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We first recall the general framework of the Geometry of Numbers, both classi-
cal and algorithmical; we define the main problems of lattices and concentrate
on their numerous applications. We then define different notions of reduction
and describe Gauss’ algorithm that completely solves the problem in the two
dimensional case. After this we make precise the notion of Lovasz reduction.
We then describe the Lenstra-Lenstra-Lovasz algorithm which builds in polyno-
mial time a Lovasz reduced basis and we analyze its complexity. Then we men-
tion other algorithms stemming from it, which allow simple computations in lat-
tices. We continue by presenting the range of the applications of such an algo-
rithm, starting with internal applications in lattice theory. We conclude with
external applications in different areas: Theory of Numbers, Algebra and Cryp-
tography. This survey aims to describe the amplitude of the posed problems as
well as the quality of the answers obtained. For more details the reader is
retered to the given references. A general reference which contains an exhaus-
tive bibliography and detailed technical treatment on the subject is R. Kannan,
Algorithmic Geometry of Numbers, Annual reviews in Computer Science
(1988).
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. GENERAL LATTICE PROBLEMS

R” 1s endowed with the canonical Euclidean structure, |v| denotes the norm
of v, and (u|v) 1s the scalar product of u and v. In the sequel [r] denotes the
integer which 1s closest to the real r.

A lattice of R” 1s the set of linear combinations, with integer coefficients, of
linearly independent vectors of R”; this is a discrete subgroup of R”. Such a
lattice 1s called an ‘integer lattice’ if 1t 1s included in Z7.

It b = (b,.b,,....b,) 1s a system of » linearly independent vectors of R”
(n<<p) then the lattice generated by b, denoted by L(b), i1s the set
(272 1Nb; | A;eZ} and n 1s called the rank or dimension of the lattice.

* Translated from the French ‘Un Probleme Central en Géometrie Algorithmique des Nombres:
La Reduction des Réseaux. Autour de I'Algorithme de Lenstra, Lenstra, Lovasz’ by Evangelos
Kranakis. Informatique théorique et Applications 23 (1989), 345-376.

Copyright «* 1990, Stichting Mathematisch Centrum, Amsterdam
CWI Quarterly 3, 95-120
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[. 1. The determinant of a lattice

Let (b.by.....0,) and (¢|.C3.....¢,)) be two bases of the same lattice, and let B
and C be their matrices (1 Xp) in the canonical basis of R”. There exists a uni-
modular matrix U (matrix with integer entries whose determinant 1s #=1) satis-
fying C = U-B.

Note that the n-dimensional volume of the parallelepiped constructed over
an arbitrary base of the lattice is independent of the base: it is an invariant of
the lattice, denoted by d(L). and is called the determinant of the lattice. This
quantity is easily calculated: if G(b) denotes the Gram matrix of the basis b,
I.e. the matrix B'B with general entry (b;|b;), then

detG(b) = det(B'B) = d(L)*.

A lattice is pseudo-integer if it admits a basis » whose Gram matrix G (b) has
integer coefficients—then, all these bases satisfy the same property. In algo-
rithmic practice one is restricted to pseudo-integer or more often to integer lat-
tices.

[.2. The successive minima of lattices

In a lattice, there are other objects which depend only on the lattice and not
on the basis defining 1t; in particular, the successive minima. For an n-
dimensional lattice L in R? the i-th minimum A;(L) is defined as the smallest
positive real ¢ for which there exist i/ linearly independent vectors v of L satis-
fying |v|*<t.

It 1s clear that the n numbers A;(L) are well defined and satisfy

Also, there exists a set—not necessarily unique—of # linearly independent vec-
tors of L, also called successive minima and denoted by A;(L), satisfying

AN(D]F = Ap(L), k=12,...,n

In particular, A(L) denotes the shortest vector of the lattice L.

1.3. Theoretical and practical lattice problems
The theoretical problems are of two types:

1. Connect the intrinsic quantities of a lattice, in particular the A;(L) and
d(L).

2. Construct or exhibit, by algorithmic means, the intrinsic objects of a lat-
tice, in particular its successive minimal vectors A;(L).

Sometimes it happens that in wanting to solve the first type of problems one

finds an explicit method which solves at the same time the second type of

problems. This is never the case for this theory, and this explains the necessity

and importance of algorithmics in the geometry of numbers.

96



With regard to practical problems, one poses different sorts of questions, which

are essentially computation problems on integer lattices; we cite a few among

them:

— Let L be a lattice given by a basis b and let v be a vector. Decide whether
or not v 1s a member of the lattice L (b).

— Let L be a lattice generated by a system ¢ of not necessarily independent
vectors. Find a basis b of the lattice.

— Let b=(by.b>, ....b,) be a system of n vectors of Z”. Find the lattice L
of relations, 1.e. the set

1
{V — (vlav?,a--:avnh)ENn ‘ 21’,-1?,-:—0}
=

1.4. Theoretical, non-constructive results: Hermite, Minkowski [7]
Hermite showed the existence of a constant vy,, called Hermite’s constant,
satisfying.

Ay (L)

, — MaXy 7/ o
Y { d(L‘)l/n

Minkowski later showed that also

| L 1s a lattice of rank n}.

[TA(L)<vhd*(L).

The proofs of these results are non-constructive and the first known upper
bound of vy,,, due to Hermite, 1s exponential in n:

4
Y =< (3)

This upper bound is optimal only in the case n =2. Later, Minkowski refined
this upper bound to obtain the following inequalities:

(2 . .
Y if 1 1S even

Yo <1

B if n 1s odd.

\..

Only the first eight values of this constant are ‘exactly” known (see [28]).

1.5. Algorithmic problems of lattices

The following problems are posed for an integer lattice L given by its rank »
and a basis b of length M =max,|b;|:

1. determine A;(L), a shortest vector of the lattice L,

2. determine the A;(L), a sequence of successive minimal vectors of the lat-
tice L.

