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Infinite dimensional Lie algebras frequently occur in the modern formulation of
the theory of certain nonlinear partial differential equations from mathematical
physics. As examples we mention the well-known Korteweg-de Vries equation
and its higher dimensional generalization, the Kadomtzev-Petviashvili equation.
The relevant Lie algebra for these examples is the collection of oo XX oo matrices
with complex entries. In this paper we present a survey of the theory of projec-
tive representations of this infinite matrix algebra. This greatly helps in the
description of a large class of explicit solutions of these partial differential equa-
tions (pdes), known as soliton solutions. The ideas and methods used in this
area of mathematics are a mixture of a wide variety of physical concepts.
Among them are Dirac’s classical theory of electrons and positrons but also
more modern ideas from two dimensional conformal quantum field theory.

1. INTRODUCTION

In 1895 Korteweg and de Vrnies introduced the following partial differential
equation:

Of 3.8 17 _
0t fax 4 9x° (1.1

This equation, which is now known under the name KdV-equation, is one of
the most celebrated examples of a so-called soliton equation. It was proposed
in order to describe the propagation of shallow water waves 1n a narrow chan-
nel. In this context the dependent variable f= f (x,7) describes the height of
waves 1n the channel as a function of a space coordinate x along the channel
and a time coordinate 1.

It 1s not too difficult to verify that (1.1) has the solution

flx,t) = 8u?/(e“xH¥iTe) 4 gmubxtuttal — 9, 26ech?y(x +ut+a),  (1.2)

where ¥ and « are arbitrary (real) parameters. This solution describes the
motion of a wave, which moves in time without loss of shape; for r = 0 it looks
like 2u?sech?u(x + ), which is a single ‘pulse’ peaked at x =0, and this profile
propagates with a velocity u* in the negative x-direction. It is worthwhile to
notice that the velocity 1s proportional to the amplitude of the wave. Such a
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wave is called a solitary wave or soliton. It had been observed in nature by
Russell as early as 1834, and in fact the explanation of Russell’s discovery was
the motivation for Korteweg and de Vries in introducing (1.1). We refer the
interested reader to Newell’s book [1] for a beautiful historical overview of the
discovery of the soliton.

In the 20th century the KdV-equation was forgotten for a long time. It took
until the 1960’s for the equation to reappear in the numerical work of Kruskal
and Zabusky [2] on nonlinear interactions in crystals and plasmas. What they
discovered was essentially that suitable initial conditions could lead to solu-
tions, which behave as a ‘train of pulses’ of the form (1.2) for asymptotic times
(i.e., for t—>=*00). Because the velocity of the pulses 1s proportional to their
amplitudes, the ones with large amplitudes overtake the ones with small amph-
tudes and hence, for intermediate values of 7z, the pulses interact. After the
interaction the individual pulses reappear without having lost their shape!
These solutions are called N-soliton solutions, N referring to the number of
pulses in the train.

Kruskal and Zabusky’s work triggered a lot of further research in the field
of nonlinear models. At present one knows that there are many other non-
linear partial differential equations (pdes), which allow soliton-like solutions.
(The term soliton 1s not well-defined, but 1s generally used to refer to functions
with the same qualitative behaviour as sketched above.) We mention some
examples:

_é)-t[ = ;-5-—1 + 2|/1°f nonlinear Schrodinger equation,
X
—La ——£ = sin f sine-Gordon equation, (1.3)
X

2 2 4
% — _é-r_z{ = 5—5—% + %c-; Boussinesg-equation.

Notice that these are all pdes in one space variable x and one time variable .
There 1s also a soliton equation 1n two space variables x and y, and one time

variable ¢, which can be considered as a two dimensional version of the KdV-
equation:

3__1 _I.__....._._f____..!_.aif__ | 4
4 ay ax ot 0 4 3x3 (1.4)

This equation 1s known as the Kadomtzev-Petviashvili equation.

