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A technology independent framework is established for measuring the switch-
Ing energy consumed by very large scale integrated (VLSI) circuits. Tech-
niques are developed for analyzing functional energy consumptiori, and for
designing energy-efficient VLS| circuits. A wire (or gate) in a circuit uses
switching energy when it changes state from 1 to 0 or vice versa. This paper?
develops the Multiswitch Models (MSM) of energy consumption, which trace a
circuit through the time it changes from one stable state to another. In particu-
lar, MSMs account for race conditions, whereby a node can change states
several times before settling down to a final value. Several MSMs are defined
to account for various physical factors that can cause delays in a computation.
Gate delays, wire delays, input delays, and circuit synchrony are considered.
An MSM is viewed as optimistic if race conditions occur only when a circuit is
asynchronous. Otherwise, MSM is considered to be pessimistic. This paper
demonstrates that race conditions can be very expensive in terms of switching
energy. In particular, the multiswitch energy of a VLSI circuit can be asymptot-
ically larger than the circuit’s area. However, the multiswitch energy of a circuit
Is shown to be bounded. The parity function is shown to use ©(n?) energy in
a pessimistic MSM. Novel circuits and layouts are obtained for n-bit OR and
compare functions that have shallow depth and use only linear energy, in an
optimistic MSM.

1. INTRODUCTION

1.1. Motivation
The advancement of technology to very large scale integration (VLSI) has
brought with it a number of issues not accounted for by such traditional
models of computation as Turing Machines [9], Random Access Machines
(RAM) [9], and combinational circuits [3]. This paper addresses the issue of
energy consumption in VLSI circuits. A circuit in any practical technology
requires energy for its operation. Thus, energy consumption is believed to be
Intrinsic to computation [19], and the complexity of a finite VLSI computation
appears to be closely related to the energy it consumes.

Further, the energy consumed by a circuit is transformed into heat. How
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An additional concern is the indirect systems cost to drive circuits.
Although a single chip at current densities consumes less than one watt of
power, assembling large systems of chips can be expensive, since much of the
support structure in a computer serves to power and cool the circuitry [20].

1.2. Switching energy

Common to all physical devices i1s the switching energy consumed when a wire
or gate changes state from 1 to 0 or vice versa [19]. The amount of switcl
energy consumed in a finite computation 1s proportional to the area switched.
[he intent of this paper is to lay the groundwork for measuring the switching
energy consumed in VLSI circuits.

Many technologies consume more than switching energy. All MOS (Metal
Oxide Silicon) devices except CMOS (Complementary MOS) also dissipate
steady state DC power, as do bipolar silicon devices and Gallium Arsenide
logic [30]. Devices that consume DC power contain ‘pull-up’ transistors that
use energy even when the device is in a steady ‘0’ state. In these technologies,
the DC power dominates the energy consumption. CMOS and some Joseph-
son Junction (JJ) logics (e.g. JJ-Current Steering logic) consume only switching
energy [19]. Hence the results in this paper are a precise model for CMOS
and JJ-CS and a lower bound on the total energy used by other technologies.

1.3. Related work

The Multiswitch Models (MSM ), defined 1n the next section, first appeared in
[14]. Much of thus paper also comprises part of [12]. [14] also introduced the
Uniswitch Model (USM ) of energy consumption, which 1s simpler than MSM
and better for lower bounds. But USM may be 0ptumst1c for studying upper
bounds, as the model neglects race conditions. Much of the literature in
switching energy uses the Uniswitch Model [2,11,12,15,16,17,28]. [2] also
obtained bounds in MSM, which will be cited in the body of this paper.

The rest of this paper 1s organized as follows. Section 2 defines the Mul-
tiswitch Models of energy consumption Section 3 demonstrates that race con-
ditions can be very expensive in terms of energy. To 1illustrate this expense, an

n-input VLSI circuit that uses O(n log n) area is shown to consume &(n*) mul-
tiswitch energy. However, tree circuits with all A-gates or all \V-gates are
shown to use a quantity of multiswitch energy that is proportional to the tree’s
area, in the worst case. The parity function is shown to use ®(n*) multiswitch
energy. In Section 4, a VLSI circuit that realizes the OR function is shown to
be energy-efficient in an MSM that is not too pessimistic.
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2.1. Introduction
The Multiswitch Models of energy consumption define a set of energy cost
measures for VLSI circuits, which account for race conditions (also known as
hazards). MSM traces a circuit’s switchin g behaviour as it changes from one
stable state to another. This contrasts with the Uniswitch Model [11], which
measures the differences between two swbie states. MSMs account for the
intermediate switching that can occur during a state transition. Henceforth, the
term Multiswitch Model of energy consumption is usually abbreviated by the
acronym MSM or by the term multiswitch energy.