Interest on these problems is due to the conjunction of the following three fac-
tors:

97



— these are problems which are probably difficult

—  which nevertheless admit approximate solutions

— that in turn would permit the resolution of other varied and essential
problems in the theory of numbers in algebra or in cryptography.

In this paper we are going to describe the second factor of interest 1n Sections

2 and 3, and the third factor in Section 4. We discuss for a moment the first

factor of interest.

1.6. The probable difficulty of these problems

The second problem 1s NP-hard 1n the parameters (n,log M) [22]. Nothing is

known on the easiness of the first: at this moment no polynomial algorithm in

(n,log M) 1s known which solves this problem, which at first sight is easier than

the second. Current opinion seems to also believe on its ‘hardness’, based on

the following three arguments:

— this problem 1s NP-hard for the norm sup [27]);

— the associated non-homogeneous problem, which consists of searching the
point on a lattice L with minimal distance from a given point of Q”, is
also NP-hard, even for the Euclidean norm [27];

— The inequalities of Minkowski are not any sharper for the first minimum
than they are for the geometric mean of the other successive minima.

Two different but complementary points of view exist in order to overcome

this almost certain difficulty:

I. Search for “approximate’ polynomial algorithms in (n,log M).

2. Search, for fixed dimension n, for exact polynomial algorithms in log M.

By the way, these are not divergent points of view.

The second point of view is fruitful in small dimension: Gauss’ algorithm is
a polynomial algorithm that finds the two minima of a lattice in dimension 2.
[ts complexity is well-known and it can be generalized to dimension 3 [25].

The first point of view uses low-dimensional algorithms of this type—which
are exact for low dimensions—in order to construct approximate algorithms in
higher dimensions. One obtains a so-called reduced basis: this is a basis
formed by ‘very short’ and ‘very orthogonal’ vectors which permits the good
description of the lattice and, in addition.

L. gives a good approximation of the intrinsic objects of the lattice

2. enables us to calculate easily in the lattice.

We will see in Section 4 how such a basis can resolve, in an astonishingly satis-

lying manner, the totality of algorithmic problems, both theoretical and practi-

cal. We describe now more precisely the notion of reduction of lattices.

2. LATTICE REDUCTION

We search for a basis consisting of ‘almost orthogonal vectors’: we remark that
In general a lattice does not have an orthogonal basis. The Gram-Schmidt
orthogonalization procedure associates with a basis b of a lattice in R? an
orthogonal basis 5™ of the Q-vector space generated by b, but in general this is
not included in the lattice L(b).
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2.1. The Gram-Schmidt orthogonalization procedure

This procedure dssoudtes with an ordered system b =(b.b>. .. .. b,) the sys-
tem b™ =(b].b5,....b)) and the matrix » =(my,) which expresses the system
b in the system b~ cmd 18 defined as follows:

(1) b1 =b,

(ii) b; 1s the orthogonal projection of b, to the subspace H, generated by
the first 7 —1 vectors of b. One can write

b; = b; + Dim;b

‘/ <1

/h /"

__(hh)

S bl
lation of the b; and the m;; by induction on 3

The matrix m 1s lower-triangular possessing a diagonal consisting of 1's. We
remark that d(L) 1s equal to the product of the squares of the lengths of the
vectors b; .

If b 1s a system of n vectors of Z' of length M, the calculation of the pair
(b™,m) 1s polynomial in the size of (n, log M). Let L; be the lattices generated
by the first / vectors of b and let d, =d(L;)". Hadamard S mnequality gives

where m;; 1s defined by the relation m,

. which allows casily the calcu-

On the other hand, the rationals appearing in b or in m have the d,’s as
denominators; more precisely,
y, di

b |* = o for 2<<i<<n
=

d._b; €Zf, for 2<<i<<n

djm,/EZ, fOI’ 1551<:_/‘-€n

We also remark that the quantity D=T]"”

all the rationals appearing in the pair (b° r}n)

d; 18 a common denominator for
2.2. The defects of length and orthogonality

Fortunately, the two desired conditions—fairly short and almost orthogonal
vectors—are compatible by virtue of results of Hermite and Minkowski. Let
b=(b,,by,...,b,) be a basis of a lattice L; the following two parameters
measure the quality of the basis:

L1V = 116
The ratio p(b)=- d(L|)“l 1s called ‘orthogonality defect’ of the base b.
L

The ratio p,(b)= A (ZSH 1s called the ‘i-th length-defect” of the base b.

The results of 1.4 give the connection between these two parameters which
satisfy the double inequality:
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| <« —PO)

B 1
= = Y-

L= p(b)

2.3. The different notions of reduction

There is more than one reduction; historically one distinguishes four notions of
reduction. Minkowski sought to minimize directly the length-defects. In the
other three reductions. one wants to minimize |b;| at the same time with |b;];
these reductions are described easily by the matrix m which expresses the sys-
tem b as a function of the system b": these are the reductions in the sense of
Korkine-Zolotarev, Stegel and finally Lovasz.

One can show that the reduction in the sense of Siegel is the most general
one [7]: every basis reduced by one of the other three ways is also reduced 1in
the sense of Siegel. This reduction, which is also the least fine, suffices 1n many
applications because the reduced base obtained is of fairly good quality.

The first two reductions—the one of Minkowski is In a sense the most
natural, and the one of Korkine-Zolotarev appears to be the best with respect
to both defects of orthogonality and length [13]—cannot be obtained, 1t seems,
in polynomial time. Therefore we will favor the other two reductions and show
that they can be obtained ‘“easily’.

Although these reductions differ a bit in arbitrary dimension, they all coin-
cide in dimension 2 with the celebrated Gauss reduction which we now
describe, before making precise these different notions of reduction.

2.4. The reduction of Gauss in dimension 2 [4]
The successive minima of a lattice always form a system of independent vec-
tors, but in general they do not generate a lattice; however, this is true in small
dimension:

The successive minima of a lattice of dimension n<<4 form a basis

of the lattice, called minimal basis of the lattice: in this case this 1s

the ‘best basis’ of the lattice.

