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n this paper two well-known construction algorithms for fractal sets, based on
terated Function Systems, are discussed and their mathematical justification is
given. It is shown that both the Deterministic and the Random construction
vield the same fractal sets. In the tormer case the fractal set arises as the limi
of a Cauchy sequence of compact sets, in the latter case it appears as ar
invariant measure. Sufficient conditions are given such that for a measure A

there exists an lterated Function System with probabilities that has an associ-
ated invariant measure equal to A.

' o

. INTRODUCTION

This paper contains some reflections on constructive aspects of fractal
geometry. It has 1ts roots in a four day summer course on this subject, organ-
1zed at the Centre for Mathematics and Computer Science (CWI) in June 1989.
The main part of the course was devoted to treating [1]. We give a proof of the
main assertion concerning the so-called Random Iteration Algorithm In
Chapter 9 of [1], without using any results from Ergodic Theory. We will also
discuss the mathematical aspects of the Deterministic Iteration Algorithm. The
1deas behind these algorithms are easy to convey. Let us construct as an exam-
ple the fractal set known as the Sierpinski triangle. Suppose we take the fol-
lowing three affine contractions on R*;

w;(x) = Bx-+Db;; [ = 1,2.3,

with
_ RZ3K}
B=10 u
and
. RZ RZ
.

Starting from a compact subset 4, CR?, say the unit square at the origin,
we construct a sequence of sets (A4,) by defining

Ak — Ulew,-(/flk__l), k—=1,2,...

In Figure 1 the first five elements of this sequence are shown together with
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their “hmit set’ the Sierpinski triangle. (There are much faster ways to construct
the Sierpinski triangle. but these do not concern us here.) The above construc-
tion 1s an example of the Deterministic Iteration Algorithm; the collection
(R-:w . wH.w3) is called an “Iterated Function System’ (1FS).

FIGURE |

For the Random Iteration Algorithm we start with an arbitrary point
xg€R*. We now attach probabilities P1.P2.p3 to the three transformations
Wi, Wa, w3, With py+pr+p3=1. A new point x, is selected from the set
(W 1(X0).wa(Xxp),w3(Xg)} such that the probability Prob{x; = w;(Xq)} = p;.
[teration of this procedure gives an orbit (x,). The result of plotting 10* points
of this orbit, throwing out the first ten iterates, is shown in Figure 2. Again we
arrtve  at  the  Sierpinski  triangle as the ‘limit set’. The tuple
(R Wi, Wa, W3l Py, P2, p3) 18 an example of an ‘IFS with probabilities’.

As a second almost obligatory example of a fractal set we have constructed
a “fern-like’ set in Figure 3 using the random iteration algorithm. The four con-

tractions we used are w;(x) = B,;x+b,; i =1,2,3, with
o 0 0] (085 —0.04
=10 016" P27 004 085

02 —026] (=015 0.28

B3= 0.23  022| Ba 1 0.26 0_24:"
.. y \ J

b, =0, b, =b3;=(0.1.6)", b, =(0,0.44)" and respective probabilities p; =0.04,
J 2 i()..74‘.1,[)3 “‘T"’P4 =0.11.