Consider the following informal description of how a circuit operates Let C
be a circuit with initial state so and final state s;. Assume that C is in state s
at time 7¢, and in state sy at time #;, for ¢, > t,. From time to time between ’o
and 7;, 1nput ports may change  their values. Assume that an Input port
switches at most once between the initial and final states of C. Once an input
changes, a value « will appear at node v of C at certain times until ;. When «
appears as an mput to node v, v computes an output, possibly with some
delay. The output 1s then transmitted along v’s out edges, possibly with some
delay.

It 1s apparent from the above description that a 2-input node of a circuit
can receive 1ts inputs at different times. This timing difference can cause race
conditions, whereby a node can change state several times before settling down
to a final value. MSM traces a circuit through the time it changes from one
stable state to another. This dynamic process can involve metastable states,
whereby a node’s value is tran siently inconsistent with the funcﬁonaﬁ labeling
of the node and its inputs. Hence, a node (and wire) might switch several
times before reaching a new smble state. MSM accounts for this intermediate
switching.

[he following informally defines the timi
MSM.

ng 1ssues that are addressed by

DEFINITIONS. Let C be a VLSI circuit. Let v be a node in C. Let p be a path
in C. Let w be a wire in C. The depth of p is the number of edges in p. The
area of w 1s the length of w in the plane. C is synchronous if all input paths to
v are equal 1in depth; otherwise, C is asynchronous.

DEFINITIONS. Let C be a VLSI circuit. C has wire delay A if, for any wire w in
C of area k, A(k) is the time to transmit a bit from the tail of w to its head.
Wire delay is related to signal propagation delay in real circuits. C has gate
delay o if 6(v) is the time taken by non-input node v to compute an output.
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2.2. Preliminaries
[he following establishes a framework for the definitions of the Multiswitch
Models.

DEFINITION [3,5]. A VLSI circuit 1s a combinational circuit [3] embedded in a
plane as in [5]. Salient assumptions of the Borodin/Brent/Kung models that
are important to MSM are as follows. A circuit 1s acyclic. A wire (edge) in a
VLSI circuit has constant minimum width A>0. A non-input node (gate) in a
circuit computes a logical function of 1 or 2 mnputs (e.g. AND (/A), OR (V),
NOT (—)). Gates are separated by distances = A. A gate has area = A%, and
a non-output gate has fanout 1 or 2. Input nodes have fanin 0. Output nodes
have fanout 0. At most a constant number of wires, v=2, can overlap or
intersect at any point in a VLSI circuit.

Some of the energy lower bounds described in this paper are functions of the
wire area of a VLSI circuit. These results require that the circuit in question
be connected, that the circuit inputs preclude constant values, and that interior
nodes are functionally dependent on the inputs (i.e. each interior node has two
states).

DEFINITION. A CID VLSI circuit is a VLSI circuit that satisfies the following

two properties.

El: Each input has fanout at most p, for p=1. This limits the number of free
duplicates of any input bit. Presumably, a real circuit receives one or a
few instances of an input bit, and if more are needed the input must be
replicated by the circuit. This costs area and energy that cannot realisti-
cally be neglected. In Section 2.3, an example is given that illustrates the
asymptotic affect of replicating inputs.

E2: All instances of any input appear at input nodes that are within a con-
stant distance of each other. This again is an input fanout constraint. In

this paper, input and output nodes are sometimes assumed to be on a
convex boundary of the circuit layout.

Properties E1 and E2 are called constant input duplicates (CID) assumptions.
This paper 1s primarily concerned with CID VLSI circuits and their physical
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analogs. Hence, the term circuit generally refers Eo a CID VLSI circuit. Th
terms real circuit or physical circuit refer m E € ph al analog of a CID VLSI
circuit. (In [12], CID circuits are called

DEFINITION. A legal state, (hereafter, also called state or stable state) s, 1s a
function that attributes values to the nodes and wires of a circuit C, 1.e.
C = (V,W) where V is the node set and W is the set of wires. s: V U W

{0,1}. Input node x has some value x, where xo€{0,1}. Edge w emanating
from input node x has value s(w) = xo. Non-input nodes and edges have
values consistent with the 1 put and the labelin g of the nodes (e.g.
s (AND(0,1))=0, s (NOT(0))=1). sy denotes the state of C for mput X.
X — sy 15 a bijection between an input vector and a state of circuit C. Since a
state and its associated input vector are closely alhed, they are used inter-
changeably in the following discussion. C is 1n state s; at time 7,. sy 1s the ini-

tial state of C.

DEFINITIONS. Assume that at time ¢, wire w has 1nitial value wg, and at time
ty > tg, w has value w, where wy, w, €{0,1}. Then w is switched (switches) 1t
wo*= w;. A wire of area L that switches accounts for L/k switching energy,
where k > 0 1s the area of wire that accounts for one unit of switching energy.

The switching behaviour of physical circuits 1s influenced by various delay
functions, such as gate delay o, wire delay A and input delay I. & determines
the switching speed of a gate. A determines the time to transmit a bit along a
wire. I determines when an input value arrives at an input port.

