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Editorial note. There are dozens of research projects carried out at CWI. It is
the editors’ policy to pay more attention to these projects. Therefore in the
future short descriptions of such projects will be included in the CWI Quar-
terly. They are presented in a non-mathematical way. The following article
belongs to this category.

INTRODUCTION

Queueing theory is concerned with the mathematical research of the perfor-
mance of a system offering services for collective use. Such a system may be a
hospital or bank, but also a ‘flexible manufacturing system’, telephone
exchange or computer network. The object of study is formulated in abstract
terms as a network of service units and customers requiring services at those
units. The nature of the arrival processes and service requests is usually such
that they have to be represented by stochastic processes. Hence the most
important performance measures, like waiting times, workloads and queue
lengths, are random variables. Accordingly, the main techniques of queueing
theory stem from probability theory.

In the ing of this century, queueing theory was developed as a tool
for dimensioning telephone exchanges. In the sixties and seventies it turned
out that queueing models could also lead to accurate predictions of the
behaviour of complex computer systems. This gave a strong impulse to the
resecarch on queueing networks. Today, the distributed nature of modern
computer-communication networks poses a new challenge to queueing theory.
We are beginning to see systems with distributed communications, distributed
storage, distributed processing and distributed control. Unfortunately, a
thorough understanding of the basic principles of distributed systems is still
lacking. Such principles are needed in order to predict performance, to
explain behaviour and to establish design methodologies.

At CWI one project is mainly devoted to queueing theory and its applica-
tion to the performance analysis of computer and communication networks.
In the framework of the Government’s Information Technology Promotion
Plan INSP (1984-1989), computer performance research has been carried out
that has resulted in two Ph.D. theses, that have been defended in the
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wing exposition is concerned with the research

W.P. Groenendijk, viz., distributed control of multi-access

communication channels. Below we discuss the queueill g model under con-
sideration, and the main results that have been obtained. But first we
describe the kind of computer-communication network that has stimulated this

researcil.

Many communication systems provide a broadcast channel which is shared
by all connected stations. When two or more stations wish to transmit simul-
aneously, a conflict arises. The rules for resolving such conflicts are referred
to as ‘multi-access protocols’. The token ring protocol is one such protocol,
that is being used in many local area networks.

In a token ring local area network, a number of stations (terminals, file
servers, hosts, gateways, etc.) is connected to a common transmission medium
In a ring topology (Figure 1). A special bit sequence called the roken is passed
from one station to the next; a station that ‘possesses the token’ is allowed to
transmit messages. After completion of his transmission the station releases the
token, giving the next station in turn an opportunity to transmit. This situation

can be represented by the following queueing model, which is known as a pol-
ling model

. . station

FIGURE 1. A token ring local area network

THE POLLING MODEL

A polling model is a single-server multi-queue model, in which the server
gttends to the queues in cyclic order (Figure 2). The N queues Q1,--.,0On have
infinitely large waiting rooms. Arrival times of customers at the queues are
usually assumed to occur according to a Poisson process. Service requirements
of customers at a queue are independent, identically distributed stochastic

68



imes of the server between
ime distributions may differ

queues. Ar 1val rates, service time and
from queue to queue.

FIGURE 2. Queueing model of a polling system

A polling model describes the behaviour of a token ring local area network in
a natural way. The server represents the token-passing mechanism, and the
customers represent messages generated at the stations. But many other situa-
tions 1in which several users compete for access to a common resource can be
described by this polling model. Examples are a repair man patrolling a
number of machines which may be subject to breakdown, assembly work on a
carousel in a production system and a signalized road traffic intersection (Fig-
ure 3). Depending on the application, various service disciplines at the queues
may be considered. Common disciplines are exhaustive service (the server con-
tinues to work at a queue until it becomes empty), gated service (the server
serves exactly those customers who were present when he arrived at the queue)
and [-limited service (the server serves just one customer—if anyone 1is
present—before moving on to the next queue).