|

138



PN
oI
N-r',*

}

a
BT L

A
il
’
fr
Lc"*
L3
" M
'h X
Wi {

'ﬁ.—. “ I.-i 1‘ r T * .. .Ii.-.“
ok G o | “3.
ane o < w
oy ed ” o
Ty T m S YT X f 2T
5 T g ey o
.....JWI...M. !&-.ﬂ ' 4 - T qhﬁ T 3 .f.-..“ ”.!H + .nu_ _-ﬂ.
x b -u *3 5 o + %
- ak J_.. - . ] H ﬁlﬂlﬂhiiﬂ _...F ..ﬂ
S , "= .ﬂ-_.“.u TJ-_.._. L-.nw_ ____u_u._.f - .n...n
’ 2 W C IS S B P TP
. - 3 ;u...‘._. F . i.‘ g F A |“ -
R TN 2T a4 hst A"y
Y eI, 4 ey
" - ¥ » l«
-_.Id .--l“‘_..r..nq I.J wﬁ }_.l.‘d i-% H
l ﬁ.l..ﬁi- .,iqm.ﬁf [“._. mlh.__hm' . t._ . "fr.‘l
.l, . - 5 F [ vl s
L " & 4 u_f__. -w 4 !-M ﬂM\M . i\\h..».-1 .7,
AR I AL e
T q__ AN L...,‘w,. Y Sl Sa ¢ Ty o
e . - I 4 ]
- . * - . l.: o - w L2 “
%...ah:.mﬂw ntn <. !M 1..3....- " 4 -..ul_._.a 4 “ I k ﬂﬂ-u. w .-lmL_. ._M.
« § ﬂ Lh-ﬂ.l - am_ HWE. o h* ’ ‘.ﬂn Ir.“ l._‘h ....."ﬂ._ - - i f.r. -ii.ﬁ ..-i..‘..
J L - l% .‘uﬂlﬂ. ; 1..." ..- s - “4LJ~.‘ .y 1 .
T vy ey s i S
- * u *.w T 7 i Tt L)
¥ i A . * - .
oL A SO i
n...'_. . . - _:B ..l Ii.l .
w ;-4“ -ﬂu.__. . nlm._- ~H i._-.ﬂﬂ m.fl - _.m __m -F m.tt_u l..n
Y o 3.0 s A A
":J.‘..._n * ..I..'l A .In._l\ all 'l“tll * .I‘. 'l‘!h.. “ -._.l.‘.'._
T Lt R &7 g3, e, * A Y g Y 4
- " % | 3 - *
-y ‘= L0 -t N S o ol .
N Ve, W .-wbm e = Py L) ll.__. T o
s B Rel, Ya "= e .r__ﬂ i al...m ’- nn_ Y
NP LA B LD
ro: T oL Y W7t v 3 Ty Ll
l..._a.ﬂ - b P wlﬁl..!. vli. - "
fﬂ.ﬁu««v“ e _-_-_... - th...- ol
R ..ﬁuh T L -y ©
. Fl ﬁ._.. L™ F " ...M- ¥ ....-:_.1#! .-.i.n. ;Il.__. -
kM3 s h#m _-Jr_..n. Ll il o o be 1
Ay Ll o2 FR o Ly .-..h._. ' g0 3 lﬂ.ﬂ
S T SR U e+ g Ln_. :
+ hm.w . .___._.ﬁq jl._wtu . ._-_in ..-h.w ..a._.- Al S . Y
- - oF - ll...n
s ...1”. il_-.n u..".m a’ -n_. .#._. -_-H__.. m ...b‘nrﬂ "' ._Il tu.ﬁ..ﬂ.ﬁ.ﬂr l.lm..“
RO Pl A%y %4 "Sar aa LPR2 iXV R’ Y u...u ‘. of
— . - - ‘H..l_ - - «
H.iu.sm \._-.w T} "~ ¢ u BRI -~ Jv_...” A Uer ns
is "t ot 1 sy L1 Tetdw I
..__ﬂ.n__ .I . .;1- ..-..hﬂ i_-._n » . %l-‘.. - - .i‘f._. . ﬁ,u_ - _ﬁuﬁﬁ
n, " - : d .ﬁ ~ - -
P R Ly - AR ¥ P
. mL.\Pfr ﬂ.ﬂ. t.--___u.r. -.‘.H _.i_a._a Lt .ﬁ._,...n L..J‘.. ' ...nh,..m ._m.r
L ‘ - m l-_-qﬂ E'3 Aﬂ.mlwa-. 'y o L L -wuu - .'l\ ..-l-“
- .\‘I |‘. ﬂ .. o '_f X X .- M *F ..‘l..ﬂ * Eﬂ * }
F S AL ! . ISl N4 =3 t P B ary
...rt.u i . ..M .A... > s s# o . -
.J.‘t.hw Jr._. t-.-qswﬂc\ L R J.vn.“.m . iu.%u-“_
.-!Hd -‘.\.I-\V ..m.-u..# ” .ﬂ* -.l hw#h.l-w .‘.—\.n .l“.an x-i
~ n)“ - " S P . e e, . e v
ey P _,...._.1. ._nw 4 - o mw "o
vy w .y -4 TR
D S T ..m# T "
tw. ._.l * . »
.. -..._“r .-._.*. A e .J Iﬂﬁu.. gy ]
- - -~ - - - -
EPT RS e S
% d

#
| 2%
b LY
PN
r‘?
3
'y
wFLEY
4
"4.3\ r
-
{3,
'3
 *y
0 gy

1";*1
3ot
L
sl
o
" '&
Y
o !
o’
en
Aty *
-,

s Lt ; .