Nowadays 1t 1s well known that infinite dimensional Lie algebras and the
groups associated to them play an important, if not dominating, role in the
theory of these soliton equations. The pioneering work in this direction was
done 1n the early 80°s by a group of Japanese mathematicians (see, e.g. [3,4]).
The basic idea is, roughly speaking, that an infinite dimensional group acts as

a ‘symmetry group’ on the space of solutions of a soliton equation, i.e., that it
transfers solutions into each other. This means that, if one can 1dent1fy the

22



symmetry group for a particular soliton equation and its corresponding action
on the solutions, it should be possible to construct solutions starting from a

tnvial one (f= 0). We will explain this idea for the concrete example of the
KP-equation (1.4).
Define the following formal differential operator:
X(u,v)= (1.5)
E eX MW = vx | exp |— S [ 1

Such an operator 1s to be understood as a power series in the formal variables
u and v, the coefficients of which are differential operators in the variables
X1,X2,X3,.... In physics 1t 1s called a vertex operator. In terms of these opera-
tors we can define the function

j;lat:"z:"-aa}viul1“27"'1uﬂvvl?v21*"1v}v — (1'6)
2
p) d log [eanx(unvl)eazx(uzsvz) C . eaNX(uMVN) 1]
2 - ?
axl
where a,a,,...,ay,u ,us,...,uNn,v,V9,...,vyC are arbitrary parameters. Put-
ting x:=x,,y:=x,, t:=x3 and x4=x5= --- =0, we obtain the N-soliton

solution of the KP-equation.

Of course one may wonder what the role of all other variables x4,x5,... is.
The answer to this is, that the KP-equation is best seen as the first member of
an infinite family of partial differential equations, the KP-hierarchy. The other
members of the hierarchy are pdes in the remaining variables x4,xs,.... In this
context the function (1.6), which is a function of al/l variables X1,X9,0es
satisies all equations of the KP-hierarchy. A similar remark holds for the
other soliton equations (1.1) and (1.3).

It 1s worthwile to remark that the N-soliton solution of the KdV-hierarchy
can be obtained from (1.6) by putting v= —u. From the expression (1.5) for
the vertex operator one sees that the effect of this substitution is that all vari-
ables with even indices drop out. In particular, the solution (1.6) does not
depend on y anymore. The reader should check that for N=1 one indeed
finds the soliton solution (1.2) for the KdV (where a= (1/2u)loga,).

Let us return to the N-soliton solution (1.6) of the KP-hierarchy. If we take
ay=a;= - - =ay=0, in other words, if we replace the exponentials by iden-
tity operators, we obtain the trivial solution f= 0. So the N-soliton solution is
indeed obtained from the action of a group on a trivial solution, as stated
above. The group in question is the group of operators of the form

a\ X(uy,v) ,a: X(uy,v2) || eaNX(umvN); (1.7)

€
di1,ds, . . ., ANy, U1, U, . . . UN,V],VD, ... ,VNEC,NEN.

If we want to know more about this group, we should study the vertex opera-
tor X(u,v). For this we write this operator as a formal power series in u and v
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X(uy)= 3 Xu'v. (1.8)
i,jeld

[he homogeneous components X;; of X(u,v) In this power series are con
cated dlﬁ"erenuﬂ operators, wi ose action 1s well deﬁned on the space of poly-
mial all variables x,x,,.... But more is true; it can be shown that the
collection of operators X;; together with the identity operator generate a Lie
algebra 1somorphic to a cemral extension gl/(o0) of the infinite matrix algebra.
From this observation one concludes that the symmetry group of the KP-
hierarchy 1s a central extension of the group of invertible oo X co matrices.

(NB: the notion of a central extension will be explained below.)

These observations motivate the study of the infinite matrix algebra and its
(projective) representations. In this paper, which 1s mainly expository, we
present a survey of this theory, which should be accessible to non-specialists.
The construction of the so-called ‘semi-infinite wedge representation’ in Sec-
tions 3 and 4 is in the spirit of the paper [5]. We thought it appropnate to
motivate this construction with some classical facts about the ‘wedge represen-
tations’ of the finite dimensional matrix algebra g/,(C); these will be presented
in Section 2.

Our main goal is to derive the formula (1.5) for the vertex operator and to
explain why the homogeneous components of this operator really generate a
Lie algebra isomorphic to a central extension of g/(oc). Our derivation 1is
somewhat unconventional in the sense that 1t strongly emphasizes the role of
the Virasoro algebra. This algebra, which is a central extension of the well-
known algebra of infinitesimal conformal transformations of the complex
plane, emerges in a completely natural manner when one studies the energy
spectrum of an infinite collection of bosonic or fermonic oscillators. This waill
be explained 1n Sections 5 and 6. An excellent reference for the Virasoro alge-
bra and i1ts representations 1s the book [6]. We consider the fact that the
bosonic and fermionic constructions of the Virasoro algebra coincide (Theorem
6.6) as the key result in the derivation of the expression for the vertex opera-
tor. This denvation can be found in Section 7.

