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1. INTRODUCTION
Multivariate polynomial equation systems of the type

— A ar , ,_j oo .. ,*’l;;;f
O_f/(x ] T * = = 9 -X-/\) R ZC//.X 1I ..X/\ “
/

[=1,....n ipyeN, ¢;€eQ (or Z)

arise 1n many areas of computational sciences. They are derived, for example.

from the following classes of problems:

® Geometrical descriptions. Here the variables typically represent cartesian
coordinates, distances, angles (embedded n trigonometric functions). Exam-
ples are the geometrical problems in robotics, where one asks, if a specially
designed robot can reach a specific position in order to perform its task.

® Sieady state analysis of differential equation systems. Given an explicit sys-
tem of ordinary differential equations with polynomial right-hand sides, we
may ask for the steady states. This 1s algebraically described by vanishing
left-hand sides and the result 1s an algebraic polynomial equation system.
Examples are systems which describe the kinetics of chemical reaction sys-
tems, where the steady state might represent a stable production situation in
a chemical reactor. Examples are found in [17].

® Truncated power series. (Gilven a problem where an ansarz with formal
power series 1S substituted mnto an equation, the vanishing of the coefficients
of corresponding powers 1s a necessary condition for the power series to
constitute a solution of the problem. Then these coefficients often are poly-
nomials, thus mapping the original problem to a system of algebraic equa-
tons.
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In many cases it is desirable to find algebraic solutions or at least some alge-
braic information about the possible solutions. In contrast to numerical
approximation, the algebraic approach typically gives an answer which is
definite. complete and not disturbed by rounding errors. On the other hand,
solutions in closed forms are available only for a limited range of problems.
For example, the Galois theory has shown that there 1s no closed formal
description for the roots of a general polynomial of degree above four, and
with systems of polynomials this situation is not any simpler. Nevertheless,
statements about the cardinality of solutions are possible. The closed form
solutions—even if algebraically available—often are very large and hard to
compute. So one target of the practical computation with systems of polynomi-
als is, to decompose the system as much as possible into simpler systems. This
facilitates the computation and improves the quality of the result. In recent
years the Groebner technology has been developing in that direction. So today
we have a growing set of tools for these problems available in modern com-
puter algebra systems like REDUCE [14,138].

The term ‘polynomial’ in this context encloses cases, which can be
transformed into polynomial systems, e.g.:
® Systems of rational equations. A quotient can be zero only if 1ts numerator
vanishes; so 1if one omits the denominators, one can apply polynomial
methods to the numerators and handle the zeros of the denominators
separately.
Systems with algebraic functions. To each algebraic function a defining poly-
nomial 1s associated; this polynomial can be used to eliminate the nonpoly-
nomial part of the algebraic function. For instance, the equation

x+Vy—22=0

can be replaced by
x+g—22=0, ¢g*—y =0

with a new variable g and one additional polynomial.
Systems with trigonometric functions. A similar technique can be used to
introduce the algebraic relations between sin and cos of an angle, here using

sina and cosa as formally independent variables, which are linked by the
additional polynomial relation

. ),
sin“a+costa—1 = 0.

However, one limitation of such transformations lies in the fact that algebraic
methods for multivariate polynomials in general suffer from an increasing
number of variables. So typically a Groebner calculation with a problem of

order n may be possible with a reasonable computing time, while the same
problem with order n +1 is impossible.
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2. ALGEBRAIC BACKGROUND

2.1. Polynomial equations and ideal theory

Let fi(xy, .- oaXg)s oo Jfu(xy, oo xg) be a set of polynomials with the
unknowns x, . ...x; and coefficients from some field or Euclidean domain.
We look at the set of equations

filx)y=0, 1=1,....n (1)

where x abbreviates the vector (x,.....x;). We say that a vector x 1s a solu-
tion of the system

G={fix)|i=1 ....,n}

if all equations in (1) are satisfied for x =x. It 1s obvious that the set of solu-
tions remains unchanged if we add to G new combinations of polynomials:

G U {q(x)f(x)+px)fx)| f. feG)

with arbitrary polynomials ¢ and p. The algebraic closure defined by this
invariance is that of the polynomial ideal, denoted by I =( f;(x)). The ideal 1s
defined by the axioms

acl = r-acl for arbitrary polynomials r
a,bel = a-+bel.