ANALYSIS OF THE POLLING MODEL

For polling models with exhaustive and gated service, the steady-state mean
waiting times at all N queues can be determined by solving a set of O(N*)
linear equations. The case of 1-limited service is much less amenable to an
exact analysis. For only two queues, the joint queue length distribution at both
queues can be determined by formulating and solving a boundary value prob-
lem for analytic functions, a Riemann or Riemann-Hilbert problem; the mean
waiting times are thus also found, being expressed as singular integrals. But
the mean waiting times are unknown when there are at least three queues with
[-hmited service. However, even in such a case there exists a simple expression
for a certain weighted sum of all the steady-state mean waiting times. Twenty-
five years ago Kleinrock showed that, under quite weak assumptions, in the
case that all switch-over times between queues are zero,
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W, denotes the mean waiting time at Q;, A, the arrival rate, p; the
offered traffic load and sz) the second moment of the service requests; p = X,
p; denotes the total offered load. This is being called a conservation law: if the
service discipline at a queue is changed, the weighted sum of mean waiting
times (the left-hand side of (1)) remains the same, although the individual
mean waiting times may change.

WORK CONSERVATION AND WORK DECOMPOSITION

The conservation law is a consequence of the ‘principle of work conservation’.
Suppose the scheduling policy, ie., the procedure for deciding which
customer(s) should be in service at any time, has the properties that it does
not allow the server to be idle when at least one customer is present and does
not affect the amount of service given to a customer or the arrival time of any
customer. Comparing the sample paths of the ‘workload process’ for such a
system under different scheduling disciplines leads to the observation that the
workload process is independent of the schedulin g discipline.

The principle of work conservation has in the past proven to be very useful.
It enables one to analyze the workload process of queueing systems with a
highly complicated scheduling discipline as if the scheduling discipline were a
relatively simple one, such as the First Come First Served discipline.

For the token ring local area network mentioned above, the time for the
token to be passed from station to station is in general not negligible.
Correspondingly, in the polling model the time the server needs for switching
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from station to station has to be taken into account. This fact considerably
complicates the analysis: the principle of work conservation is no longer valid,
since now the server may be idle (switching), although there is at least one cus-
tomer 1n the system. However, under certain conditions there exists a natural
modification of the principle of work conservation for polling systems with
switch-over times, based on a decomposition of the amount of work in the sys-
tem. This result (see [1], and generalizations in [2,3]) states that—under certain
conditions—the amount of work in the g system, V,n, 1S 1n distribution
equal to the sum of the amount of work in the simpler ‘corresponding’ system
without switch-over times, Vyimnou, plus the amount of work, Y, at an arbitrary
moment during a period in which the server is switching from one queue to
another:

VwiLh — without + Y. | (2)

The work decomposition gives rise to similar expressions for a weighted sum of
the mean waiting times as Formula (1). Taking means in (2) leads to (cf.(1))
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Denote the mean total switching time in one round of the server by s, and the
second moment by 5. Evaluating EY yields [1]:
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where EM,; denotes the mean amount of work 1n Q; left behind by the server
upon 1its departure from that queue (when s—0, the fraction of visits to Q; 1n
which the server finds Q; empty tends to one, and the right-hand side of (4)
reduces to the right-hand side of (1)). Formula (4) has been comned a pseudo-
conservation law. The main difference with Kleinrock’s conservation law 1s that
now the left-hand side of the formula does depend on the service discipline at
each queue, through sum EM,;. For many service disciplines, amongst which
are exhaustive, gated and 1-limited service, we are able to determine the rnight-
hand side of (4) explicitly. Such pseudo-conservation laws often contain the
only information available in polling systems with nonzero switching times.
They are therefore of considerable practical importance. One of the main
features of the pseudo-conservation laws is that they are very useful for testing
and developing approximations for the individual mean waiting times, which
seldom can be determined explicitly.

LAST YEAR’S RESULTS

Boxma and Groenendijk, in close cooperation with H. Levy (Tel-Aviv Univer-
sity) and J.A. Weststrate (Tilburg University), have extended the just
described results in several directions.
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