Finally, in Section 8, we will give a brief account of our recent work [7] on
multi-component fermionic constructions of the representations of g/(o0). It is
hoped that this work will shed some more light on multi-component KP-

hierarchies, which are generalizations of the ordinary (l-component) KP-
hierarchy.

2. THE LIE ALGEBRA g/,(C)

In order to motivate what 1s coming, we will first recall some basic facts about
the finite dimensional representations of the Lie algebra g/, (C), the collection
of all nXn matrices with complex entries. First some notation; let {e;};<;<
be the standard basis of C" and let Ly, 1<i, j<n be the matrix with a 1 on
the (i,j)-th entry and zeros elsewhere, i.e.,

E j€k — Ojk€;- (21)
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In terms of these matrices the Lie algebra structure of g/,(C) is given by the
commutation relations

[Eij, Exi]= EijjEy — EyEy = 83 By — 8, Ey;. (2.2)

By a representation of g/,(C) we mean a linear mapping = : g/, (C) — gl (V)
of this Lie algebra to the endomorphisms of a vector space V such that the
mmutation relations (2.2) are respected, i.e.

[W(Ezj)a T(Exr)] = 8jk (L) — 8:’1'77(Ekj)~ (2.3)

The pair (V, ) is also called a module (over gl,(C)). It is clear that the space
C" 1s a representation of g/,(C). It is called the defining representation or self
representation of g/,(C). Although this representation is very simple, it has all
the characteristics of a so-called highest weight representation.

DEFINITION 2.1. Let A be a linear mapping from the collection of diagonal

matrices to C. A representation V(A) of g/ (C) is called a highest weight

representation, with highest weight A if it satisfies the following properties:

(1) There exists a vector vy €V, unique up to multiples, which is annihilated
by all strictly upper triangular matrices in g/,(C).

(2) Any element of V can be obtained from the action of the lower triangular
matrices in g/,(C) on this v,.

(3) The diagonal matrices act diagonally on vy ; (D )(vy)={(\,D )vy.

The vector v, is called a highest weight vector.

In the example of V(A|)=C" we simply take vy, —e; and < Ay, diag
(dl: - .. ,dn)>12d1.

There 1s one more important property of the defining representation; the
only subspaces U CC" which are invariant under the action of gl,(C) are
U=0 and U =C". In other words the defining representation is irreducible.

If V1 and V, are any two representations of g/,(C), one defines the tensor
product representation as the space V' ® V', with the action:

T(A)VQvy) := 1 (A)V)Bvy + v Rmy(A)(vs) (2.4)
VA Egln(C), V) € VI? Vy € Vp_.

Let us take V', = V', = C". The tensor product C"®C" is clearly not irreduci-
ble; it is the direct sum of the spaces of symmetric and antisymmetric tensors,
which are both invariant under the action (2.4). Let us denote the space of
antisymmetric tensors by A*C”. It can be shown that this space 1s again an
irreducible highest weight representation of g/, (C). Its highest weight vector is
ey /\e; and its highest weight is given by < A,, diag(d,, . . .,d,)>:=d, + d,.
Continuing in this manner, we are led to the so-called k-th wedge space AXC”
as the k-fold exterior product of the vector space C” with gi,(C)-action:
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T (AY WV AV A\ - Aw) i = AV )NV - - Ay
+ v ANAV)IA - Ay + - - - (2.9)
+ viAva A\ - A(Avy)
VA egl,(C), vi,vy, ...,y €C”.

LeMMA 2.2. The spaces Vi:= N\*C",1<k<n are irreducible highest weight
modules over gl,(C) with highest weight vector e /\ex —1/\ - - - /N\e, and highest
weight given by < Ay, diag (d,, . . . ,d,)> 1= dy +dy+ - -+ +d;.

3. LIE ALGEBRAS OF INFINITE MATRICES

In this section we will show how to generalize the notions from the previous
section to Lie algebras of ooX oo matrices. The most straightforward manner
to do this, is to consider the collection g/(+ oo) consisting of all matrices
(aij)ijen such that all but a finite number of entries g;; are zero. It is easy to
verify that the matrix product and hence also the commutator is well defined
in this algebra. We can also introduce the vector space C™* as the set of all
column vectors (x;);.n Such that all but a finite number of x;’s are zero. The
algebra g/(+ o0) acts in the obvious manner on C ™ and we can again call
this space the defining representation of g/(+ o0). Moreover, C** is again an
irreducible highest weight module and the same holds for the k-fold exterior
product A“CT*®. We conclude that this generalization is completely trivial:
nothing interesting happens.