DEFINITIONS. Let (C,, 0, A, I') denote a circuit scheme, where C, 1s a CID
VLSI circuit with gate delay 6, wire delay A, and input delay /. A circuit
scheme ( C,, 6, A, I) exhibits the uniswitch property if each node or wire of C,
switches at most once when C, changes from one input setting to another,

according to 6, A and I. Otherwise, (C,, 0, 4, I') exhibits the multiswitch pro-
perty.

MSMs are related to the multiswitch property, whereby an interior gate In a Cir-
cuit may switch more than once when the circuit changes from one input set-
ting to another.

2.3. Motivating CID circuits

This section discusses the following assumptions about the inputs to a VLSI

Circuit.

1) Each input has at most constant fanout.

2) All instances of an input appear within constant distance of each other.
These two constraints are called constant-input-duplicates (CID) assumptions.

It 1s reasonable to expect that a real VLSI circuit will receive a single copy of

any input, or at most a small number of copies. It 1s then up to the circuit to

replicate the input as required and to transmit copies to distant locations on
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designer to account for the cost of replicating and transmitting input.
Let A=(@y,...,a,-1) and B=(by, ..., b,_1) be sets of boolean vari-

ables. Consider the following DNF expression:

H(A,B) = (a,—y \ b,-1) V

[(@n—1 @ by—1) N (Gn—2 N\ by2)] V

-V

[(@n—1 @ bp—1) N - AN (ay © by) N (ag /\ by)]

where g;, b;€{0,1}, 0 <i <n.
LetA =372ga;2 and B =272 b;2'. H(A, B) computes the n+ 1st bit of
A+ B.

Consider a circuit C, for H in which each occurrence of 4, and b; in
H(A, B) 1s provided at a distinct input node, and interior nodes have fanout
at most one. Then C, is a tree with O(n”) leaves. Brent and Kung [6] and
Yao [32] showed that such a tree requires area Q(n*logn) when it has O(logn)
depth and the leaves are on a convex boundary of the layout. Thus, an
optimal embedding of C, in the Uniswitch Model will use no more than
O(n*logn) energy, which is consumed when H switches from a state where
A =B =0"to a state where 4 = 1" and B =0""'1.

The energy cost of H can be improved to O(n?) by using a nontree-like cir-
cutt D, 1in which the conjunctive clauses of H are energy-efficient (i.e. use at
most O(n) energy per clause). The technique for realizing such a circuit is dis-
cussed in Section 5. As in C,, each occurrence of @; and b; in H (A, B) is pro-
vided at a distinct input node in D,,.

The analysis above charges only unit energy per input instance, although
many inputs have O(n) instances and instances can be up to O(n?) distance
apart when the input nodes are laid out as in Figure 2.1. Consider an analysis
of H that realistically accounts for these factors.

Figure 2.1 illustrates a circuit D, for H that includes the input fanout trees.
The example in the figure uses n=4. Recall that F denotes a fanout node that
computes the identity function of its input. Consider the area of D,.

More than half the 2n inputs each have at least n/2 instances in H. Hence

the area of each of these input fanout trees in D, is Q(nlogn), even when the
large separation between instances is ignored. When an input switches the
entire fanout tree switches. Hence the total energy for the input fanout trees is
Q(n*logn), which exceeds the O(n?) energy cost of the non-input portion of
D, (assuming D, uses energy-efficient conjunctive clauses).

If we realistically assume that an input will arrive at a single input port,
then the large separation between input instances in D, will be manifested by
long fanout wires in D,. In fact, Q(n) inputs in D, have instances that are
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FIGURE 2.1. D,, a VLSI circuit with large input fanout

3. THE MODEL DEFINITIONS

In this section, several MSMs are defined that are related to physical assump-
tions about the timing of a real circuit. The timing issues discussed are circuit
synchrony, gate delay, wire delay and input delay, which were informally
defined in Section 2.1. In the following discussion, the physical timing
assumptions that are the basis of each MSM defined are first given. Each
MSM 1s then defined in terms of particular delay functions and the relevant
circuit notions.

Physical assumptions for M ,

1) The time for a bit to travel along a wire is independent of the length of
the wire. A real circuit with this property has constant wire delay.

2) All mputs arrive at the input ports at the same time. A real circuit with
this property has constant input delay.

3) Each non-input node computes an output at the instant that its inputs
arrive. A real circuit with this property has zero gate delay.
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For a real circuit that has zero gate delay, constant wire delay and constant
input delay, race conditions can arise when the circuit is asynchronous; that is,
some paths to some node of the circuit have different depth.