“u L\w_ 14 ,_.ﬂ:t..w e lkﬂ L

- -2 > . -
P A e oy . /. n
u—.ﬂ.h . ot ..-.-._”M, Ty *.._H s !...,
Tt iy \
Ea iy

b2 r‘ " Lol rl_ .-...r

- a4 h - -

et %4 e v
wit

/
~
-
™

o
b
k3
o
23
5

T - - *
f... l-tﬂa“ Jﬁ-ﬁw ) ﬁlﬂ
b '.\_P-_I I& M J.u..“
- [ [ 1
-'uh& - Wh.. J _._wlﬂ.
'.. - -
L

e

r

a”
| ]

L)
-'.""-'

FIGURE 2

. N L. .. _ - i
- . ._,ffu - ot ! J.!m\ & “ - ™ ‘1-1 .fl.. ﬂ.ra_l*.}l
L T ] ﬂlr.‘.ﬂ s " .fu-.-.t . l..._.-h‘l.

L) - L - - ‘. ] » v, W . - - »
!I.{OI._I' " .&* ‘f“h'”l py ..,I‘“ “. N .l.l [ u.“.a ._I_l.l - - \1;‘.‘.. LI - ¥ - .l l.“.a ..A. Il_.. » + = I..._.?I.
I -bti.' "ﬂ. - .‘I._ .\_; . .“ i k] £ & e ..N ) * i-w - " #1 _“..._-l . % l.ﬁ " » . ¢ -.*i . .
- x . o . * L F R R "} . e !._ r ° LI
I e L L B S I
’ - -m_.\ﬂ —...ﬁ!.m..- LI W.;. lwa l# - .l_._» - - . W_-..- tﬁqw»i.. .‘.fﬂl f... . P _.-...!.-. _-_-.-1 .
» L3 bl ) - - - g -
et R e L L I T
“-y ® n.w-.ﬂ.r-.” Y 4 | - = * ,t L -.‘i . A -4 = Fu E |‘__.u j -
" u 'Y ' o . et g %
') .*’JI _ L - .f .. - “.- - d .' h‘vl ?
. W o, . L . * ="y
.-.... 1,._u.._. % ...1.&._. ..-...ﬂ "
- -v .‘1 ".
f ¥
“.-

- ot - -t . , , S IR &
ey i R L ST G Sy T

FIGURE 3

139



This paper 1s concerned with the mathematics needed to make the two algo-
rithms sketched above precise. In Section 2 we show that an IFS consisting of
contractions has an attractor A, a fractal set that is the limit of the sequence
(A,). In Section 3 the Cantor discontinuum on N symbols 1s introduced which
we will need in Section 4. In Section 4 we show that for an IFS with probabil-
ities there exists a unique invariant probability measure A, that precisely gives
the fraction of the orbit that accumulates in a given subset of the attractor.
We also show how Ay and A are related and that essentially both algorithms
yield the same fractal sets. Finally in Section 5 we show when the converse of
the result of Section 4 holds: Given a certain measure A, does there exist an
[FS with probabilities whose invariant measure 1s exactly Ay? This last theorem
turns out to be a nice addition to [1] and 1s related to the Collage Theorem in

[1].

Various definitions of a fractal set have been proposed, some stressing dimen-
sional properties, others stressing self-similarity. We produce our own
definition at the end of Section 5.

2. THE DETERMINISTIC ITERATION ALGORITHM

For the remainder of this paper we take (X,d) to be a complete metric space.
In presenting the results on the Deterministic Iteration Algorithm we will
essentially follow [1, Ch. 2 and 3]. Define the space J(X) as the collection of
all nonempty compact subsets of X. The degree of similarity of two elements
in JC(X) 1s expressed in terms of the Hausdorff metric 2 on 3 (X). For xeX
and B €J((X) define the distance d(x,B) from x to B by

d(x,B) = mig d(x,y).
=

For A.B 1n J(X) define
d(A,B) = man d(x,B).