Algorithm Gauss

Input: a basis (u,v) of a lattice L

Output: A minimal basis («,v) of the lattice L

- repeat

1. if necessary, exchange u and v in order that |u|<|v]

2. translate v parallel to v in order to shorten 1t to the maximum:
more precisely, choose in the set

(w=€e(v—mu) | e==x1, meZ} the vector which satisfies |

o< l1)

(u|u)

until  |v|=|u|

| : : :
<5 (this last 1s easily calculable in terms of

. one chooses m =[r] and e=sign(r —m))
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In dimension 2, the algorithm of Gauss constructs in polynomial time a
minimal base of the lattice; it generalizes, in dimension 2. the centered
Euclidean algorithm:

a’ﬂn‘_‘
|

a = bg+r with —=<r<<—.

o | S
b

One can modify the stopping test by changing it into a less refined test. If 7 is
a real satisfying the double inequality 1<r< V3. one obtains an algorithm.
called --Gauss, which ‘runs’ a little less slowly, but which possesses a compar-
able exit configuration: the triangle constructed from the basis contains the
two minima of the lattice.

i i i e T TR T .

- Algorithm 7-Gauss
Input: a base (u,v) of a lattice L
Output: A quasi-minimal base (u.,v) of L
repeat
. exchange « and v in order that |u|<<|v|

2. translate v parallel to u

until |v|,....>.-—---}-|u|

2.5. Study of the complexity of Gauss’ algorithm

Let k(r) and k be the number of i1terations of the algorithms r-Gauss and
Gauss, respectively, on the same basis (u,v) of length M. It 1s clear that
k(1)<log,M +1. One can show that for I<s<V3., we have
k(t)y<k=<k(r)+1, which demonstrates the (not entirely trivial) polynomial
complexity of Gauss’ algorithm. A more refined study of the worst case of
Gauss’ algorithm [25] gives the best upper bound possible

k < log, Ao M +3

which 1s similar to the bound obtained in the centered Euclidean Algorithm

3],

2.6. The effect of Gauss’ algorithm on the orthogonalized (u™,v")
At the beginning of the algorithm of Gauss the vector v satisfies the two condi-

tions

D =l

1 |
1) O<s(u|v)<—5(uju)
The orthogonal projection of v on u, by definition equal to v", satisfies

, ]

: 1
> | ——||u

2

*

v
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we obtain that |u7|<<s|v™|. We remark that if

4 . , :
Is<I< \/5, then “§<-.£.52<-:..~112. The value s*=2 corresponding to the value

¢ = —2— is usually chosen in order to simplify the calculations.

V3

2.7. The properness of a base
The simplest idea for bringing b closer to b* is to reduce the coefficients of the
matrix m without modifying neither b nor the lattice L (b); this justifies the fol-
lowing definition which uses the notation of 2.1:

A basis b =(b,,b>, . . . ,b,) is proper if a}l the entries my;; (tor j <<i)

of the associated matrix m have value <—.
We make this condition geometrically explicit: each vector b; is orthogonally
projected on the hyperplane H;_, n the interior of the rectangular paral-
lelepiped constructed by the b,’s, for j <<i, and defined as being the set of vec-
tors

o | —
.
b

i — 1
*- ! v—
E ajbj fOI'
j=

There exists a ‘totally-proper’ algorithm which given a  system
b=(by,b,, ...,b,) makes it proper; this consists of a succession of calls of a
procedure Proper (i) which generalizes the second stage of Gauss’ algorithm;
this procedure translates b; parallel to each vector b;, for j<<i, and does not
modify neither b; nor L (b). '

Algorithm Proper (1)

for j:=i—1 to 1 do|
: rj: — [mij];
| bj:: b,—rjbj‘;
| Algorithm Totally-Proper
| for i:= 2 to n do
' Proper (i)

2.8. Reduction in the sense of Siegel

The fact that a base 1s proper does not guarantee that it should be almost
orthogonal; at the moment it is known that the projection of each b; .| on H,
1s very small. To be able to minimize the angle 6, ., formed by b, ., with the
hyperplane H; it 1s necessary in addition to minimize the orthogonal projection

of b; +, on H;, i.e. the length of b; . This is the purpose of the condition in
Siegel’s reduction:

b;'i“ll = "“‘"‘”Ib;‘, I<s<i<n— 1



A proper base which also satisfies Siegel’s condition with parameter
s 1s called s-reduced in the sense of Siegel.
This condition 1s enough 1n order to ensure the quality of the basis and order
to majorize the length- and orthogonality-defects. One obtains the following
results:
l

— 1_,

+_ el
: S
S

sind;| = and |b,|<|b; , for 1<issn —1.

From this one can deduce

uuuuuuuuu

2.9. Reduction in the Sense of Lovds:z

Two essential questions remain open.

1)  Does every lattice admit a reduced basis 1n the sense of Siegel? If yes, for
which values of the parameter s?

1) If yes, does there exist an algorithm, which starting from an arbitrary base
of length M of a lattice L of rank n, constructs a basis in the sense of
Siegel in time polynomial 1n (n, log M)?

All these questions will receive positive answers. Given the fact that the

existence and the constructibility of a proper basis does not pose any prob-

lems, the question can be rephrased as follows:
How can Siegel’s condition be guaranteed?

We will try to guarantee a much stronger condition: the condition of Lovasz.

We have remarked in 2.6 that Gauss’ algorithm—in dimension 2—gives an

inequality concerning the orthogonalized vectors which is similar to Siegel’s.