A set B={g;) is said to be a basis of an 1deal 7, if all elements of / can be
written as a linear combination from the g;:

acl = a=>_g for certain polynomials ¢;.

The ideal theory was developed from the late 19th century on, mainly by D.
Hilbert, E. Nother, B.L. v.d. Waerden and W. Groebner. From that theory 1t 1s
well known that all members of 7 =( fi(x)) vanish on the set of solutions of G
and that the system {f;} can be replaced by any other basis of the ideal ( f;(x))
without modifying the set of solutions.

Bruno Buchberger’s concept of a Groebner basis [3] and his algorithm for its
computation in 1965 opened a new computational approach to polynomial
ideals which can be exploited for many types of questions in this context [5].
The search for solutions of (1) is a prominent aspect to which the rest of this
paper 1s devoted.

2.2. The Buchberger algorithm

To set up the Groebner basis theory, we need a total ordering, denoted by >.
on the monomials occurring in the polynomials. Different orderings are possi-
ble; the only restriction is that the ordering has to be compatible with multipli-
cation:

M -MoZ=m M, and m | Z=m, = n-m|Zm-m, for monomials mi,my,m;.



The most important term of a polynomial / with respect to Z (that 1s, the

term ¢x| - --x; of f for which the corresponding monomial x| xp S

largest) then is denoted by A7( f) (‘head term’).
The following are prominent examples for such orderings:

® Lexicographical ordering. Based on a fixed sequence of variables the more
important monomial is the one with the bigger exponent in the leftmost
place;

@ Graduated ordering. The monomial with the higher total degree (= sum of
exponents) comes first; if the total degrees coincide, the lexicographical ord-
ering is applied.

Basic operations among the polynomials (ordering fixed) are:
@ e d (€.
[f ht( f;) divides a term, say 7, of f; replace

fi by fi—qf

where ¢ is selected in such a way that the term 7 vanishes. For example

fi=axt 447~ 1 fr=x =y flefi—dxfs

® combine (S —polynomial):
Compute from f, f; the new polynomial

St =ptfi—q))
where p.g are selected in such a way that the head terms cancel. For exam-
ple

fil=4x+4y°—1, fr =xy—1 = S(f1.f2) =yf1 —4xf>.

The Buchberger algorithm is constructed with these operations. In simplified
form 1t can be written as

Input: G={/f,....[.}
P:={(p.q)|p.q€G, p=<q}
while P=={]
(p.q):=pop P
$:=5(p.q)
h:=NF(s,G)
if 71540
P:=PU{(h,qg)geCG}
G:=GU{h}
return G

with the subalgorithm for the normal form
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NF(s,G)
while dg € G with /17 (q) divides a term 7 of s
s:=s5—(/ht(q))q

return s

Buchberger [3] has proved that given a compatible ordering.
® the algorithm ends,
® 1ts result 1s a Groebner basis.

It should be mentioned here, that the property ‘G 1s a basis of (f.....f,) 1S
an invariant of the algorithm.

For a production version many more features have to be added; there are
criteria for polynomials to be eliminated from G, for pairs that are known 1n
advance to result in the instance 2 =0; there 1s complete freedom for a stra-
tegy of selecting the next pair to be processed, but for an efficient implementa-
tion this strategy 1s of the greatest importance; and last but not least the order-
ing 1itself 1s a parameter with an important influence on the algorithm.

2.3. Properties of Groebner bases
If all redundant (superfluous) polynomials are deleted from G and 1if addition-
ally all reducible terms behind the head terms have been reduced too, the basis
1s called a ‘fully reduced Groebner basis’. In the following we will deal with
fully reduced bases only and so we will not mention that predicate any more.
A (fully reduced) Groebner basis for a given set f; of polynomials will be
denoted by GB.4( f;) where the index denotes that in general different order-
ings lead to different Groebner bases.

