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Editorial note. There are dozens of research projects carried out at CWI. It is
the editors’ policy to pay more attention to these projects. Therefore In the
future short descriptions of such projects will be included in the CWI! Quarterly.
They are presented in a non-mathematical way. The following article belongs to
this category.

l. INTRODUCTION

Epidemiology is the scientific description of the distribution in space and time
of diseases and the search for factors responsible for the observed patterns of
distribution. Originally most emphasis was put on the study of infectious
diseases, but in the second half of this century and in the developed world the
study of degenerative diseases such as cancer and cardiovascular diseases
became predominant. The current AIDS epidemic, and the re-emergence of
malaria, has led to an upsurge in interest for infectious diseases. In this short
note we discuss what the main questions are concerning the spread of infec-
tious diseases that are studied using mathematical models, some historical suc-
cess stories of insight gained through mathematical modelling, and, 1in some-
what more detail, recent developments in the solution to the easiest of the
main questions.

2. MATHEMATICAL QUESTIONS IN EPIDEMIOLOGY

The understandable expectation that mathematical models are used for predic-
tion of future trends in the spread of infectious diseases is unwarranted.
Mathematical models are used for obtaining insight, in particular concerning
the relative importance of factors influencing the spread of the infection and,
more generally, concerning the relation between mechanisms on the individual
level and phenomena at the population level.

There are some five main areas where mathematical models are used to
answer epidemiologically relevant questions. We discuss them briefly in the
order in which they occur ‘naturally’ after an infectious disease has entered a
population where it was not present before. We assume that this disease
confers permanent immunity to individuals that have recovered from the infec-
tion. For the time being we take all individuals in the population to be
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identical as far as their transmission behaviour 1s concerned.

To begin with we assume that the total number of individuals in our popula-
tion is constant on the time scale on which the epidemic processes of infection
and recovery occur. If all individuals are susceptible, the first question that
arises is: if an infectious disease enters our population will 1t cause a spreading
epidemic, or will it die out right away? This is referred to as the invasion ques-
tion. A threshold-quantity called the basic reproduction ratio can be used to
answer this question and its existence is a major insight that mathematical
thinking has brought to epidemiology. The basic reproduction ratio is also
important in studying the efficacy of different control measures and as a tool
for discriminating between different vaccination strategies. Recently a frame-
work has been developed to define and calculate this quantity for very general
situations [2] (more about this in the next sections).

Suppose an epidemic does occur and we still 1gnore births of new suscepti-
bles, then we can picture the epidemic as in Figure 1. Here the I symbolizes
the infected part of the population and S the susceptible part. At first the
infecteds will increase slowly in number, then more rapidly, and at some point
in time they will decrease again in number because of (1) lack of sufhicient
susceptibles and, (2), by the fact that the infecteds are only infectious for a
fixed amount of time after which they become immune or die. The relevant
questions are: when does I reach its maximum value, how large will this value
be, and what fraction of the susceptibles escapes from ever getting the disease?
A second major insight furnished by mathematical modelling 1s that there will
always be a positive (albeit possibly very small) fraction of individuals that
never get the infection [5].

/

FIGURE 1. Epidemic outbreak
Now we go one step further and allow for an inflow of new susceptibles, for

example by births. However we let these births occur on a much longer time
scale than the time scale of the epidemic process. We then get a situation as
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pictured in Figure 2, called ‘recurrent behaviour. After a rapid epidemic out-
brealf as described 1n the previous paragraph, the disease will 20 extinct. To
describe this accurately we would have to take stochasticity into account. After
the disease has gone extinct locally the population will gradually be replen-
ished by the birth of new susceptibles. When the suscébtiblc ﬁopulmicm B
‘large enough’ again, i.e. when the threshold-quantity is above threshold. a re-
introduction of the disease from outside the population leads to a new epi-
demic. Measles in Iceland are the standard example of this behaviour., see [1]:
there are not enough inhabitants to ‘create’ new susceptibles fast enough in
order to maintain the disease in the population. It is an as vet unsolved
theoretical problem to find a nice characterization of the ‘borderline” between
such behaviour and the behaviour we describe next.