The situation changes dramatically if we consider instead of g/(+ oco) the Lie
algebra gl(c0), defined as the collection of all matrices (g;;); ez such that all
but a finite number of entries a;; are zero. The defining representation of this
algebra is of course the space C* consisting of all vectors (x;);cz such that
almost all x; are zero. Now consider the collection of all strictly upper tnangu-
lar matrices in gl/(c0). Because the matrices in gl/(co) are infimite in both the
‘positive’ and in the ‘negative’ direction, the strictly upper triangular matrices
in g/(o0) do not have a common column of zeros. This means that there 1s no
vector in C*® which is annihilated by all such matrices. Consequently, the
defining representation is not a highest weight representation for g/(cc) and
neither is any of its finite exterior products A*C®.

The question arises if there are any highest weight representations of g/(oo)
at all. The answer to this question is yes; to see this we introduce, following
Kac and Peterson [5], the semi-infinite wedge space A C™ as the vector space
consisting of all finite linear combinations of semi-infinite exterior products of
the basis elements e; of C* of the form:

eio /\e,-l /\e,-z /\ - (3_]_)

such that ig>i;>i,> - - - and such that i;,, =i — 1 for />0. On this space
gl(o0) acts as usual; denoting the action by 7, we can write
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T(A)(ejo /\O.‘.E"il /\eiz/\ - - e ) — (Aeiu)/\ei, /\efz AN
+ e,-n /\(Aeil)/\e,-z /\ - - (3_2)
+ e, N\e; N(Ae,)/\ - -+ -+ VA egl(oo).

We can distinguish the basis elements (3.1) by their behaviour at large /; we
will say that an element of the form (3.1) has charge k if i,= k —/{ for all />0.
For instance the vector

k>=v:=er Nex—1/\ex_,/\ - - (3.3)

has charge k. In this case we will refer to v, as the k-th vacuum. The vector
space of all vectors of charge k is denoted by APC™ and we clearly have a
decomposition of the full semi-infinite wedge space in sectors of fixed charge
NPC® = k®z/\}3°C°°. (3.4)
In fact this decomposition 1s a decomposition in submodules for the action 7
of the algebra g/(c0); the action of an element E; on a wedge
e, /\e; /\e;, /\ - - - replaces the vector e; in this wedge—if present—by ¢; and
this does not effect the charge of the wedge. Even more is true: the submodule

Ak €% 1s a highest weight module for the algebra gi/(oc0). We have for j >
'T(E,j)(vk): Sjkei/\ek_l /\ek.......z/\ "t +8j,k—-lek /\6’,* /\é’k_...z/\ SRR R
= 0. (3.5)

In other words: the k-th vacuum 1s annihilated by all strictly upper triangular
matrices. Moreover, it i1s easily seen that any wedge in AP C® of the form
(3.1) can be obtained by successive application of the action of strictly lower
triangular matrices E;; on the vacuum

'T(Eio,k)'T(Ei,,k -—1)‘7'(Ei2,k —2) ()= €, /\ez‘, /\eiz AN (3.6)

Finally, the diagonal matrices act by multiplication with a scalar on v,

T(Ei) (Vi) = Ok, Eii vy, (3.7)
where the linear mapping 6, : @z CE;; — C 1s defined by

‘ 0 ifi >k,
<0kaEii>:: 1 ifi< k. (3.8)

This means that A C™ 1s a highest weight module for the Lie algebra gi/(oo)
with highest weight 6,. It 1s not too difficult to prove that this module 1s in
fact irreducible. In the sequel we will denote the restriction of the representa-
tion T to this module by 7.