More precisely, let P; be the orthogonal of H;, _| in H; ., and let B; be the sys-

tem (‘box’) formed by the projections u; and v, of ; and b, .., respectively, on

P;. By definition of b;,; we have b; ., =v;. If one applies the -Gauss algo-

rithm on the systems B;, we obtain, at the end, the following three conditions

which are valid for all 1<<i<<n —1 (the parameters 7 and s are connected as 1n
41\,
417 )

2.6 by the relation s =

. | ]
) O<s(iju) <75 (n|y)
. ]
11) |vi|%7|u,~[ |
) |u; |=<s|v;
The first condition 1s a ‘properness’ condition; the second 1s Lovasz’ condition;
the third i1s Siegel’s condition. According to 2.6, (i)+(ii) = (i)+ii). This
justifies the following definition.

A proper basis which satisfies Lovasz’ condition for the parameter ¢

1s called z-reduced in the sense of Lovasz

and allows us to confirm that
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if s and 7 are connected by the relation s = \ *4133- then a f7-
reduced basis in the sense of Lovasz is s-reduced in the sense of

Siegel.

3. THE ALGORITHM OF LENSTRA-LENSTRA-LOVASZ [15]

This algorithm constructs a z-reduced basis in the sense of Lovasz, starting
from a basis b of length M in a lattice of rank n, in time polynomial in the size
(n,log, M) of the input. For 1 =1 this algorithm terminates without knowing,
at present, how to make precise its complexity any further.

3.1, The main phases of the algorithm

This algorithm consists of three principal phases:

— an initialization phase; essentially it consists of calculating the system b7,
the matrix m and the list / formed by the elements /;=|b;|", by the
Gram-Schmidt orthogonalization procedure described in 2.1. These last
two objects—and only them—will be essential throughout the algorithm.

— translation phases of the vectors b, in parallel on H; ., which are realized
by the procedure Proper described in 2.7. Recall also that these phases do
not modify the system b".

— exchange phases of the vectors b; and b, .| in order to realize,

1)  the condition of r-Gauss on the system B, defined in 2.9
1) and the condition of s-Siegel on the system b”.

The triple (b7, m,[) is modified at the time of this exchange and we must recal-

culate a part of it by means of the NewOrtho procedure which we are going to

describe a bit later.

The choice—translate or exchange—is done by applying the test of the 7-
Gauss algorithm on the system B, and this choice is then reflected on the vec-
tors (by,b>, ... .b,) of the basis b.

We remark that the vectors u; and v; of the system B; are to be found from

the matrix m: these are the row-vectors of the box B, depicted inside the
matrix below.

bi b> bi  bi+ b,

b 1 0 0 0 0

bz I 2.1 1 0 O O
: i " .
m = .
b, ", M1, O |
b, m; m, |

[+ 1 i+ 1,1 i +1,2 O
bn ", M, o 2>yry fnn,i -+ 1 ] J

In particular we have the following relations
w=>b;, vi=bjy +my, 1.ibi (8)
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and the three quantities entering in Gauss’ algorithm applied to B, are calcu-
lated easily as a function of the list / and the matrix m:

w|® =L )P = L mi
and also

(vi|u;) -

(Y U; -

3.2. General description of the algorithm

Algorithm LILL(t);
Input: a basis b of a lattice in R” of rank »
Output: a basis b of L which is 7-reduced in the

sense of Lovasz |
Gram-Schmidt; »/this gives output (b”,m,[)/*
[.=1;
while | <n do

1. translate v; parallel to u;, where v;,u; are as in (§), and
b; + parallel to b;, 1.e.
calculate r, =[m; ;] and set v;: =v, —r;u;;
bi +1:=b; 1 —rib;;

Test if |V;|2?"}%|U;‘ *

iIf yes, x/the box B; 1s reduced in the sense of r-Gauss /*
then: translate b; .| parallel to b;, for j <<i, by means of
Proper (i +1),
*/modify the index/* i: =i +1;

if no then

exchange b; and b; 4 ;
recalculate by the procedure NewOrtho the triple (b7, m./);
the box B; -, 1s not necessarily reduced any more;
*/modify the index/* if i==1 then /: =/ —1

T T PP TR e iy g L p———

The variable i designates an index, the current index of the algorithm which
varies from 1 to n —1: this 1s the largest index k for which the system
(by,b5, ...,b.) 1s t-reduced in the sense of Lovasz. The matrix m; formed by
the first /i rows and first / columns of the matrix m and the list formed by the
first i systems of the list / already have the desired forms.

One then considers the / +1-st row of m, representing the vector b; ;| and
carries out the operations of translation or exchange following the result of the
test of 7-Gauss.

Now it remains to make precise the procedure NewOrtho.
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3.3. The modification of b, and m which are accomplished in the second stage

If the test is positive, neither 6" nor / are modified; only the / + [-st row of the
matrix m is replaced by a linear combination of the / + 1-st and the preceding
rows, in conformity with the description of the procedure Proper (i +1).

If. on the contrary, the test is negative, the exchange of the vectors b; and
b, ., in the system b modifies the two vectors b and b; ;. Let (b,b ,m) be the
new triple calculated by the procedure NewOrtho:
v, is the projection of b,=5b, 1 on P;: A X
one has b’ =v,: b, ., is the orthogonal projection of b; 11 =5b; on H; and the
projection of u; on the orthogonal of v;.

One obtains the following figure:

One also obtains the following equations:

2
- _ t“z‘l
My — M1 3

v, ]

and also
" Ak - R A .
. _ o

bj + | W 41 1 M w15 M4y bf 41
b, ] M+ 1, | b
™ .. ) \.

which makes 1t possible to obtain the new triple (l;*.,ﬁfzj) from the old triple
(b",m,l) | according to the following formulas:

¥ A lo |2
!

M+ — M 7+ M4,

s -,

* )
vy = |biva]"
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3.4. The number of irerations accomplished by the algorithm

The index i is an index which increases if the test in 2 is positive and decreases
if this test i1s negative. We majorize the number & _ of times that one ‘passes
through 2° with a negative test as a function of 7,M,n; this majorization will
suffice to conclude because the number & ; of times that one ‘passes through
2" with a positive test satisfies:

ky < k_+n—1
The total number k& of iterations of the algorithm will satisfy kA <<n — 1+ 2k __.