Lhe constant wire delay assumption originated in the thesis of C. Thompson
[29] and the papers of Brent and Kung [4,5], and was subsequently adopted by
many VLSI theory researchers—{1,18,23,25,31] to name a few. However, the
of the constant wire delay model has been subject to debate within the
research community [7,22,24], with models emerging that define time as vari-
ously a logarithmic [21], linear [8,10], or a quadratic [27] function of wire
[he only consensus seems to be that the time for a bit to travel along
a wire 18 a monotonic nondecreasing function of the wire’s length. The con-
stant wire delay model may be applicable to some specific circuits.

Physical assumptions for M,

1) The time for a bit to travel along a wire is a monotonic increasing func-
tion of the wire’s length.

2) Constant input delay.

3) Zero gate delay.

Race conditions in M, can arise if a circuit is asynchronous, or if a node of a

circuit has input wires of different lengths.

Physical assumptions for M ,

1) The time for a bit to travel along a wire is a monotonic increasing func-
tion of the wire’s length.

2) Inputs may arrive at the input ports at different times.

3) Zero gate delay.

Like M, and M,, race conditions in M5 can arise if a circuit is asynchronous.

In addition, varying wire delays and varying arrival times of the primary

Inputs can cause race conditions if an interior node receives its inputs at

different times.

Physical assumptions for M ,

1) The time for a bit to travel along a wire is a monotonic increasing func-
tion of the wire’s length.

2) Inputs may arrive at the input ports at different times.

3) Non-mput gates have varying switching speeds.

Moving from M, to M, relaxes the physical requirement that signal propaga-

tion times be constant, and moving from M, to M; relaxes the requirement

that primary inputs be synchronized. Moving from M; to M, relaxes the

requirement that gates have constant (zero) delay.

Recall from Section 2.1 that circuit C = (V, W) has wire delay A if, for w a
wire 1n C, A(area(w)) is the time to transmit a bit from the tail of w to the
head of w. If Vwe W, A(area(w)) = 1 (or some other positive constant), then C
has constant wire delay, which is denoted as A,. C has gate delay 8§ if 8(v) is the

time taken by non-input node v to compute an output. If Vv eV, §(v) = 0, then
C has zero gate delay, which is denoted as §,.
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DEFINITION. Let C be a circuit an ., Z,} be the input nodes
of C. Let a = {1,...,n} be the index set for the 1 put to C. An input
schedule I 1s a partial function 7: Z X « >R such that for 1<<i<<n, the i-th
input arrives at 1np de z; at tuime /(z;,i). Let C: s —; X denote that cir-
cuit C switches from state s to state sy according to input schedule 7. 1/, is an
input schedule such that for 1<<i<<n, the i-th input arrives at input node z; at
time O (or some other non-negative constant). If C: sq —; X, then C has con-

stant input delay. Note that the definition of an input schedule assumes that
each input bit arrives at a distinct input port.

DEFINITION. Suppose W = {w;} is the set of wires in CID VLSI circuit C, X
is the mput vector, A 1s the wire delay function, § is the gate delay function,
and 7 1s the input schedule. If wire w; switches z; times when C: sy —; X, then
the wire energy, E,, consumed by C 18 E(C,sqg,X, 48,1) =
(l/k)E}Z_'lz,- *(llw; 1), where |W| i1s the cardinality of set W and [lw;|| is the
area of wire w;.

DeFINITIONS. If C, 1s a CID VLSI circuit computing f, : {0,1}" — {0,1}"
such that C, 1s 1n state sg at time ¢y, and E, (C,, sg, X, A, 8, I) 1s the wire
energy consumed by f, when X = (a;, ..., a,) is the input to C, after time
to according to imput schedule 7, then Eﬁ,‘m(Cn ), the M, worst case multiswitch
energy, 1S given by
Iy A
Ewolmt(Cn ) — éna)?() Ew(Cn: 50> Xa Ala 803 IO )
Ei‘,,f,’,.s,(C,, ), the M, worst case multiswitch energy, 1s given by

A
Ev:(C,) = max E,(C, 50, X, A 8,1Io)
(50> X, A)

Eﬂ,{,i.s,(C,, ), the M5 worst case multiswitch energy, 1s given by

A
M, _
Eworsr(cn ) — (sg,rgfl?il) Ew(Cn: S0 Xa Aa 60: 1 )

M, .. i :
Eors:(Cy ), the M4 worst case multiswitch energy, 1s given by

A
Ext(C,) = max E,(C,,s0, X, A, 8 1)

(50, X, 4, 6,71)
M, M . M -
Note that EWG,S,(%},) and EWOZ,I.‘S{(C,,) are special cases of Eﬁo";.s,(C,, ), w%ch 1S a
special case of E, ;i (C,). E, . a(C,) 1s abbreviated as E,,,,(n) or E,, ., for
I<i< 4. In the following discussion, when the MSM under consideration 1is
clear from the context, the superscript M; is omitted.