Note that taking the minimum instead of the maximum, which is more usual,
could not possibly lead to a useful metric on J((X), for then the distance
between two compact sets would be zero if and only if their intersection is just
nonempty. Now define the Hausdorff distance h on 3C(X) by

h(A,B) = max{d(A,B), d(B,A)).

(H(X),h) 1s a complete metric space and the limit 4 of a Cauchy sequence
(A,) CH(X) can be characterized as

A = {xeX:3 a Cauchy sequence (x,): x,,€4, and limd(x,x,)=0}

Fl - 0

(see [1] for an elementary proof of this).

Let {w),...,wy} be a finite collection of continuous mappings on X. Let
A €I (X) be arbitrary and define a sequence (A4,) recursively by

— N —
A, = UM w4, _)., k=12, .
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This defines a J((X)-valued function K

W(B) = U= wi(B).

on J(X) by putting

Then 4, = W"(A,). i.e. A, is obtained as the n-th iterate of 4, under W. The
collection (X;w . ws,....wy) 1s called an Irerated Function System (1FS) [1]. If
each map w;, is a contraction (with contraction factor s;<<1), we add the prefix
‘hyperbolic’. It is easy to see that if (X:;w,wa.....wy) 1s & hyperbolic 1FS, then
the map W is a contraction on K (X) with contraction factor s =max,s,. The
number s will be called the contraction factor of the IFS.

To prove the main result of this section we just note that by the Contraction
Mapping Theorem a contraction mapping f on a complete metric space has a
unique fixed point x, € X which 1s given by

xp= lim f"(xy),

Fl —» X0

where xye X 1s arbitrary.

THEOREM 2.1. Ler (X;w,ws,....wy) be a hyperbolic IFS. Then W has a unique
fixed point A €I (X) which is given by A =lim, _, W"(Aq), where AgeH(X) is
arbitrary.

The limit set A is called the atzrractor of the IFS. Theorem 2.1 tells us that the
three contractions w,wy,w3 used in Section 1 have the Sierpinski triangle as

their attractor and that the arising sequence (4,) will converge to it regardless
of the choice of the initial compact set Ay.

3. THE CANTOR DISCONTINUUM
Given the discrete space {1,...,N}, we call 2.—:—_{1“‘”]\7}'“ equipped with the
usual product topology the Cantor discontinuum (on N symbols).

Let A denote the attractor of a hyperbolic IFS (X:w.w,,...,wy). For yeX
and o0=(0,,07,...)€2 let x,€ X be defined by

Xeg=lmw, cowgo---owg;(y)
1 —> 00

This limit always exists, belongs to 4 and is independent of the choice of y, see
[1]. Note the order in which the w, are applied! The above limit induces a
map ¢: 2— X,

¢(0) — Xg-

¢ is continuous and ¢(Z)=A (see [1]). For any point x €4, an element o€ 18
called a code of x 1t ¢p(0)=x.

Let (X;w,,w,....,wy) be a hyperbolic IFS. Choose real numbers p,....,py=0
with SH_ p;=1. The collection (X;w;,wj,...,wy) 1s called a hyperbolic 1FS
with probabilities. The Random Iteration Algorithm can be formalized as fol-
lows. Choose a random sequence of numbers ¥ =(y,¥2,...) with ¢, {1,....N }
and for all je{l1,...,N} and positive integers I,
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Prob{y,=j}=p;

»

By the ‘law of large numbers’ we have

 tim<niy, =) } o

P o O H

Let x,eX be arbitrary and define a sequence (x,) (called the orbit of x¢)
recursively by

X, = wy (X, 1)

One reason for introducing the map ¢ and the space 2 is the following. To
backtrack the orbit converging to a point x on the attractor 4 one has to keep
applying the inverses of the right contractions in the right order. If however we
‘Iift” the orbit from X to 2 using the map ¢ we can backtrack the orbit by just
shifting the sequence 0=(0,,0,,...)€2 corresponding to x one place to the left
at each step (we skip intricacies that arise if there 1S more than one code
corresponding to x, see [1, Ch. 4]). One knows from dynamical systems theory
that this ‘symbolic dynamics’ approach can simplify the analysis (for example
in proving chaotic behaviour).