An overview of Groebner basis properties 1s given in {4] and [5]. Some pro-
perties which are most relevant in the context of equation solving are:
® Canonical forms:

- Two 1deals are 1dentical 1f their GB’s are equal:

(_f:) — (g}) > GB()rd(ﬁ) — GBord(gj,)
- The GB defines an algorithm for computation modulo the ideal ( f;):

pmod(f)=NF(p,GB(}))

- The GB defines an algorithm for the decision of 1deal membership:

pe(f)e=pmod(f)=0

- The dimension of the ideal ( or (in case of dimension 0) cardinality of
solutions) can be read off immediately from the Groebner basis.
® Llimination/Minimality:
- The polynomial p in ideal ( f;) which is minimal with respect to the order
1s guaranteed to be an explicit member of the GB.
- When the ordering defines a lexicographical relation between two vari-
ables, e.g.
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x> v forall nom >0,

and there are polynomials in the ideal which do not depend on x, then in
the GB all multiples of x are eliminated from the biggest possible part of
the polynomials. The dependency pattern then has the shape

gm( V)

- If the complete lexical ordering is used, the dependency pattern is of tri-
angular shape

gl(‘xl" X2o o ovn XpoXpy+1s - - ﬁxk)
81( X2y o ovs XpaXpt+1s - - axk)
gm( XpsXn+1+ - - - axk)

- The complete triangular pattern (n =4) 1s guaranteed 1n the case of zero
dimensional ideals (that 1s, the solutions form a finite set of 1solated
points).

3. EQUATION SOLVING WITH GROEBNER BASES

Based on lexicographical ordering. The simplest approach to problem (1) is to
compute

G:GB]ex(xl,.*..,x,*)(fl(fxlv R .‘?xk)‘-? - v v,fn(xlv R a-xk))

or the lexicographical GB for some permutation of the (x;,...,xy). If the
solution space is zero dimensional, the last polynomial is a univariate polyno-
mial in x;. If its degree is less than or equal to 4, it can be solved algebraically
with the Cardano formulae, even if the coefficient domain contains formal
parameters. If the degree is higher, the roots can be approximated to arbitrary
accuracy using one of the classical methods, e.g. the Sturm or Uspensky tech-
niques. For example, REDUCE contains a well elaborated package for the
computation of polynomial roots to arbitrary precision. These roots then can
be substituted into the remaining elements of the GB, giving now a univariate
polynomial in x; _;. So step by step all points of the zero dimensional solu-

tion set are determined either as closed forms or as approximations with arbi-
trary precision.
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ExAMPLE. Modified Edelstein (chemical reaction network) with svmbolic
coefficients: '

7
ac|— ey —ye ¢, t+ecs.
. )
—YC ¢y tecy+20c¢3—2ncs.
B
YC 1€y —€cy—0cy+mes.

The Groebner Basis with respect to (¢3,¢5.¢ ) here is

¥ ) » ‘-2 & , ..?.. )
{cie—ca01Y, c3en—cHc 0, c1f—ca).

Here the third polynomial can be decomposed formally and with substituting
back we immediately get the solutions

({c3=0,c5=0.c, =a/R).
{C'3 :O.,C'g_ :O.,Cl EO}i.,

(c3=(e"Y"0)/(B*€ ), ¢3=(ay0)/(Ben). ¢, =a/ B ).

In the following example ([8,11], here with four variables)
X+Y+Z+T,
XY+ XT+YZ~+ZT.
XYZ+XYT+XZT+ YZT.
XYZT+1
the ideal 1s not zero-dimensional: its /ex basis is
(X+Y+Z+T,
Y>2+2YT+ T2,
YZ—~YT—Z*T*+ZT—2T7.
YT+ Y+T>+T.
Z3T*+Z*T*+Z+T.
ZTC+Z*T*+T*+1)

where the last polynomial 1s bivariate in (z,7). Here the structure of the solu-

we fix either z or 7, then the corresponding 1solated roots can be determined by
substituting back.