/

FIGURE 2. Recurrent behaviour

If the birth of new susceptibles occurs on the same time scale as the epi-
demic processes, the disease can be present within the population at all times.
and 1t 1s called endemic, see Figure 3. Obvious questions are: Will there be a
steady state? Is it stable? Are there perhaps oscillations? How does the period
of oscillations depend on the relevant parameters? Finally in this setting there
1s the regulation problem. How does the disease affect the growth rate of the
population? There is currently much interest in this problem for example with
respect to AIDS in African countries.

The questions discussed above can all be answered, more or less easily, when
we make no distinctions between the individuals in the population. However
real life is more complicated, as individuals differ in their transmission
behaviour. Examples of heterogeneity characteristics that could be relevant
for the spread of an infection are: age, sex, sexual activity, spatial position.
When we take arbitrary heterogeneity into account the above mentioned ques-
tions become much more difficult, and in fact only the invasion question can,
at the present state of the art, be answered in great generality.
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FIGURE 3. Endemic

3. TWO SUCCESSFUL EXAMPLES

In studying the above mentioned questions modelers have had an impact on
public health decisions. Let us discuss two of these success stories of
mathematical models in epidemiology.

The first 1s probably the earliest example of insightful application of
mathematics to epidemiology. It dates back to 1909 when Ross [7] introduced
the notion of a threshold-quantity already referred to above. He observed that
eradication of malaria should be possible by decreasing the density of mosqui-
tos present in a certain area below a critical value. Prior to that it was gen-
erally believed that malaria would always survive as long as some mosquitos
were still present and that total eradication of mosquitos was impossible.
Using a simple model, Ross showed that there was a quantity which, when
suppressed below unity, would guarantee the disappearance of malaria from
the area, and that this quantity was proportional to the ratio of mosquito den-
sity to human density. Thus he found a critical mosquito density. Empirical
corroboration was later obtained in India with the discovery of neighbouring
areas with and without malaria and mosquito densities respectively above and
below the critical level.

A second example 1s the evaluation of different vaccination strategies. For
example for rubella (German measles), which is a mild illness in most indivi-
duals but 1s a serious threat to the unborn offspring of pregnant women, there
are three strategies. One 1s to vaccinate all young children, a second is to vac-
cinate only prepubertal girls, and a third is a combination: vaccination of all
children at young age (about 1 year old) and again at about 11 years old
(because one can never reach a 100% successful coverage). The second strategy
was used in The Netherlands up to 1984, after which a switch was made to the
third. Mathematical analysis shows that certain strategies can in fact increase
the fraction of serious cases [4]. This is because complications of rubella
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infection are more likely to occur at a higher age. and the average age al

which the infection is contracted can rise when the probability per unit of time

to get the disease decreases. Important questions which can be answered by
mathematical analysis, e.g. by studying the effect of vaccination on the
threshold-quantity, are:

- which immunization coverage 18 required to eliminate rubella? (For The
Netherlands the answer is: around 95% of young children, a percentage
attainable only in highly developed countries [4].)

- how many serious cases occur on the way to elimination and how does
this depend on the way in which the change of strategy 1s effectuated?

- if elimination cannot be attained what consequences does this have for the
fraction of unvaccinated individuals?

[t is thought that with The Netherlands’ current combined vaccination strategy
against measles, mumps and rubella it should be possible to eliminate these
three diseases in the first half of the nineties [4].

4. THE BASIC REPRODUCTION RATIO

A paper by W.O. Kermack and A.G. McKendrick which appeared 1n 1927 [5]
has had a major influence on mathematical modelling of epidemics. Nowadays
most people refer to a certain simple system of ordinary differential equations
as the Kermack-McKendrick model, whereas in fact they treated a much more
sophisticated model. Their key idea was to describe the average infectivity of an
individual T units of time after it became infected by a non-negative function
A (7). The assumption is that infection triggers an autonomous process which
develops within the host without any further influence of the environment and
that, consequently, we can use an ‘age’ representation to describe the average
infectivity. All relevant aspects of the detailed stochastic time evolution of the
internal population of viral particles or bacteria and the concomitant reaction
occurring in the immune system are incorporated in the function A. The
diseases where such a representation is possible are usually referred to as
‘micro-parasitic’ diseases; one should think of diseases like measles, cholera,
influenza, AIDS. There is also a large class of diseases where repeated infec-
tions from outside influence the course of the disease; these include malaria
and the diseases caused by worms such as schistosomiasis and riverblindness.
We shall not concern ourselves with this class in this note, but refer to [6] and
the references given there. However, for most considerations we need not even
specify A in any detail. Examples of possible shapes of the function A are
given 1n Figures 4 and 5.