To see that there exists a maximum value for the multiswitch energy of a
circuit, the following discussion demonstrates that the total amount of switch-
ing incurred by a circuit when it changes state is bounded. That the energy is
bounded thus follows since circuits use finite area.
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DEFINITION. Let W be the set of wires of VLSI circuit C,. Let I be the input
schedule of C,. Suppose Vw;e W, w; switches r; times when C: 5o —7 X. Let
Sw(C, ) denote the worst case switching of C,,.

a L

Gy L
) = gax 3

lHEOREM 3.0. Let C, be a VLSI circuit of depth D(n) and size S (n).
Sw(C,) = O(2°™ = §(n)).

PROOF. Let z be a node of C,. Suppose the longest path from any put to z
has depth <d. Let B,(d) denote the number of times z switches when
Cn - S0 /7 X.

vMA 3.0. B,(d) = O(29)

PROOF. By induction on d.

0. .. G, is the input node z. B,(d) <1 by definition of an input node.

Induction step:

Let u, v be the input nodes to z. The longest path from any 1nput to node u or
to node v has depth <d —1.

B,(d) < B,(d—1)+ B,(d—1).
If z has only one input, let B,(d —1) = 0.
B,(d) < 2*max(B,(d —1), B,(d—1)).

Without loss of generality, assume that max( B,(d —1), B,(d —1)) = B,(d — ).
. B,(d) < 2B,(d—1).
By the induction hypothesis, B,(d —1) < ¢297!.

CoB(d) < 2(c247 )
< ¢ 2° 1 Lemma 3.0

Since d << D (n), any node of C, switches at most O(2°™ ) times. C, has S (n)
interior nodes. .. Sw(C,) = 0RP™MxSn)). O

The following definition of energy efficiency 1s analogous to the USM

definition in [11]. Let f [ {0,1}" denote a restriction of the family f of func-
tions, such that the domain of the n-th function, Ja» 15 the set of boolean

strings of length n. Let ®(C) denote the family of functions computed by cir-
cuit family C.
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l<i<4. A function f {O 1} —> {0 1} 1S energy effi céem

Cn realiz
amily € = (C, )( neN) 1S energy efficient in M,

O(C), E worst C n) =

WORST CASE UPPER BOUNDS
In this section, circuits are analyzed under the most pessimistic Multiswitch
Models, M; and M,4. The worst case energy consumption is obtained for
complete binary tree circuits. In particular, circuits with all /\ —gates or all
V —gates are shown to use an amount of multiswitch energy that is propor-
tional to the circuit’s total area.

We describe a technique that induces a circuit to use asymptotically more
multiswitch energy than the area of the circuit. This large energy consumption
is obtained by using a ‘bad’ input schedule, which is defined below. This input
schedule is then used to obtain an Q(n?) lower bound on the multiswitch
ener 2gy required by the parity function on n inputs. (Parity is shown to use
®(n* ) multiswitch energy.) Similarly, [2] used the bad input schedule to show
that addition of two n-bit numbers requires Q(n? ) multiswitch energy.

DEFINITIONS. Let w:a— b denote that wire or node w i1s switched (switches)
from state a to state b, where a, be{0,1}. a is called the initial state of w, i.e.
so(w) =a or s(w) = a at time ty. b is the final state of w, i.e. s(w) = b at time
tr. w settles down at tume t;. Let t(w:a—b) denote that w switches from a to
b at time ¢, where ¢t >y, and V¢ <t, —t(w:a—b). Note that r(w:a—a)
denotes that w does not switch at time ¢. w:a;—a,— - - - —a;, denotes a

switching sequence of w from initial state a; to final state ag,, where aq;€{0,1)
for I<i<k.

The following analysis considers tree circuits that consist of all \V-gates or all
/\-gates. These specialized circuits are shown to inhibit race conditions. Con-
sequently, even in Multiswitch Model M3; and M,, these tree circuits use
energy proportional only to the area of the circuit, in the worst case.

Let a complete binary tree with n leaves (input nodes) and an /A-gate (V-
gate) at each non-input node be called an n-AND tree (n-OR tree).

SWITCHING LEMMA 4.1. For an n-AND tree T, if each input of T switches at
most once, each node (or edge) of T switches at most twice.

PROOF. Let z be a node of T. Let f, denote the function computed at z. Let

sx(z) denote the value of z for input vector X, and let s5,(z) denote the value of
z at tume 1.
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hing sequence z:1—-0-—1 cann

d= 0. z1s an input node. z switches at most once by hypothesis.

Let v; and vg be the input nodes to 2.

co Je =/, N S, by definition of T.

so(z) =1 = s¢g(vy) =1 and so(vg) = 1.

A1, >ty such that 1,.(z : 1 — 0)

= 37; such that 1o <1; < : t;(vy: 1 —0) and/or ti(vg : 1 - 0).

=> by the induction hypothesis, V¢, > ti, $;(vy) =0 and/or s,(vg)=0.
Since f, = f, /\ f, , z will not turn on again until v; and/or vy turns on.
End of proof of Lemma 4.1.1.