Like in the study of the complexity of the Gram procedure done in 2.1 it is the
quantity ‘

n— 1

j=1

defined 1n paragraph 2.1 which i1s going to play an essential role. We remark

that every passage through 2 that has a negative test with a given value i:

— the lattices L;, for ;< and for j=i+1 are not modified, thus the
corresponding d;’s are not either;

— on the contrary the lattice L; and its Gram determinant are modified.

We had previously

I I — 1
di e H b: 2:‘H,|2H|b; 2.
J=1 J =1
We have now
A i — 1

2

d,;

! ~
L1617 =" T1I6;
j=1

j=1
If the -Gauss test i1s negative one deduces that

d<—=d, and D<-—-D.
[ [

On the other hand, in each passage through 2 with a positive test, none of the
lattices L; 1s modified. Hence D remains unchanged in this stage. Finally, D
decreases throughout the algorithm, and one has

at the start : D<M"" ™1,
attheend : D=1.

Hence the following majorization 1s obtained:

n(n —
2

k< D jog M.
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3.5. The complexity of the algorithm

It remains to bound the size of the numbers appearing in the algorithm as a
function of (n.logM). It is clear that the numbers /; are rationals whose
numerators and denominators decrease throughout the algorithm. In contrast,
the situation is less clear for the integers |b,I* and the rational matrix m: in
effect everything goes well when projected on the planes P;, but at the time of
the lifting. even when chosen in a minimal manner, one cannot affirm that the
size of these quantities decreases. A few techniques, which we do not develop
here, allow one to show that the following majorizations are valid throughout
the algorithm—including the stages of lifting (see [15] formulas (1.30)-(1.34)).

One always has:

my| < Va@M)Y' ' and also  |b|<n@@M)

and therefore |m;;| is a rational whose numerator and denominator’s sizes are
majorized by a quantity which is polynomial in (n,log M). We note that these
bounds have been improved by Schnorr [20]. The operations applied on these
numbers are very simple: calculations of ‘nearest integer’ and squarings. One
deduces the following theorem:
The algorithm of Lenstra, Lenstra, Lovasz associated with the
parameter ¢ constructs, starting from a basis b of length M of a lat-
tice L of rank #n, a t-reduced basis in the sense of Lovasz in time
polynomial in (n,log,M). More precisely, the number of arithmeti-
cal operations applied in this algorithm is O (n*log,M) and the
numbers on which 1t operates are of size O (n log M).

3.6. Improvements of the algorithm

Schonhage [19] observes that in the original algorithm sometimes one 1s losing
time 1n useless back-and-forth moves along the diagonal. His principal 1dea 1s
to proceed more often with local exchanges in the interior of blocks (where the
index i can only vary within a small interval of length k) and only from time-
to-time with global exchanges (during which the index i can vary from 1 to n).
Choosing & = Vn, he obtains an improvement of the complexity of the algo-
rithm, which requires only O(n’log M) arithmetic operations. Schnorr’s idea
[20] 18 to round off the rationals used 1n the algorithm, but preserving the pre-
cision of the results. One then uses a more powerful reduction corresponding
to the value ¢t =1.05 of the parameter and mainly a new method of auto-
correction in the approximate calculation of the inverse of a matrix. He shows

that one can reduce the size of the integers used up to O(n +1logM). One can
also combine the two methods.

3.7. The special case t =1

One does not know how to prove the polynomial complexity of the algorithm
LLL(1). It 1s currently conjectured that the number of iterations of this algo-
rithm 1s still polynomial in the size of (n,log M).

Several arguments tend to favor such a conjecture:
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— Laganas and Odlyzko [12] have given an experimental study of this con-
jecture: in practice the number of iterations of 121 (1) does not exceed by
more than three times the number of iterations of /.17 (1) for (2 =4/3.
which 1s a usual value of the parameter.

— We have shown in 2.5 that the number of iterations of the algorithm of -
Gauss 1s largely independent of the value of the parameter 7.

3.8. The practicality of the algorithm
The success of the algorithm also stems from the simplicity of its implementa-
tion: this algorithm 1s much simpler to program than it is to understand. some-
thing not so usual for an algorithm!

All the operations of the algorithm are carried out on the system b or on the
triple (b7,m,[); 1t 1s easy to be convinced that " need only be calculated at
the initialization phase, and that it can be disposed of after this. One can thus
only work with the three parameters b.m.,/. We now show how simple adapta-
tions of the algorithm LLZL permit the satisfactory resolution of practical prob-
lems concerning the basis:

— find a basis of a lattice
— find linear 1nteger relations.

3.9. The search for a lattice-basis from a system of generators [5]

Let b=(b,,b,y, ... ,b,) be a system of generators of a lattice L of rank n; it is
desired to find a basis of the lattice in order to be able to calculate the deter-
minant of the lattice, for example. The idea is to operate as if the b, were
independent.

One can generalize the Gram-Schmidt orthogonalization procedure to a sys-
tem of non-independent vectors: we obtain a pair (b ./) and a list I formed
from the indices / for which b; and /; are zero. By definition, L’ is the lattice
generated by the system {b;: ie¢/l}, which by definition is a system of indepen-
dent vectors. Certainly the two lattices L,L’ generate the same vector space of
dimension s and L’ CL. Also, d(L)<<d(L").