Next we introduce elementary ‘creation’ and ‘annihilation’ operators on the
semi-1nfinite wedge space N\*C™; for every ieZ we define linear operators
Y(i) and ¥ (i) on the semi-infinite wedge space by their action on basis vectors:
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l\b(i)(eio /\eil /\ei; /\ - ) . = e,'/\eiu /\Bil /\E’i:z AN .
o0

(..........)k ai,ik eio /\ e;‘l /\ efz VANEIEER /\ gfk /\ et (3.9)

‘P* (i), Ne Neg N\ -+ ):= >
k=0

where the notation ei; means that the vector ¢; is deleted. The restrictions of
these operators to a fixed charge sector raise and lower the charge:

YWi): N C® - AN €%,
Y (@) APC® > AP C™. (3.10)

Furthermore, these operators satisfy anticommutation relations:

(W PN}=0= )Y ()} W)Y ()= 3y (3.11)

The importance of these operators lies in the fact that the action of the ele-
ments E;; can be expressed as a product of these operators; one clearly has

m(Eyj) = YW ()). (3.12)

Note that any element of the semi-infinite wedge space A C* can be written
as a finite linear combination of elements of the form

W) - YW G ¥ (1) - - ¥ (o),

i0>il>"‘>ik>0“2j0>jl>“' >_]1. (3.13)

This means that we could also have constructed A®C*® 1 a superficially
different manner, which 1s more famihar to physicists. Let C/ be the Clifford
algebra on generators (i), ¥ (i), i€Z with relations (3.11). Define the so-
called fermionic Fock-space F as the unique irreducible C/-module, which
admits a vacuum vector |0> such that

Y(H0>=0 Vi<O,
Y ()0>=0 Vi>0.

With the identification |0>=vy we have F=A®C*®. The fermionic Fock
space F'1s also called the spin representation of CL
In physics one introduces a charge operator g by:

q10>=0, [g,¥k)]=Yk), [g.¢ (k)= —¢ (k). (3.15)

It 1s clear that this 1s the same notion of charge as the one introduced above.

(3.14)

4. COMPLETIONS, CENTRAL EXTENSIONS AND NORMAL ORDERING

For many purposes the Lie algebra g/(oo) is too small. Therefore, one usually
considers a completion of this algebra.

DEFINITION 4.1. The Lie algebra g/(o0) is the collection of all co X oo matrices
of fimte width around the main diagonal, that is,

gl(o0) 1= { 2 ngE:jlgszC/\gzj = 01f |i —j|>0}. (4.1)
i,jed
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H one tries to extend the representation 7 to the algebra gl(oo):) gl(o0) by
inearity, one immediately runs into problems. These pro blems originate from
the fact that the action of diagonal matrices in g/(c0) is not well defined if we

mply extend r by linearity; if we considex, €.g., the action of the identity
matrix 2;.zFE;€gl(c0) on the vacuum vector v,, the result would be the
vacuum vector multiphied by:

(4.2)

i<0

It 1s well known how to repair this situation; one si
tation 7 by the assignment «# defined by:

(k) 1= ™(E;) — 6;;C 0o, E;) I. (4.3)

AP o i

The assignment 7 can be extended to diagonal matrices in gl(c0); for the
action of the identity matrix on the k-th vacuum we find:

a [ZE,-,-] k) = S8 — b0, Eq) v = kv, (4.4)

icd ied

mply replaces the represen-

It can also be proved that m can be extended to strictly upper and strictly
lower triangular matrices in g/(o0).
Of course 7 is not a representation of g/(c0) any more, that is,

[W(Eij)s W(Ekl)] — [T(Ezj): T(Ekl)]
= 0 T(Ey) — 0y7(Ey;) (4.5)
— jk'”(Eil) T 5i1‘7T(Ekj) + 5f13 x b, E; — E-*).

Because of the extra term §;0 ik(bo, E; — E;;) in the right-hand side of (4.5), =
1s called a projective representatlon of gl(oo) Another way to formulate this is

to introduce a new algebra g/(c0) as the vector space g/(o0) @ Cc with commu-
tation relations

[A +ac, B+ Bc].:=[A,B]+ m(A,B)c, VA,Begl(x), a,feC. (4.6)

The commutator [4,B] in the rnight-hand side of this formula is the ordmary

commutator 1n g/(co) and the bilinear mapping p:gl(c0) X gl(c0) —-C is
defined by:

P’(Ei :Ekl) _— 81'18]7( <00: Eii T E]j> (47)