The result follows since the only state changes that any node z can make are
z:0-51-50, z:1-0,0or z:0>1. O

SWITCHING LEMMA 4.2. If each input node of an n-OR tree T switches at
most once, each node (or edge) of T switches at most twice.

PROOF. Assume T is in initial state so where s is the initial state of n-AND
tree T. The result follows from Switching Lemma 4.1 by the duality of AND

and OR. The unachievable sequence for any edge in 7' is ‘010>. [

Ta{{EOREM 4.1. An n-AND (n-OR) tree T of area A consumes worst case energy
Eyors:(T) = O(A)

PROOF. By Switching Lemma 4.1 (4.2), no edge in T switches more than twice.
Therefore, E,,.,(T) < 2*A. Since T is a monotone circuit, E ..(T) = YA
by a Theorem of [11]. L]

To see that EWMO"‘,S, > area for some acyclic circuits, consider an n-OR/AND
tree T defined as follows.

DEFINITIONS. Let n =2* for keZ™. An n-OR/AND tree is an n/2-AND tree
with a 2-input V-gate at each of the n/2 leaves. An n-AND/OR tree is an
n/2-OR tree with a 2-input /\-gate at each of the n/2 leaves. An 8-OR/AND
tree 1s 1llustrated in Figure 4.1.

Recall that M3 accounts for circuits where inputs may arrive at the input
nodes at different times. The following defines an input schedule whereby
each input arrives ‘much later’ than the previous input. This input schedule is
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wn to cause wires of an
wn to a final value.

N man y times before

K _ n 1nitial state sy such that
des (a,y,...,a,) have init (10)’” 2 Let Wy deno@e a longest
in 7. Input Schedule I,: Input vector (01)"/# arrives at the input nodes of
in the followin g manner. Input / arrives at leaf q; at time 7, such that
1y > 1y, and ¢ = 1; + (depth( T) *» A(llwll)), for 1<i<<n (e.g. input 2 arrives
at a, after in PU;E 1 arnives at di di id after 7T settles down )- See Fi oure 4.1.

Let Sw(k) denote the total number of switching events that occurs when a k-
OR/AND tree T with k leaves changes state.

SWITCHING LEMMA 4.3. The total number of switchi g events exhibited by an
n-OR/AND tree T with input schedule 1, is Sw(n) = O(nlogn).

PROOF. The total switching of T is given by the following recurrence.

Sw2) = 4
Sw(n) = 2Sw(—'-2“-) +n = O(nlogn). ]
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FIGURE 4.1. 8-OR/AND tree

The large amount of switching incurred by circuit 7" with nput schedule 7,
results in an energy expenditure that 1s asymptotically greater than the area of
T. To see this, consider two popular tree embeddings, defined below.
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LEFINITIONS

Embedding 1: Let T, be an embeddin g of n-OR/AND tree T, illustrated in
Figure 4.2a, such that 4,(n), the area of T on n leaves, is given by the follow-

ire area of 7', because the

ng recurrence: (A4 ;(n) counts only the horizontal w
vertical wires contribute only O

A4,2) = 1
Ay(n) = 24,(%) + P}

Embedding 2: Let T, be the well-kn H-tree embedding of n-OR/AND tree
I" as shown in Figure 4.2b, such that the area A,(n) of T, on n leaves is given

by the following recurrence [16]:
A5(1) = 1

n
Ax(n) = 44,(5) + 4

The following two results show that the worst case multiswitch energy
expended by an n-OR/AND tree can be asymptotically worse than the area of

the tree.

THEOREM 4.2. V wire delay functions A, the worst case multiswitch energy con-
sumed by an n-OR/AND tree T under embedding 1 (Figure 4.2a) is ®(n> ).

PROOF. Assume that T : (10)"* —; (01)”2. Input schedule I, causes any

node of T'; to switch every time its inputs switch. See Figure 4.1. Since the
top level wires are ©(n) long in embedding 1, and since they compute func-
tions of ©(n) inputs, these wires alone use ©(n?) energy in the worst case.
Thus, the total worst case energy of T, is given by the following recurrence.
Let E,, (k) denote the M, worst case energy used by 7', with & inputs.

2

Ewarst (2) — 1
n_

Buorst() = 2Bua(3) + “ =

(<) ( n 2 )_ ]

THEOREM 4.3. VA, the worst case multiswitch energy consumed by an n-
OR/AND tree T, under embedding 2 (Figure 4.2b) is O(n°’ 2).

PrOOF. Let E,, (k) be the M, worst case energy used by VLSI circuit 7T,
with & inputs. By an argument similar to that of Theorem 4.2, the following
recurrence for E,,,..,(k) is obtained.