The 1dea 1s therefore to make the indices /i e/ decrease until they are all at
the beginning. Then the two lattices will be the same and the system of vec-
tors corresponding to the final indices will be the desired system. For this we
use a modified LLL algorithm whose general structure 1s similar to that of the
initial algorithm:
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the Construction of Basis

a system b =(b.b,y, .. ..b,) of generators of a lattice L
of R”.

a basis b of L

[
-

translate v; in parallel on «; and b, in parallel on by;

exchange b; and b, 41

recalculate the triple (b",m.!/) by the procedure NewOrtho;
2. Translate b; ., in parallel on by for kA <j by means of
Proper (j + 1)

In the initialization procedure one calculates the columns of the matrix m with
index i€/ as before. The columns of index e/ will be equal, by convention,
to those of the corresponding identity matrix. Then one also proceeds there by
a succession of exchanges and translations, but only on the boxes B, associated
with an index [ satistying i +1&/7; tor these indices, the boxes contain two col-
linear vectors u; and v;; since they are now flat, the Gauss algorithm coincides
with Euchd’s algorithm, and the procedure NewOrtho 1s just an exchange
between u; and v;. The study of the complexity of this algorithm is very simi-
lar to the classical algorithm. The quantity which decreases here along with the
algorithm 1s the following;:

In each internal loop , the set I is not modified, but L’ itself is modified by the
exchange of vectors of the box and d(L’) is divided by 2. In an external loop
£.” 1s not modified, but in contrast, an index /e[ decreases by 1: it is the turn
of the first quantity to be divided by 2.

3.10. Search for a short linear relations among n vector of ZF

Lety=(y,.ya2,-...,y,) be a system formed by these vectors, and Y the matrix
whose columns are y;. Let x =(x,x,, . .. ,X,) be a system formed by the rows
of the matrix Y and L the lattice (of rank g<p) of Z? generated by x. It is

desired to construct a short vector of the so-called lattice of relations, i.e. the
lattice R of vectors v =(v,,v,, ... ,v,) of Z" satisfying
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for I<<i<<p. One proceeds in the following way.

1.  Construct a basis b =(b,,b,, . .. .b,) of the lattice Z" in such a way that
the first g vectors of b generate the same Q vector-space H as x.
2. The last n —g vectors of the dual basis ¢ =(¢y,¢5, ... ,¢,) of b are then a

basis of the lattice of relations.
3. It remains to search for a short vector of the lattice.
It 1s clear that LLL solves stage 3. It i1s also true that an algorithm similar to
that of the previous paragraph allows us to solve the first stage: starting from
the canonical base of Z" we define
1. the system b™ formed by the vectors b;, orthogonal projections of the vec-
tors b; on the subspaces K, . \=H +H, .
2. the pair (m,/) and the corresponding set / whose cardinal is ¢, the dimen-

sion of H.
Working on the triple (b",m,/) by a series for exchanges and translations, we
try to decrease the indices iel until 7 ={1,2, ... ,g}: thus we have obtained

the desired base b.

We remark that the first phase of this algorithm allows us to calculate a nor-
mal Hermite basis of an integer lattice, 1.e. a basis b satisfying the following
properties: for all i, b; 1s a vector in the hyperplane generated by the first / vec-
tors of the canonical base. This same first phase also allows us to complete a
primitive vector to a unimodular matrix.

4. THE RANGE OF APPLICATIONS OF THE ALGORITHM
Here we are concerned with showing how the LLL algorithm allows the satis-
factory solution of both internal problems in the theory of lattices as well as
many other external problems. The internal applications (the first three) per-
mit the polynomial solution, in fixed dimension, of the difficult problems of
the theory of lattices. The external applications (at least the first three of them)
are so essential 1n algorithmics that they have been a powerful motor even for
the elaboration of the LLL algorithm. The last applications have developed
afterwards by using the already existing algorithm.

This survey does not pretend to be exhaustive on this subject: we only
wanted to give a glimpse of the importance of the use of this algorithm.

4.1. The shortest vector of the lattice

The first vector b, of the reduced basis thus obtained is very short, due to the
majorization of the first length-defect of a basis which is s-reduced in the sense
of Siegel. For the usual values of the parameters s and ¢ one obtains

|1)1|2 < 2"7'A (L)

We will see later how this vector 6, can play in the applications the same role
as the vector A|(L), even if it 1s longer in general. Here we pose the question:
How can we find A,(L) starting from a basis which 1s reduced in
the sense of Siegel?
We recall that to this date no polynomial algorithm 1s known for resolving this
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problem. Essentially, there are three algorithms of decreasing complexity but
of increasing complication: the first two are due to Lenstra and the third to
Kannan.

The first brings about a simple but long and systematic search. Expressing
A (L) in the basis b in the form A((L)=27_, B;b;, Cramer’s formulas give

dﬁuh [“[)3,, .. e s bl" ~ 1 *Al (L ).,[7, s - bn )

Br = | det(b,.b>, ....b,) I

Using Hadamard’s inequality and the definition of A (L) we obtain |B;|<<p(b).
Since b is reduced in the sense of Siegel the orthogonality-defect p(b) 1s major-
1zed,

p(h ) < 21‘2(}*1 ~1)/4

from which one obtains

IBI < nune 1)/ 4
J

for all 1<<i<tn. One then deduces from it an algorithm which must calculate
the length of 2" wvectors of the lattice.

The second proceeds in a recursive fashion by using a very simple geometric
argument: the length |b,| measures the distance between two consecutive
hyperplanes of the lattice which are parallel to H, —,. Since b 1s s-reduced 1n
Siegel’s sense, these hyperplanes are well ‘spaced’ and one obtains, according
to paragraph 2.8, for the usual values of s and ¢:

]
) ]

b = b, |

and hence

bif = A (L))
Consequently, Aj(L) can be found among a small number of hyperplanes
which are parallel to H, ., (this ‘small’ number is of order 2" *1/#): one pro-
jects successively in this finite number of affine hyperplanes, and in each of
them one can use the same kind of arguments, because the preceding inequal-
ity 18 true when one replaces n by n —1 and A (L) by these projections in these
hyperplanes.

One thus obtains an algorithm which considers 2" *1/4 vectors of the lat-
tice. -

Since this 1s an affine—and not just a vector—algorithm we will return to it
in paragraph 4.2.

The third algorithm [9] constructs, starting from a reduced basis in the sense

of Siegel, a reduced basis in the sense of Korkine-Zolotarev; we will return to
1t 1n paragraph 4.3.
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4.2. The search for a vector of a lattice L of minimal distance from a given
point N

Recall that we know that this problem 1s NP-hard. There 1s an algorithm for
its solution due to Babai [1] which uses the same principles as the second algo-
rithm of the previous section and which has the same complexity.