We will use the same symbolic dynamics but in the ‘forward’ direction along
an orbit. For every contraction w; of the IFS let w;: 2—X be the mapping
defined by

W,0 = i0,

where io=(i, 0|, 0,,...). We then have, by definition of ¢, that ¢ow; =w;o¢. Fol-
lowing the orbit of a point xy in X in the forward direction is the same as
shifting a sequence in 2 one place to the right at each step, putting in the
correct symbol as the new first coordinate. Instead of looking at orbits in X we
will study the corresponding sequences in X.

It we define

I,«*m ‘‘‘‘‘ “{A:{UE.}-‘: 0]:“01,....,0'/\-3(1/{},

then V', . 1s open and closed, and the collection of all such V..« 18 asub-
base for the topology on Z. The following identities are straightforward:

oy _ ;'T _ 7
M'?J‘L '+ SR, SR I/i.,a,

o ; 7 If a5
W ’ — N7 : e
/ “““”‘a*’* VC.\‘.' ...... o, lf al I'

\

. - -y ' S — , ~ 1 _— .
LEMMA 3.1. For every BC X we have ¢~ 'ow Y(B)=w, o¢~ (B).

PrOO¥. We have
<bf”](w,7“'(B))“--“-“ {o: _xc,ew,?“l(B)}

= {o: wix,eB)
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= {0 Iimw;owge---ow, ()eB  (xeX))
e 0 H I

|

{o: X;,€B}

— .
— .y \
= w;, {T:x,eB!

=
-~
P
©-
—

>
e
Sz

4. THE RANDOM ITERATION ALGORITHM

Let (X;w ,wo,.,wpnip1.p3,....py) be a hyperbolic 1FS with probabilities and
let A be the attractor of (X;w |, wo,...wy:p1.P2.....2N)- Let (x,) be the orbit of
a point xge X. Put 4, = {xg,....x,, -1}, the first n points of (x,). Then,

PrRoOpPOSITION 4.1. lim,,_,. . h(A,. A)=d(xy,A).

PrROOF. Fix €>0 and x,e X arbitrary. Let the orbit (x,) of x, be defined by
as above. Put D =max{d(xy.,y): y€A}. It is easy to see that for all » we have:
max{d(x,,y): yeA}<D. Choose an M such that s D <e, where s <1 is the
contraction factor of the IFS. For an o€, write x,=x , , for the unique
element in 4 for which ¢(o)=x,. The attractor 4 1s compact hence we may
choose an e-net {z|,z,,...,2x } CA for A. Each of the points z,, in this e-net has
some code 0" =(o07,0%,...)€2. Since ¢ 1s a sequence of random numbers, with
probability 1 there is an »,, such that

Y(n, +1) = oy, ... Y(n, +M)=of"
Note that we have

Xn +M — Wa? @ Waot @70 7 O Wget (xn,,, )
and also

il — m O Y oo ) e s . () 3 m( e "l )
<~ wa, W' " Oy x(oﬂ, B - SV VA

[T

Hence

d('xﬂ +Mazn-'2) — d(w’amﬁ S QM‘JU*:',(XH

7Y 1

| m L) o+ o+« O m( M 1 ))
)’ Wal VL GU x (GU 4 lﬁa,‘lj{ + 2-1'“)

P

"

< s"d P )

M I*G;‘ﬂ ?:"l“')

< sMD<e

Put Ng=max {n,,+M: m=1,...K}. For each z,, from the e-net there 1s an
element in Ay 4, whose d-distance from z, 1s at most e. We also have
d(x,,A)<d(xy,,A) for all n. By the definiion of 4 1t ftollows that
h(Ay ., A)ssmax(d(xy,A),e) for all N'=Ny+ 1. L]

Proposition 4.1 asserts that one only has to omit the first few iterates of the
orbit of xy to obtain a picture that 1s close In A-distance to A. Indeed, for
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every n one has
d(x,.A)= dwy (X, 1) A)sd(wy (X, —1) Wy, (A))<<sy d(x, . A)
< s-d(x, . A)ss"-d(xy.A).