Alternatives to the direct lexicographical approach. Generally, the lexicographi-
cal Groebner basis gives the best insight into the structure of the ideal, as far
as the solution of (1) is concerned. On the other hand, lexicographical bases
are the hardest to compute: their calculation often explodes in space and time
because of an enormous growth of intermediate expressions (number of poly-
nomials, coefficient size). Here different methods have to be used instead. The
most important technique is decomposition of the ideal by factorization, which
will be discussed in the following section in more detail. But other orderings
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may help here (sometimes in connection with decomposition techniques) too.

The dimension of the ideal is a property mvariant with respect to represen-
tation. So the dimension can be computed from any GB with arbitrary order-
ing. Here the graduated orderings can be used, which in general allow a much
faster GB computation.

A graduated GB has no guaranteed elimination property, but instead it finds
the polynomial(s) with minimal total degree in the ideal, which often is very
useful information too: e.g., if there are polynomials of degree 1, these are the
best possible solutions.

A graduated GB has the canonical properties as well. So the congruence
‘modulo (f;)” is computable as well, which in the following cases can be
directly used for the following procedures:
® Zero dimensional ideal The graduated GB can be converted to a lexico-

graphical one (by the FGLM algorithm of Faugere, Gianni, Lazard & Mora

[11]) by solving linear systems derived from the congruence. In general the

sraduated basis plus subsequent conversion needs much less resources than

a direct approach via the /ex ordering. Nevertheless, this may be a hard job

LOO.
® Zero dimensional ideal with numerical coefficients. From the congruence esta-

blished by the graduated GB, the isolated solutions can directly be approxi-
mated by the second part of the algorithm by Auzinger & Stetter [1]. Here
the solutions are found as eigenvalues of a linear transformation modulo the
ideal. This computation is applicable if there i1s one variable with all distinct
values in the solutions (the algorithm detects if that 1s not the case).

For special questions special orderings can be applied. If one 1s interested 1n
1solating a partial set of variables (finding those polynomials which do not/do
only depend on them), it is not necessary to do a /lex computation; here a step-
wise graduated ordering serves the same purpose with much less eftort. In a
stepwise ordering the set of variables is divided into two or more groups.
These groups enter a lex type ordering with their local total degrees, thus
guaranteeing the elimination property groupwise. This can be used e.g. to 180-
late a set of parameters in the 1deal.

4. DECOMPOSITION OF IDEALS

Factorization. 1f during a Groebner basis computation we are able to find, 1n
the 1deal I with an intermediate basis (A (x),...,h,(x)), a polynomial
g(x)=g(x)gy(x) with non-constant g; and g,, we know (assuming a
coefficient domain with characteristic zero) that g can only vanish for some x if

either g,(x) or g,(x) vanishes. On the other hand we can add g(x) to any
basis of I without modifying I and so we obtain a basis of the form

(gl(x)‘g2(-x)ﬂhl(-x)ﬁ - - *':rhn(x))'

We see immediately that a solution in 7 1s a solution in either
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[y =(g1(x) A (x), ..o hy(x)) or £y=(ga(x) (). .o, (x0)

On the other hand, the total degrees of ¢, and g- are below the total degree of
g: so, if g was member of the basis already, the bases of /7, and [, are
definitely of lower degree than that of /. The Groebner bases for I} and /-
now can be computed in separate cycles of the Buchberger algorithm. such
that the complete task forks into two separate ones. The decomposition effect
is twofold: The solution space is decomposed. giving a better insight 1 its
structure, and the order of the algorithm is decreased. In general the sum of
computing times for the branches is significantly below the computing time for
the undecomposed problem.

Of course, a g might have more than two factors and then a higher order
forking takes place. Also, each branch can fork mn a recursive style, if more
factorable polynomials are found.

Not necessarily all branches lead to significant parts of the solution. It one
of the factors does not have a zero in common with the rest of the basis, 1ts
branch will end with the ideal (1); this in general will be determined soon, and
the effect of the lower order for the other branch remains in effect. It may hap-
pen that the ideal 7, is identical to 7,. although g, is not identical to g,; m
this case the branch is superfluous and this property can be verified when g, 18
found as member of /5.