If on the contrary one looks only for a point which is fairly near, we obtain
a polynomial algorithm, also founded on the same principles, which finds a lat-
tice point A satisfying;:

d(N,A) < 2" D2 q(N, L)
where by definition

d(N,L) = min{d(N,A)|AeL).

4.3. The other reductions

We have mentioned in Section 1 the reduction in the sense of Minkowski and
In the sense of Korkine-Zolotarev. It has been shown that the first reduction 1s
NP-hard and 1t 1s probable that the second one also 1s, because 1t has the same
hardness as the search for a shortest vector.

Although this second reduction would in principle be NP-hard, we have
already mentioned in 4.1 that an algorithm of Kannan [9] resolves the problem
polynomially for a fixed dimension n. This algorithm was improved by Schnorr
[21] who introduced a hierarchy of reductions which are intermediate between
the one of Lovasz and the one of Korkine-Zolotarev.

Herfrich-Just [6] has also constructed, by using a technique similar to that of
Kannan, a polynomial algorithm for a fixed dimension n, which starting from
a base which is reduced in the sense of Siegel, determines a reduced basis in
the sense of Minkowski. On the other hand 1n dimension 3 one can construct a
polynomial algorithm which, generalizing Gauss’ algorithm, constructs directly
a reduced basis in the sense of Minkowski, without a previous reduction i1n the
sense of Siegel [25].

4.4. The factorization of polynomials with integer coefficients

The fundamental idea is the following: given a polynomial f(X) of degree n,

integer coefficients fy,f1, ..., f, and length M (f)=max|f;| and a very good

approximation of a root « of f one can determine A, the minimal polynomial

of the algebraic number a which is by definition an irreducible factor of f. The

approximation « of a will be

— either a complex number obtained by Newton’s algorithm [10],

— or a p-adic number obtained by the factorization algorithm mod p due to
Berlekamp following a lifting by Hensel’s lemma [15].

If the approximation is sufficiently sharp one can then apply a separation prin-

ciple which states: there exists a 6 of size polynomial in the size (n,log M) of

the input such that the following two propositions are equivalent:
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1) g 1s a muluple of A
i1) |g(a)|<<8 (the absolute value is either archimedean or p-adic according to

the case considered).

in the first case. proposition 11) motivates us to search for a short vector of the
lattice L generated by the rows v, (0=<<i<cn) of the matrix
O 1 O
U 181 Y1
A = 0 By v
C B, v,

where B, =#(a ), v;=#(a ) and C is a constant which is polynomially depen-
dent on M (f) and 0.

By applying the LLL algorthm on the above matrix one can construct
exactly A: the first vector of the reduced basis obtained, written in the form

H
y = Zhl‘v‘i
i = ()

permits the construction of a polynomial 4 of the form

'
h = ShX.
i =0

In the second case, one considers a prime number p and determines, by
Berlekamp’s algorithm, a polynomial g of degree m satisfying the two proper-
lies
1) g modp is irreducible in F,[X]
i)  gmodp divides fmodp in F,[X] .
One then chooses a sufficiently large power of p of the form p! and ‘lifts’
gmodp to a polynomial gmodp’. Then we are looking for a polynomial
heZ[X] of degree less than or equal to ¢ such that
1) & is an irreducible factor of fin Z[X]
ii) A modp'is a multiple of g mod p’.
Then we work in the lattice

L = {¢€Z[x] of degree ¢| ¢ = p'b +ag, for a and beZlX1]}
which admits the basis
= {plﬁp[X-,p[Xzﬂ o ,p[mel.,.gﬁgX,ng, o ’qu"—m}'

We remark that if p* is sufficiently large as a function of the height of g (which
one knows how to bound as a function of the height of /). the short vectors of
L will have, 1n the base b, their first m components equal to zero and will then
be small multiples of g.
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4.5. Simultaneous Diophantine approximations

The problem to be solved is the following: given an n-tuple («). a5
real numbers, one is looking for »n integers (p,.pa. . . . . Pn) and an integer ¢
such that the » rational numbers (p /¢, p>/q. . . . .Pn/q) are good approxima-
tions of the given numbers.

A non-constructive answer to this question is known. due to Dirichlet and
based on the theorem of Minkowski: for each n, for each n-tuple
(a),az, . .. ,«,), for each pair (¢,Q) satisfying €>0 and Q=¢ ", there exist
integers (p1,p,. - . . ,p,) and an integer ¢ satisfying

0<g < Q and |qa,—p;| < e

for all 1<<i<<n. Lagarias [11] was able to give an approximate but constructive
version of this theorem by applying the LLL algorithm to the lattice L gen-
erated by the rows v, of the matrix

1 0 0 --- 0 0
O I 0 --- 0 0
O 0 1 O O
o 0 0 --- 1 0
), & a3 - «, €/Q

Also there, the first vector of the reduced basis obtained. written in the form

R
S I 4 /
Vv = ZP: vi+qvir+l

i =1

allows us to construct a good approximation

r ™

7 / ’

Pl _P.?_ pn
!j /’ ’ / )

9 9 q

... A

One can make precise the constructive theorem obtained with the LLL algo-
rithm associated to the usual value of the parameter.