Hence if ny is such that s""-d(xy.4)<<e, then the orbit (X, X, +1.--- ) Will be
e-close to 4. As an application of this, suppose a computer screen has ¢ pixels
on each horizontal row. If one starts the Random Iteration Algorithm with an
arbitrary point x, on the screen, one has to omit the first (Ing)/In(1/s) points
in order to get a picture that is in A-distance at most one pixel from A.

We have now shown that the Deterministic- and the Random Iteration
Algorithm in a sense have the same attractor and therefore yield the same
results as far as the pictures are concerned. We now describe in what way the
two algorithms are related, by using the formulas from Section 3.

Since ¢ is continuous it is possible to project Borel measures on > to X (for
an elementary treatment of Borel measures we refer to [1, Ch. 9]). To this end,
let u be a measure on =. For measurable B C X define

(pu)(B) = ¢~ ' (B)).

Since &(Z)=4A it follows that the support of ¢u 1s A.

Associated with (X:w ,Wa...., Wy P 1.P2.----pn) there is a natural Borel pro-
bability measure p, on =. Indeed, let p be the Borel measure on {1,....,N}
given by

w{i)) = p
and let y, be the corresponding product measure on 2. Note that
(Ve o a )=Pa - Pa - Define Ag =opy. Then Ay is a probability Borel measure

on X with support A.
Define the Markov operator M, for Borel measures A on X, by

N
(MA)(B) = S pi - Aw; (B)).
i =

Fixed points of M are called invariant under the IFS, for obvious reasons.
For the statement of the main theorem we need one more definition. Let

xy€A4 be arbitrary. Let x,, be the nth point of the orbit of x(. For measurable
B C X we put

t{im=<n: x,,€B}

I

N (B., I, .X 0) —

Thus N (B.n.x) is the fraction of the first n points that accumulates in 5.
For a set B C X let 98 denote its boundary.

THEOREM 4.2. Let (Xiw | Wa.....WNiP 1. P2.---pN) be a hyperbolic 1FS with pro-
babilities. Let A be the attractor of the corresponding deterministic IFS.
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=L )

Then Ny is the unique Borel probability measure on X wh
[FS. Furthermore, if B C X is measurable and \,(0B) - (),

{ M IN TRV QPieldl? 149y g ¢ 3‘
e

Ao(B)= lim N (B,n,xy).

1o 0

(with xo €A arbitrary).
PROOF. We give the proof in three steps.

Step 1. Ag is invariant under the IFS.
For Borel measures on 2 define the induced Markov operator M by

e ~ Al o~
(Mp)(B) = D priw; (B)).
=

where B C 2 1s measurable. First we show that p, is the unique tived

M among the Borel probability measures on X

% _
~. Let p be any such fixed poimt
We have

(M) Ve o)

1
RS
T:
ﬁ

=1

-

gy
=

a )

W

i
R~
2
=
—_

AS
>

= pa w({o: o€l o o))

Analogously, for M =MoMo---oM (k times) we have
(Mk;u,)( Vi) = Pa, P, w({o: a; - ool o))
= Do Pa, )
= P, Pa,

Since p is assumed to be a fixed point of M. hence also of M . it follows that

| ~ k . o
I'L(Val,...,a,.) — (M fJ‘)( Vu:l ,,,,, &, ) T pm'pfxg “*ﬂm*

1]

Hence w=pg, since Borel measures are determined completely by ther s

1

on the open sets. Next, we show that Ay =oug i1s a fixed point O M. L
be measurable. Then, using Lemma 3.1,

values

M(No)(B)

i i
Mz 1M
AS AS
R
— =
e} o
03
_.,"i -’
5

|
M
AS
&
-
§1
o
S
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=
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o
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Step 2. Ny is unique.
Suppose A 1s another fixed point of M with A|(X)=1. Note that we must have
support (A;)CA and hence A (A4 )= 1. Put

/"’7'1)\“1}\1 Iff d()\.() A )l

Here Lip(1:X) denotes the class of Lipschitz continuous functions on X with
Lipschitz constant 1. Since 4 1s compact and Ay(A)=A;(4)=1, it follows that
O<<nmi) \ <o0. Now