Passive factorization. The simplest approach for finding factorizations 1s to
inspect all intermediate polynomials during the run of Buchberger's algorithm.
In the success case forking takes place. This technique was used in several con-
texts [7.,8,16], and especially [8] describes an important approach for lowering
the costs of that analysis.

ExaMPLE. Consider once again the chemical reaction network of Section 3:

D,
0 = —c¢cif—cicrytceiatcie
“)
0 = —cicry—2c5m+tciyet+2c30

-
0 = C‘1C2'Y+C§T]““C3€“"C’39.

Here the algorithm soon detects a polynomuial 7#: —¢i B4 a; it can be fac-
tored into a product variable - polynomial, here

¢ (—c Bta)

The algorithm detects more factorizations of this type and generates separate
calculation branches, which result in three Groebner bases:

{Cc3,C7,C1}
{3,059, 1B—al,
2 2 2.2 ,
(—c3fB en+ayl,c,8en—ayl.c\B—aj.
Here the first basis represents the trivial solution ¢3;=c¢,=c¢,=0; the second

basis has one non-zero value ¢; =a/B. The third basis ofters the unique
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artable numbers, so many tactorizations are
plodes oo, This effect can be u%mg‘mm d by 4
[6] which at the branching pomt o

[ common parts. mpmm%
an be mcluded 1 the fork design.

With the above approach. the forking 1s more or less

-nds highly on the strategy by w hich decistions are taken. There
here %‘%w Mmﬁ contaimns factorable polvnomials but they will
-' | ne system

basis with the /ex ordering over Z. It 1s obvious that the
" L

%
s factors nicely, but this sum will never oceur in the

o a

emainder (A(x).q(x))

H” there 18 @ syzyvgy among these wwmmdws (that 1s &
the 1deal of mmdmduw the corresponding combina-
ﬁ not zero) a polvnomial in /7 that has ¢g as a mww SO we
look actively for multuples of g(x) in I. This techmque
_ﬂ_mamm to an ideal quotient computation, which here 1s
wed quast on line. [t can be executed for several testfactors simul-

I M%maum«\ often arise from obvious properties of the polynomi-
als: f or r example

> homogeneous svstems tend to monomual factors. Or they
msl;:ht in the (e.g. physical) background of the undwhn

in many apphlications, e.g. from physics, the systems are sym-
u.,a m some or all variables: the ideal is invariant under
ations of its variables (rotation, pairwise, exchange, ...). In [12]

new approach for some classes of this type 1s given, where polynomials in
he ideal are detected which in advance are known to factor. This leads to a
"”imm mposition of the ideal before the Buchberger algorithm starts and thus
! * dramatic decrease of the complexity/computing require-
- much larger systems become solvable.

Arithmetic restrictions. A second source for decom position 1s the formal res-

triction that f::mly nonnegative real values are allowed as com ponents of solu-
tions. This restriction often arises if the variables represent nonnegative
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physical quantities like masses, distances, . . . . So we can exploit a set of ine-
qualities

x,=0,71=1,... .k

In generalizing Descartes rule of signs we can state for a multivariate polyno-
mial

o — e Y ... ey L. | Ir_jm'[ oo A

p = adygTadpx) Xy T T, X | "X
where all a; are real and have the same sign:
if @520 then p(x ., ... .x,)=0 implies that at least one x, <<O:
for ap =0 then p(xy,....x)=0 and x;=0 mmplies, that each monomial in p
1s already zero.

In other words: If ¢ (=0 there cannot exist a solution which satisfies the above
inequalities and the calculation branch can be cancelled. For ¢ =0, the poly-
nomial p 18 decomposed nto a list of monomials each of which has to be zero.
As these monomials are immediately factorizable, we easily get a twofold
decomposition. For example, the polynomial

17..,{}*21** +4x
leads to the decomposition
x =0Vv(y =0Az=0)v(r =0Anz =0)

which describes the nonnegative real solutions.