E worsl ( 1 ) — 1
Evors(n) = 4 Eporsi () +

: ( —Z“ ) * 3 }

O(n??). []
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area(T(n)) = O(nlogn) area(1,(n)) = O(n)
Eyors(n) = O(n ? ) Eyorg(n) = O(n 32 )
(a) Tl (b) Tz
FIGURE 4.2.

Note that in the n-OR/AND tree, the row of -gates enables the ‘101’
sequence, which Switching Lemma 4.1 showed was not possible in an n-AND
tree. In the same way, an n-AND/OR tree enables the ‘010’ sequence, which
by Lemma 4.2 cannot be achieved in an n-OR tree. Thus, the bounds on Sw
and E,,. for an n-OR/AND tree also apply to an n-AND /OR tree with input
schedule 7,.

Consider an arbitrary parity circuit, but restrict the leaves to be on the
boundary of the layout. The following derives an energy bound for parity in
MSM M, which results from the bad input schedule I;.

[HEOREM 4.4. Computing the parity function by a CID VLSI circuit P, con-
sumes Efvf,i.s,(P,,) = ®(n?), when the input nodes are on a convex boundary of

P,

ProOF. Consider the lower bound. Let z be the output node of P,. Let N be
a subset of n/2 inputs that are farthest away from z. Thus, z 1s O(n) distance
away from any input in N. Apply input schedule I';, 1.e. switch each input one
at a time. Each time an input x; e N switches, z switches. Hence a path from
x; to z must switch. Such a path 1s O(n) long and n/2 such long paths switch,
using 2(n*) multiswitch energy.

[he upper bound of O(n?) is exhibited by a circuit in which each node is a
@D-gate. Thus, for an embedding C in which the input ports are on a convex
boundary, Efoi.ﬂ(C) = @ []

[he results above show that race conditions can be very expensive of energy.
The circuit designer concerned with energy conservation is thus advised to
design circuits that preclude race conditions. The following section 1illustrates
an approach for eliminating some of the multiswitch characteristics of a circuit.
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], a nove alled SOR/SAND and layout were described for OR

” an bits. This new VLSI circuit was shown to have
and use worst case energy O(n) in the Uniswitch Model. This
escribes minor modifications to SOR/SAND that extend the circuit’s

energy-efiiciency to the Multiswitch Model M;. In particular, gate delays are

introduced to SOR/SAND via strategically placed fanout (F) nodes. In this
1anner, SOR/SAND is made synchronous.

The following recurrences describe the boolean functions OR : {0,1}" —
{0,1} and AND :{0,1}" - {0,1} in a novel way. The reader can verify that
OR(xl,...,xn)ﬂxl \/x2 \/-“Vx,, and AND()CI,.*.,.XH)E:E
xy Nxy AN--+Ax, The M, circuit realization of OR and AND is
D(V, /\), a modified version of the energy-efficient SOR/SAND circuit.

RECURRENCES
1) OR(x;, x;) = x; V (x; N\ X;)
OR(xy,...,x%) = OR(Xy,...,%X,2) V [AND(X,, . .. v Xp 2 ) /\
OR(X(ms2)y+15 - - - »Xp)]
2) AND(x;, x;) = (x; V x;) N\ X;
AND(xy, ...,x,) = [AND(x,4, . .. » Xns2) V OR(f(n/z)+ ls + = = »Xp)]
A\ AND(X(n/2)+ 15 - - « »Xn)-

OR(xy, . ..,x,) is abbreviated by OR(n). OR(xy, ...,X,) is abbreviated by
OR(n). AND is similarly abbreviated. (X1 - - . ,Xx,) is also written as (x;; x,,).

The reader may recall that in MSM M, race conditions can arise when the
paths to a node in a circuit have different depth. However, the appropriate
placement of gate delays in SOR/SAND causes all paths to a given node of
the circuit to have the same number of edges. The modified SOR/SAND cir-
curt 1s denoted as D(V, A). (D(V, N), A, 8, 1,) has the uniswitch pro-
perty in Multiswitch Model M, when D(V, /\) has constant wire delay A,,
zero gate delay 6y, and constant input delay 7.

The following discussion formally describes the D(\/, A) circuit and
corresponding layout, LF, which are illustrated recursively in Figures 5.3 and
0.4. The formal description of the revised SOR/SAND circuit is very similar

to the original definition, described in detail in [11]. Therefore, the reader
familiar with [11] may easily assess the changes from Figure 5.4.

DEFINITION. D(V, A) = (Vp, Wp) is a circuit illustrated in Figures 5.3 and
5.4, such that

VD x.jl UJ J2 ¥, GWhCI'e
J| are the input nodes {x1, x2,...,x,)} and
J, are the input nodes {X1, X5, ... , X, }.
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FIGURE 5.4.

G, the set of interior nodes, is as follows._
G = {75, V), 055, V), (5, A), (%, N), (5%, F), (5%, F)

where I<i<<logy)n, 1<k< - }.