I"}IZA”J\i = H?M}\“,/\‘fﬁl :f Lt X)|ff C[(MKQ M)\I)I

= sup |/ Zp fow; d(Ng—Ay)

ft l[‘[)(l.f\)x ;| = |

= |fgd()\u A1)

U € [Jp

— STHI) A -

Here s <1 1s the contractivity factor of the IFS. We have arrived at a contrad-
iction and hence A, is the unique invariant Borel probability measure of the
[FS. (In fact it 1s not hard to see that m, , defines a metric on the set of
Borel probability measures on X; this metric space turns out to be complete
and hence the above argument can be interpreted as an application of the
Contraction Mapping Theorem).

Step 3. Calculation of Ay(B).

Let xeA and let BCX be measurable; Ay (0B)=0. We will calculate Ao(B).
Since Ap(dB)=0 we may assume that B is open. Let y:N—{1,..,N} be
defined as at the beginning at this section. First suppose ¢~ (B)= V. o for
some V., . CE. For n<k, wy,° " -°wypxeB if and only if
Y(n)=a«ay,.... Y(n —k +1)=q,. But

Prob{y(n) = aj...., Yn —k +1) = «;}

Pea, - Pa,
Po(Va o) = Ap(B).

In the general case, since the collection of all V ... 1S a subbase for the

|
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t0p010gy of = and ¢ 1(B) 1S open In 2 we can write
m..,l 20 “
¢ (B)= U O,
=

with O, = V&W,_%. Fix €>0. Take K large enough such that
,u,o(_qb““l(B)\ Uf‘:xflO,-)<:e. By considering intersections if necessary (using the
clopenness of the O;), we may assume that Oq,...,Oy are pairwise disjoint. For
n=max,; - xghk; 1t i1s clear that

Prob{x,€B} = *iln“»o(Of) = (¢ (B))—e = Ny(B)—e.
Now consider the open set B: =X \ (B UOJI(B)). Analogously there 1s a k such
that for n=k,

Prob{x, =B } = )\O(é)m €
and hence, using AO(B,)—!-)\O(B)m)\O(B J 88)—#—?\0(5):?\0()():: 1,

Prob{x,eB} < ] -—-“()\O(é)me) = Ao(B)*e.

This concludes the proof. [

This theorem describes in a very accurate way the dynamics of the Random
Iteration Algorithm. Ay measures how the points of an orbit (x,) are distri-
buted over A.

>. AN ‘INVERSE’ PROBLEM

We have shown in Section 4 that a hyperbolic [FS with probabilities induces a
measure ¢u which is the continuous tmage of a product measure on some Can-
tor discontinuum. One may ask whether the converse is true: Given a product
measure w on a Cantor discontinuum 2 and a continuous ¢: 2—X, with X
complete metric, is there a (hyperbolic) IFS with probabilities which induces
A=¢u? For this reason we introduce the following definition.

DEFINITION. Let X be a Cantor discontinuum on N symbols, X complete
metric and ¢: 2—X continuous. ¢ will be called commuring 1t $p(io|)=¢(io;)
for all 1<<i<<N whenever ¢(o)=¢(0,).

The point of this definition i1s the following: for commuting ¢ we can define w,
locally on A by the relation w;,op =dew;, where w,o0=io.

THEOREM 5.1. Let py be a product measure on a Cantor discontinuum 2 on N
symbols; uo(Z)=1. Suppose X is a complete metric linear space. Let ¢: 2—X be
commuting;, put A =¢(2). There exists an IFS with probabilities
(X, Wi, Wa, s WNs DD, pPN) With the following properties.

(1) A= U wi(A);

(2) Ay = opg is invariant under the IFS;
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(3) pr = molwi(2)): _ *
(4) Ay(B)=lim, . N(B.n.xy) for every BCX with A\g(dB)=0 (and x,€A arbi-
[rary).

Proor. Put 4 =¢(X). Since ¢ is assumed to be commuting, we may define
wi(p(0)) = ¢(io) (ce, IisN).