Arithmetic restrictions together with testfactors and symmetries are means to
make present knowledge about the problem to be solved available and exploit-
able tor the solver, thus enabling computations which would be infeasible oth-
erwise. These techniques were successtully applied to complicated problems
given by H. Caprasse [6] and A. Noonburg [20], Speer [21].

5. SOME EXAMPLES
Here we present some examples where the effect of 1deal decomposition 1s
demonstrated:

EBERT, DEUFLHARD & JAEGER [10]: CYCLOHEXANE.

The molecular geometry of a cyclic carbon hydrogen molecule with six nodes
1s described by four equations; these are calculated from the two determinants
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Il 0 1 8/3 y, 8/3 1|
I 0 I 8/3 y, &8/3 | Y
1 vy, 8/3 1 0 1 ll P 3/3 1 0 1 8/ 3
18/3 py 8/3 1 0 1 8/3 ¥y 8/3 1 0 1

é | 1 1 8/3 y; 8/3 1 0

The first equation below 1s O0=/f,. the second and third equations are calcu-
lated from f, by interchanging y,.y> and y; in a cyclic manner and the fourth
equation 18 0= f,.

0 = (—81yTy3 +594yiy, —225y7 +5%4y y3 —3492) v,
—750y, —225y5 — 750y, +14575) /81

0 = (—81ly3y3 +594y35y 3 —225y3 +594y,13 — 3492y, y 4
— 750y, — 225)’% — 750y 3 +14575) /81

0 = (—8ly1y3 +594yiy;—225y7 +594y 3 — 3492y, y 4
—750y | —225y5 — 750y 5 + 14575) /81

0 = (162y1y3y3+162y1p,y3 — 1188yl 55 — 4501y,
—450y1y 3 +3300y7 + 162y 1 p3y3 — 1188y 13y 5
—450y 197 — 1188y 1y,3 +5184p 1 y,y3+5100y v,
—450y 13 +5100y 13 — 7150y | —450y3y 3 + 33003
—450y,y3 +5100p 303 — 7150y 5 + 3300p3 — 7150y 3 — 60500)/ 81

Here the algorithm detects nonhomogeneous factorizations and splits the prob-
lem 1nto seven separate Groebner bases:

({3v1= 11972253y = 11}.{9, =253y, — 11,3p; — 11},

(31, =113y, = 11,3y, — 11},

{32 t3yiys =22, +3y,y3—22y, —22y 5+ 121,

27y 1y5 — 198y 1 y3 +75yp, +27y,y5 — 198,y 3+ 75y, — 1985 + 1164y 5 + 250,
81y3y3 —594y3y; +225r3 —594y,)2 + 3492y, 3+ 750y, + 225y 3+ 750y 3 — 14575},
{3y1+53y,+53y3+5}, {3y, — 19,3y, 4+5,3y5+5),

131 +5,3y,—19,3y3+ 5} 3
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CAPRASSE & DEMARET [6]:

MODEL FROM ASTROPHYSICS:

3){? — X (3xy1ay+3a,+3a;,—6)+a,—a;, =0,
3x3 —X2(3x2a,+3a,+3a,—6)+as—a, = 0.
3x3 — —x3(3x3a,+3a,+3a,—6)+a,—a; =0,
3x;} X4(3x4a,+3a,+3a,—-6)+ta,—a; =0.
3x32 —xs(3xsa,+3a,+3a,—6)+a;—a; =0,

where

a; = x| +x5 +x5+xy +x5, i=1,2,3.

[t took little time to find the ideal decomposition. In fact, we are able to com-
pute the solutions for the Caprasse/Demaret systems up to nine variables; the
computation requires several days on a modern workstation.

SPEER [21]: SYSTEM OF POLYNOMIAL EQUATIONS.
4-B-(n +2-ay —8x)(ar—a3z)—xy3x3x4+x2+x4 =0,
4-B-(n +2-a; —8x5)(ar—a3)—xy;x3x4+x, +x; =0,
4-B-(n +2-a; —8x3)(dr—az)—Xxyx ;" xXx4+x>+x,4 =0,
4-B-(n +2-ay—8x4)(ar—az)—xyx3Xx,+x; +x3 =0,

where

Q
|

X1+X2+X3+X4,

Q
b
|

X 17X "X 37Xy,
d3 = X|"X7TX2'X3TX3Xg4TXgX].