Assuming that the number of contacts between susceptibles and infectives 1s
proportional to the density of susceptibles times the density of infectives (the
‘law’ of mass action), Kermack and McKendrick were led to mtroduce
Ro=S /& A(r)dr as the expected number of secondary cases (new infected
individuals) produced by one infectious individual during its entire infective
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FIGURE 4. Measles infectivity as a function of time
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FIGURE 5. HIV-infectivity as a function of time

life in a susceptible population of density S. Clearly R, has threshold-value
one, 1.e. when Ry <<1 no epidemic develops upon introduction of the infection
into the population, whereas when R,>1 an epidemic gets started. R is
called the basic reproduction ratio.

Things become more complicated when not all individuals are equally sus-
ceptible. Disease transmission will reflect differences in susceptibility and we
have to carry out the right averaging procedure to arrive at R,. The book-
keeping should take into account the different ‘structures’ present in the popu-
lation and the distribution of the population with respect to these. In recent
years considerable attention has been paid to the modelling of such more

complex—and realistic—systems. The project presently described reflects this
Interest.
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Suppose we have a population of humans, other animals or plants. We dis-
tinguish the individuals by attaching to each a variable & which we call the A-
state (h for heterogeneity) of that individual. £ can be static or dynamic,
discrete or continuous. The /A-state space, i.e. the range of all relevant & we call
. Let A(1,£.m) be the expected infectivity of an individual which was infected
T units of time ago while having A-state , with respect to a susceptible with
h-state & So all medical, behavioural, physiological and social aspects which
are relevant for disease transmission are summarized by 4 and we shall need
sub-models later on to specify 4 on the basis of certain assumptions. Because
In the parametrization only the A-state at the infection time enters, it is not
necessary—for the time being—to specify the dynamics of the A-state. Let
S(£) be the susceptible population density as distributed over Q. The next gen-
eration operator

(K(S))&) = S©&) [ [A(r.Emdre(n)dn
Q0

tells us both how many secondary cases arise, and how they are distributed
over {2, when we start with a ‘distributed’ individual ¢. We consider K(S) as
an operator on L (£2). Note that K(S) 1s a positive operator (since S and A
are non-negative, K(S) preserves non-negativity). So, as a rule, there 1s a dom-
inant eigenvalue Ay and

K(S)'¢ ~ c(PA;"9p; as n—o0

for any non-negative ¢, where ¢, 1s the eigenfunction corresponding to Ay.
and c¢(¢) 1s a constant depending on ¢. In other words after transients, which
reflect how exactly the epidemic got started, have died away (1.e. for
sufficiently large n) the next generation will be a factor A, larger than the
current one and the distribution of new cases with respect to A-state will be
invariant. Clearly the biological quantity we are after 1s mathematically
described by A, or, in symbols, Ry=A,. Under various special assumptions it
1S now possible to calculate the basic reproduction ratio when arbitrary hetero-
geneity characteristics which influence the spread of an infection are taken
into account. For mathematical details and examples we refer to [2,3]. Refer-
ence [3] also contains a more detailed discussion of the use of mathematical
models 1n epidemiology.

The current project on mathematical epidemiology focusses on gaining some
insight in the problems discussed in the introduction in the case where hetero-
geneity among the characteristics of the individuals can strongly influence the
spread of the infection. The aim of the project is to provide an overall picture
of the common mathematical structure of epidemic models or, more generally,
to provide a survey of the various structures inherent in such models, and their
bearing on the dynamics. This was started during a colloquium organized in
1989 and is to culminate in the writing of a book by M. Kretzschmar and the
present authors, during 1990 and 1991.
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