., A robust and efficient multigrid method. In: W. Hackbusch and 
U. Trottenberg (eds.), Multigrid methods. Proceedings, Koln-Porz, 1981. Leet. 
Notes in Math. 960, pp. 614-630, Springer-Verlag, Berlin etc., 1982. 

[10] De Zeeuw, P.M., Lioen, W. and Hemker, P.W., Vectorized Multigrid Codes, To 
appear as Mathematical Centre report, Amsterdam, 1983. 



38 P. W. Hemker et al. 

DISCUSSION 

Speaker: P. Hemker 

Gorenflo: You intend your method to be robust. Then it should also work when in 
your equation convection is large compared to diffusion, that is in the nearly 
singular case. But I do not see how. Can you comment on this? 

Hemker: We have to distinguish between nearly singular and singularly perturbed 
problems. In the first case (an eigenvalue almost equal zero) any iterative solver 
will run into problems. In the second case, for instance for the ·Convection
diffusion equation, if properly discretized (e.g. by an upwind discretization), 
the Incomplete LU relaxation and even more the Incomplete Line LU relaxation have 
execellent smoothing properties. 
References: 
P. w. Hemker: On the comparision of line Gauss-Seidel and ILU relaxation in 
multigrid algorithms. In: J. J. H. Miller (Ed.). Computational and asymptotic 
methods for boundary and interior layers, pp. 269-277, Boole Press, Dublin, 1982. 
P. W. Hemker. Multigrid methods for problems with a small parameter in the 
highest derivative. To appear in: Numerical Analysis, Proc. of the Dundee 1983 
Conference, D. F. Griffiths (Ed). Springer-Verlag. 

Brandt: You gave examples of computing times for your software. For some of these 
problems there are vectorized multi-grid algorithms which are - 100 times as fast. 
Considering relaxation methods, I should like to emphasise that when one wishes to 
solve only to truncation error level then simple direction free, high vectorizable 
point relaxation (e.g. red-black or-Oering) is quite sufficient and adequate when 
the equations are highly anisotropic, unless there is one dominant (i.e. 
throughout most of the domain) alignment between one particular characteristic 
direction and a specific grid direction. Such dominant alignment must be known to 
the user and can be communicated to the system, in which case the latter would use 
simple, highly vectorized line relaxation. 

Hemker: As far as I know there is one program, which has been referenced in my 
paper (Barkai and Brandt), which is specially designed for the CYBER 205 and 
solves the Poisson equation up to truncation error with a speed of 0.36 µsec/grid 
point. This is about 30 times as fast as our program. When we take into account 
that our program is designed for variable coefficient problems (and hence all the 
matrix entries have to be used explicitly) and that it is written in portable 
FORTRAN (and hence is not bound to one particular machine), we see that its 
existence is sufficiently justified. Possibly/probably you are right. However, we 
want to make available a routine which yields the solution of the linear system 
up to an arbitrary small residual, that can be specified by the user. 

Hackney: It would appear that quite different strategies are best for different 
machines. For example, on the CYBER 205 it may pay to iterate more in the fine 
mesh because of the greater length of vectors involved. Have you any theory for 
estimating the run time on vector processors a priori? 

Hemker: Indeed we find that different variants of the MG-method are best for 
C!Tl't'erent machines. So we find that the variant with ZEBRA-relaxation runs better 
on a CRAY l, whereas the variant with !LU-relaxation runs better on the CYBER 205. 
We have no general theory for estimating the run time on vector processors, 
neither do we search for the optimal variants (or strategies) for the various 
different machines. 

Duff: Your package is designed for linear problems but unfortunately life is 
nonl inear. In the solution of a nonl inear problem would you advocate using your 
package on the linearized problem obtained, for example, through a Newton-type 
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solution scheme? How would this compare with solving the nonlinear problem on 
each grid as recommended by Achi Brandt. 

Hemker: Both approaches are possible. It is claimed that the FAS multigrid 
approach can be more efficient. On the other hand there are arguments in favour 
of the Newton approach_ In the latter case, if the iterative process does not 
converge - as sometimes happens fornonlinear problems - one may obtain better 
insight of the reason for the divergence. 
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Young: You talked about achieving 50% vectorization using the LU algorithm. Since 
tfi"e"Solution of a triangular system is not inherently vectorizable how were you 
able to achieve this? 

Hemker: In the solution process for the LU-relaxation forward and backward 
substitution are performed with L (or U) being 4-diagonal triangular matrices. If 
we execute the substitution blockwise, the two diagonals in the off-main-diagonal 
blocks can be eliminated by vector-operations. Only the (non-vectorizable) 
solution of simple bidiagonal systems is left. 

Reid: I am on the X3J3 Fortran committee and have a special interest on the 
incorporation of array facilities in the future Fortran (BX) standard. 
You seemed to have some trouble with differences between the scalar and vector 
versions of your routines. Do you think that facilities such as array or array 
section assignments could help you to avoid some of these problems? 

Hemker: Yes, I think they may do so. But there is more to say about this. In my 
op1n1on a real prograrrrning language should in the first place provide a level of 
abstraction (abstraction from the machine architecture), in such a way that we can 
conveniently express our mathematical, algorithmical and "software engineering" 
thoughts in it. In this sense FORTRAN is a poor language. Therefore, for research 
work we prefer ALGOL 68. We use FORTRAN only because it is - unfortunately - the 
only language that is widely available for numerical computation. We would not be 
helped at all by FORTRAN extensions that would not be widely used and certainly 
not by extensions that would be implemented only on vector machines. In the 
present work we could write our program in a most elementary but portable FORTRAN 
and on the vector machines the compilers were clever enough to vectorize where it 
was necessary. 

Reid: We are not designing extensions for a manufacturer or set of manufacturers, 
but for the standard itself and our hope and belief is that by the 1990s Fortran 
BX will be as widely available as Fortran 66 was in the 1970s. Brian Smith, 
Laurie Schonfelder and I are the only representatives of the mathematical software 
community on the committee and our aim is to add to Fortran those facilities that 
have proved valuable in more powerful languages. One cannot "wipe the slate clean" 
because of the vast number of large working Fortran programs, whose owners are 
desperately anxious to continue to use them for ten or even twenty years. We need 
support and constructive criticism from those who are daily using other languages. 

Rice: My experience of vectorizing compilers is that they are not very clever and 
many loops are not vectorized automatically. One must then rewrite the 
non-vectorized loops so that they can be recognized as vectorizable. This is 
rather inelegant. Have you encountered this problem? 

Hemker: Yes, we have indeed. However, in our case, we were able to rewrite the 
programs in a portable FORTRAN in such a way that all the necessary vectorization 
was recognized by the compiler. In this sense the compiler was clever enough: we 
did not have to resort to special machine/compiler dependent vector language. 

Brandt: It is at the algorithmic design stage that one thinks about 
vectorizability. It would be very good to have facilities to communicate these 
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design features directly to the machine. I would welcome features in extensions 
to Fortran to accommodate this. 

Hockney: It is not only vectorization which is important but also how long the 
vectors are. This effect is characterized by the n112 parameter of the computer, 
about which I will talk more later this week. 

Hemker: This is perfectly true. In the given examples this also explains the 
behaviour of the speed-up factors on the CYBER 205, in particular for the 
prolongation and restriction routines. 
Further, for the CYBER 205, it is important whether the vectors are contiguously 
stored or not. 