This system over Z[fS,n] has been solved here for the first time; 1t was decom-
posed into ten different bases with complete separation of variables ([12}).

6. PRACTICAL CONSIDERATIONS WHEN SOLVING PROBLEMS

With the background of a great number of available Groebner tools, it 1s hard
to design a general guideline how to proceed with a fresh equation system.
With the state of knowledge of today, it is too early to design a Groebner
expert system. Nevertheless some steps can be defined here which should
enable the non-experienced user of the REDUCE Groebner package [18] or a
comparable system to do an investigation with success.

Variables/ Parameters. First, the variables and parameters (if any) have to be
identified. For lex type calculations there is freedom to handle parameters as
variables of lowest order or to handle them as part of the coefficient domain.
There is not much difference here and the results are comparable; in general
the inclusion as variables is preferable. For other orderings, the parameters
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must be excluded from the variable list in order to get a proper nsight into the
behavior of the variables in the 1deal.

If the calculations with a parameterized ideal become hard, 1t can be useful
to do a piloting calculation where the parameters are substituted by (non-
trivial!) numeric values. If that calculation i1s hard too, there 1s no chance to
succeed with the general case. A growth of parameters in the substituted prob-
lem signals high degrees of the parameters in the coefficients.

Fuctoring. In most cases the best approach i1s to execute the factorizing
Groebner calculation from the very beginning on. Of course, the factorizer
causes some additional overhead, but if any factorization 1s found 1t 1s worth
the effort. Only in the case where no factorization i1s found for a long comput-
ing time, or where it is known from other sources that a factorization 1S not to
be expected. the non-factoring Groebner algorithm should be used. The factor-
ization 1s independent of the ordering; however, different decompositions may
be found with different orderings.

If the factoring 1s successful, each partial basis represents an 1deal of 1ts own
and further local processing can take place. It will often be the case that some
bases represent narrow special aspects from the original problem (e.g. trivial
solutions), while others contain more interesting portions.

Restricting the variable ranges to the nonnegative section can facilitate a
factoring computation by an important amount, and ruling out trivial
results—it these are not interesting by themselves—may also cut down the
computing time.

Ordering. Starting with a graduated ordering is the best in most cases, e.g.
with revgradlex which is the ‘fastest’ ordering from the standpoint of complex-
ity. If the graduated basis is not found, there is almost no chance of finding a
basis with a different order without any additional information. Only in very
rare cases a different factorization may cause an earlier decomposition which
allows for an easier solution.

Once a graduated basis is found, the dimension of the ideal should be inves-
tigated by calculating the Hilbert polynomial of that basis. If it is a constant,
the 1deal 1s zero-dimensional and its value is the number of isolated solution
points.

[f the 1deal is zero-dimensional, one can proceed in several directions:
® Convert the basis to a full /ex basis by using the FGLM algorithm.
® [ the application has numerical coefficients only, or if a version with all

parameters substituted is relevant, approximations for the solution points

can be calculated using the Auzinger/Stetter approach.

7. CONCLUSION

T'he recent progress in the Groebner technology has made it a useful tool of
computer algebra. Especially the decomposition techniques have moved the
horizon of computability so dramatically that real life problems of moderate
size can be handled effectively. The development of this technique is still
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gomng on 1n several places all over the world and, in contrast to many other
fields of computer science, an important contribution from Europe takes place
here.

3. APPENDIX

Because of the limited space only a few small examples for Groebner applica-
tions could be mentioned here. More examples are found 1n [2.5.18] and in the
test series for the REDUCE Groebner package available via electronic mail
from the REDUCE nethib. An additional collection of more advanced applica-
tion cases can be obtained directly from the Konrad-Zuse-Zentrum tir Infor-
mationstechnik Berlin.
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