21
For consistency, x; is also denoted v{"* and X, is also denoted as v$*.
Wp, the set of edges, is as follows.

Wp = {ei*, & | j€{2,3,4,5,7,8),1€(1,6,9,10}, 1< i< logyn, 1< k< - and
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: . 1. Ai,k : " k
els,k — (vfl 1,2k,v12,k )’ 86 et (vgrk,vas ),
. » _ * - s l, u,k
e’ = (3 h), ekt = bR e,
Ai,k . o - ' "-iak . f — 2k ‘,k
€9 ""'" (vll L2k l,vg,k), €10 — (V14 . ?vlﬁ )}

The 1ndices /, j, k and ! are used to label the nodes and edges of D(\V, N\)
umquely. D(V, A) differs from SOR/SAND in that the new fanout nodes in
D(V, /\') cause some edges to be ‘sfplit Into two. In particular, fanout nodes
{v¢'* } and their incident edges {&, } and {Ef;’ }mm D(V, /\) replace edges
{ej*: } In SOR/SAND; and fanout nodes {vg'“} and their incident edges
{es } and {e)p } in D(V, A) replace edges {ei'* } in SOR/SAND.

As the reader might expect, the fanout nodes of D(\V, A ) do not affect the
crcuit’s functionality. Hence, D(V, A) is functionally equivalent to
SOR/SAND. Thus, D(V, A\) computes (OR(Xy,...,x, ), AND(x,,..., x,)),
which were recursively defined above.

The following defines an embedding of a circuit in the plane.

DEFINITION. An (I, J)-grid-with-diagonals GD;; = (Ij', E) 1S a graph where
= {(kym) |0<k<I, 0sm<J) (i.e. set of cartesian coordinates), and

edges of E join vertex pairs that are either unit distance apart or distance V 2
apart. GD g4 1s illustrated in Figure 5.5.

(3,0)

FIGURE 5.5. GD g,
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G IJ 1S a E EO*E
V( X, y) = E

DEFINITIONS.
hezght(GDu) ;i — 1
area(GD, J) =

Let LF(x1, %2, ... ,%)= ¥(D(V, A\)) in the follow

ing manner. (In [11],
LF(n) = ¥ (SOR/SAND (n)) in a simila
the wire lengths are as follows.

'he mput nodes are unit
diate night of x; for 1< j<n, and

AJ k .AJ k : AZ K Af k
ey Il =1les Il = 1,1 ex*ll =llep* Il =1, 1l eg Il = |l e1o |l = 1, and
||6’3k|| “é’sk“z V 2, and ||6’7k|| ||€3’ | = 2"+ V2 —1 for
.. n
I<si<logn, I<sk< —-
2I

The relative location of the nodes of D(V, A) in the layout is evident from

the recursive description of LF, illustrated in Figures 5.3 and 5.4. The delay
nodes are embedded as follows:

vir® is embedded midway between vi~"2?*~! and v{'*, and v{* is embedded
midway between v}~ 2% and vi ¥,

LF (X1,...,X,)1s abbreviated by LF (n) or LF. Some facts about Lﬁ'(n) and
D(V, N\):

1) height( LF(n)) = 2 + height( Lﬁ*(—;—))

= 2log,n.

2) width(LF(n)) = 2n—1.

3) area( LF(n)) = height( LF(n)) * width( LF(n))
= 2logon*(2n —1)
~ 4 nlogyn.

Note that if T'(n) is a complete binary tree with n leaves unit spaced on a line,
height( 7'(n)) = logn and width(7T'(n)) = n — 1.
. area( LF (n)) = 4 x area( T (n)).
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= 2+ depth(D(g-))

= 2logyn.

[he fanout nodes of LF are used as gate delays to make the circuit synchro-
That 15, all paths to a given node of LF consist of the same number of
Hence, when LF changes state, the inputs to a node of LF switch at
the same time. This effectively precludes race conditions in M,. Hence the
following theorem.

HEOREM 5.4. The worst case energy used by Lf? (n) in Multiswitch Model M | is
Eyors:( LF(n)) = O(n).

PROOF. Because LF (n) 1s synchronous, (LF(n), Ay, 8y, I q) has the uniswitch
property in M,. Hence the switching behaviour of LF(n) is the same as
LF(n), the embedding of the SOR/SAND circuit. In addition, since
area(LF(n)) = area(LF(n)), Eporst( LF(1)) = Eppri( LF(n)).  Epporei( LF (1)) =
O(n) by a Theorem of [11]. O

[2] showed that in MSM M,, Q(nlogn) multiswitch energy 1s required to com-
pute OR on n inputs. The problem is open for MSM M, and M 3. In particu-
lar, assuming constant input delay, (i.e. all Inputs arrive at the input ports at

the same time), but non-constant wire delays, can LF(n) be made energy-
efficient?

In a manner similar to the construction above, the comparator circuits of
[11] can be made synchronous, and hence energy-efficient in MSM M, .
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