This is well defined as a map w,: 4 —X. Actually, the w; thus defined are con-
tinuous. This can be seen as follows. Suppose wy is not continuous. Then there
is an xeA4 and a sequence (x,)CA such that x,—x as n—oo but
d(w(x,).wi(x))=€ for some ¢>0 and all neN. Let o, be any element of X
such that ¢(o,)=x,. Since = is a compact metric space there 1s a subsequence
(0, ) of (a,) which converges to some ope2. By the continuity of ¢, ¢(ay)=x.
Also, ko, —ko, in 2 and hence, as j—o0,

"Vk(*xnf ) = wy, ((i)(anl )) = Qb(/\ O, ) > QS(A 00) — Wk(x)

which contradicts our assumption. This proves the continuity of the w;. By
Dugundji’s Extension Theorem [2], we may extend each w;, to a continuous
map w;: X—X (at this point we use that X is a linear space). From the con-
struction of w; it follows immediately that w,(c)=/o. Next, let y €A be arbi-
trary and choose 7€X such that ¢(r)=y. Let 0=(0,,02,..)€E2 and write

o0, - - - 0,1 for (0,03,...,0,,71.72,...). Note that we have
P(010y = - "0, T)=Wq © W5 © "Wy (T).
Since 6,0, - - - 0,7—0 in 2 as n—00, by the continuity of ¢ we see that
¢(o) = lim(o105 - - - 0,7) = limw, o - ow, (y),
H—» L H—CQ

using ¢(7)=y. From this it follows immediately that the proof of Theorem 4.2
applies to the present case if we put p,=po(V;))=pe(w;(£)) (recall that
I/j — {UEE: 0 :l})

[t follows from Dugundji’s theorem that we can arrange w;(A) C co(A), where
co(A) denotes the closed convex hull of 4. Theorem 5.1 does not necessarily
yield a hyperbolic 1FS, 1.e. the w; need not be contractions. In the proof of
Theorem 4.2 we used contractivity only to get uniqueness of Ay. Hence the IFS
from Theorem 5.1 may have more than one invariant measure. Moreover, 1n
the formula for Ag(B) 1n Theorem 4.2 it is not essential that y should be in A
whereas 1 Theorem 5.1 it 1s. The same remark on y holds for the formula
&o) = limw,o---ow,(y).

20

Theorem 5.1 can also be considered as a generalization of Theorem 4.2.
Indeed, once the w; are defined under the assumptions of Theorem 5.1, the
same conclusions hold for them as for the contractions from Theorem 4.2. The
essential point for an IFS (whatever the definition) to have an (in some sense
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ergodic) mvariant measure is that the w, should have a common invariant set
and that the action of the w, can be lifted to = in a consistent way. Of course,
tor uniqueness of the invariant measure and additional pleasant features. con-
tractivity of the w, 1s needed.

Theorem 5.1 1s related to the so-called Collage Theorem in [1]. Let
A" el (X) and €=0 be given. If one is able to find an IFS (X ws... oty)
with contractivity factor O0<<s <1 such that

N
(A", | Jwi(47))<<e
=

then the Collage Theorem asserts that

h(A" A)<—-
(L)

where A4 1s the attractor of the IFS. Note that such an IFS can always be
found by using the compactness of 4”. Construct a ball around 4" of radius r
and choose a finite cover of 4" with balls of radius €/2. Each httle ball defines
a contraction mapping on the large ball with contractivity s =e/r. This system
satisfies the assumptions. The advantage of Theorem 5.1 is that 1t assures the
existence of an IFS that renders exact results, the advantage of the Collage
Theorem is that it deals with actual contractions. An application of the theory
of Iterated Function Systems could lie in data compression; for example stor-
ing a picture 4™ in R” in a computer memory. The snag of both results is that
they are non-constructive: given a picture A~ it is not at all clear how an IFS
with an attractor ‘looking very much’ like A” can actually be constructed.

Finally, let us give a definition of a fractal, which i1s motivated by Theorems
4.2 and 5.1.

DEFINITION. Let X be a complete metric space, 2 some Cantor discontinuum
and ¢: =—X a commuting map. A fractal on X is the continuous image ¢u of
a product measure p on = under ¢. A fractal set is the support of a fractal.
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