For each n, for each n-tuple (a;,ay, . .. ,«,), for each pair (¢,Q) satisfying
e>0 and Q=2" € " one can construct integers (p’1.p%5, .. ..,p',) and an
integer ¢’ such that

0<¢g < Q and |ga,—p;| < ¢,
for all 1<<i<n.
4.6. Linear programming on integers
The principal problem 1s the following:
given a polytope P of R”, with non-zero volume, determine points

with integer coordinates in the interior of this polytope.
In general it 1s known that this problem 1s NP-hard. But, there also, one can
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search for an algorithm which is polynomial when the climensiop n 1s fixed.
This is based on [16] and also described in [17], and uses geometric arguments
connected to lattice reduction—the spacing of hyperplanes of the lattice paral-
lel to H, |—as well as other arguments connected to the ellipsoid method in
linear programming—the possibility of wedging a polytope between two co-
centric and homothetic etlipsoids. |
One begins by considering P to be an ellipsoid, and then one returns to this
case by wedging a polytope between two ellipsoids.
l.et f be the linear transformation which transforms P into a unit sphere S.
et L be the image of the lattice Z" under /. The problem 1s then transformed
into the following: determine the points of L situated in the interior of S.
One reduces the lattice L by applying the algorithm LLL. One thus obtains
a reduced base (b.b,y,...,b,). Then we proceed in a recursive manner by
using the spacing argument which allows us to bound the number of affine
hyperplanes parallel to H, -, which intersect the sphere S.

4. 7. Auack of the Merkle-Hellmann system
The Merkle-Hellmann cryptographic system is based on the difficulty of the
so-called  knapsack problem. Given »n non-negative integers «,—the
packages—and an integer M—the sack—find an element X =(x,)|<,;<, In
{O. 1} which 1s a solution of the equation

Which packages should one take in order to fill up the sack exactly? This
problem 1s easy if the sequence is superincreasing: a;>2,; ;. One can use it
In a cryptographic system whose public key is the system of ,’s: given a mes-
sage formed by the word X one codes it in M. Then one of two things can
happen:

— 1f the sequence is not superincreasing nobody can decode,

—  however if it is, then everybody can decode.

One uses a super-increasing sequence, then one hides its SUper-1ncreasingness
by applying a transformation a—sva mod u: the pair (u,v ') will then be the
secret key which makes possible the decoding. However, this system 1S not
secure: Shamir [18] has shown that one could find this key and break the code
by using a very short vector of a well-chosen lattice.

4.3. The prediciability of the sequence of bits produced by the linear congruence
generator

The linear congruence generator is perhaps the most celebrated pseudo-

random generator. One chooses a modulus » and 2 multiplier a, relatively

prime to m, and an 1nput x,; one then considers the sequence (x;) defined by

Xi4+] — X, mOd 443

Stern [23] has shown, improving the results of Frieze [2] that, even if none of
the parameters is known, the sequence yi formed by a ‘sufficiently large’
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proportion of the most significant bits of the x5 is predictable and hence the
generator 18 not cryptographically secure. One works in the lattices X and Y
generated by the vectors

2 ™ I ™
X;jv] — X il T
Up = | X402 — Xl and vy = Jyius — gy
Xi+3 T Xi42 Yi+r3 T Vi
. J ( * J

respectively. Given the first k& vectors v; one finds from algorithm 3.10 a short
integer relation between them of the form

K
EA{V,‘ = (.
[ =]

One deduces from this that the vector =%_ ;A u; is such a short vector of the
lattice X, that i1t is equal to zero. In fact, if the lattice is geometrically
sufficiently ‘regular’—which is almost always the case—it does not have any
non-zero vector which is very short. If & is appropriately chosen as a function
of the presumed size of the data, one constructs a polynomial P defined by
P(:)==%_,A\,t' and satisfying P(a)=0mod m. If one reiterates this construc-
tion one obtains a sequence of / polynomials P; all included in a lattice L of
base

qgo(t) = m, qi(t) = t'—a’,

for 1<<i<<k. The lattice L has the number m (to be determined) as deter-
minant. By algorithm 3.9 one can find the determinant m of the lattice gen-
erated by the P;’s. The integer m is a multiple of m which decreases rapidly
when / increases; one therefore obtains the value of m and a very probable
value of a obtained by searching for a polynomial of degree 1 in the lattice L.

4.9. The study of [-th roots modulo n: breaking the cryprosystem of Okamoto [26]
The general problem is as follows:
We are given two ntegers n and /=2. We are given two points, x|
and y,, a neighborhood 7 of x,, a neighborhood J of y, which
contain points x and y, respectively, satisfying x'=) modn. Find
such points x and y.
More precisely we want to discover a triple (u;,u,,v) of ‘small integers’
which 1s a solution of the congruence

(11X +u2)/ = yo+v modn.
yo can be expanded to
[ 1 | —1 R P e Y S O R PN 7T 7Lk BT A
XoUj +C/)C1 L{2+ "|"C;.X0 ), U> 4 XU U U —1

modulo n. Letting
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for O0</<</— 1 and also

W, = vty — T
. : | .. ,. | L . = U S
and working in the lattice L of vectors w =(wg.wi, ... ,w) In Z satistying

Mxd i, —w, = Omodn

one searches for a p()int w of the lattice L. which i1s close—iIn a sense to be

made precise—to the point (0,0, . . . ,y(). This lattice L of determinant » and
rank / + 1 has the matrix

1 0 0 0 0

0 l 0 0 0

0 0 l ST O 0 |

0 0 0 s - 1 0

xy Clxb§™ Cixh™? Ci 'xy n

If this latuce 1s sufficiently ‘regular’ its first minimum A;(L) will be close to
the geometric mean of the successive minima, thus of order #<'Y*! . One can
show that the majority of lattices of this type are ‘regular’; in this case the
uniqueness of the nearest point allows us to confirm that the point w found by
algorithm 4.2 will give birth to the desired triple (u,,u,,v).

4.10. Some other applications

KALTOFEN [8] has used the algorithm in dimension 4 in order to give an algo-
rithm which determines the ged of two numbers in a principal, quadratic but
non-euclidean field. Landau and Miller [14] have used the algorithm in order
to resolve logarithmically the solvability by radicals of a polynomial equation.
Vallee [24] used 1deas on lattice basis reduction in the two dimensional case to
describe precisely the distribution of elements whose squares modn are less
than O(A*?). She builds an integer factoring algorithm which has the best
rigourously established complexity bound for probabilistic integers factoring
algorithm.
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