This mapping is called a two cocycle on g/(c0). The algebra g/(co) is called a
central extension of g/(oco) and the assignment 7 can be considered as a
genuine representation of this central extension, in which the central element is
represented by the identity operator. The definition 4.1 of the algebra gl/(co)
guarantees that this two cocycle can be extended to this algebra by linearity.
The Lie algebra g/(oo0) @ Cc with commutation relations defined by this two
cocycle 1s called A4
Notice that we have the following expression for the two cocycle pu:
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B]), VA,Begl(), (4.8)

wla (4.8) shows

where H:= 3. <o E;. A word of caution is justified here; forn
that the value of the two cocycle on two elements 4 and B of g/(co) depends
only on the commutator [4,B] an d one is tempted to modify the operator 7(a)
by trace(HA)I and conclude that the central extension is trivial. Notice how-
ever that the one cycle trace(HHA4) 1s only wel defined for 4 €gl(o0). On this
algebra we have w(a) + trace (HA)I =7(A4), whence the restriction of the cen-
tral extension to g/(o0) C gl(o0) is trivial. On the completion g/(co) this cannot
be done and the central extension is nontrivial.

In physics the procedure above is usually formulated in terms of a normal
ordering prescription on the fermionic creation and annihilation operators; one
writes:

W(Eij) — . ‘P(i)‘l/*(]'):a (4.9)
where the normal ordered product :y(i)y’ (j): is defined by:

.. e 1[/(1)4/(]) if i >0,
YOO, wO,Eﬁ):{ — G ifi<o. (410

5. THE ENERGY SPECTRUM OF A\ C®™ AND THE VIRASORO ALGEBRA

In physics the semi-infinite wedge space A*C* i1s interpreted as the Hilbert
space for a system of fermionic oscillators. In this context one introduces the
following ‘energy’ operator on A C*:

= Dk (k) (5.1)

kel

or in terms of the algebra 4

Hy=n [k% kEkk]. (5.2)

With the normal ordering definition (4.11) and the anticommutation relations
(3.11) one easily denves:

Hy(vg)=0
[H o, (k)]= kyAk), (5.3)
[Ho ¥ (k)= —ky’ (k).

From these relations it 1s clear that the creation of a fermion from the vacuum
vo with the operator Y(k), kK >0 requires an energy k. Similarly, the annihil
tion of a fermion with the operator Yy(k), k<0 yields an energy —k. It is also
clear that H, is diagonalizable with eigenvalues in Z.,; its eigenvectors are
precisely ~ the  elements  Y(ioWAi1) - - - Wi Go (1) - - ¥ (Do),
0>01=> - >p>0=2j0>j,> -- - >j, from (3.13). The energy of such a
vector 18 ig+i;+ - - - +i—(jo+j;+ - -+ +j;). Because the minimal eigen-
value of H is zero, one speaks of a positive energy representation of A .

Let z be a formal parameter and introduce the following formal fermionic
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fields:

(5.5)

In view of this formula it is natural to look for operators H,, n€Z on A®C%®
whose adjoint action on yY{z) is given by z"*!(d/dz). A small calculation
ylelds that the operators 2, z(k —n) :(k —n) (k): satisfy this requirement.
The adjomnt action of these operators on the conjugate field is given by
z"*1(d/dz) + nz". For reasons to be explained in the sequel we will work
with slightly different operators, viz

(k —npB) sk —ny (k): = [ S\ (k —nB)E, -, k], (5.6)

kéZ kel

where the value of B8R will be chosen below. The commutation relations of
these operators with the fermionic fields are:

[, ()] = 2" z—d%*-n(l-—ﬁ)]xl/(z),
[H,d" (@] = 2" |2 +nB|¢ (o). (5.7)

Next we compute the commutation relations between the H,’s;

LEMMA 5.1 (cf. [6]).

[ Hn, H, ]| = (5.8)
1 ]
(m—n) [Hm +n T ""2""‘8,,, +n,0ﬁ(1 —B)| + “i_i(mS —m)0,, +n,OCBI:
where
cg= —12B* + 128 — 2. (5-9)

PROOF. With the expression (5.6) of H, in terms of the representation = of the
algebra A ,, we can write for the commutator [H,,, H,,]:

Ly [ 2 (k “mﬁ)(lmnﬁ)[Ek“m,ksElmn,l]] + Z (k _mﬁ)(lHnB)F(Ek“m,k:El—n,l)*

kleZ k.led
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puted with the commutation rela-

[he first term 1n this CXPICS sion can be con
tions in g/(o0); one finds

" (k—mBY({ —n B8k +nOk 1+ mMEx —m ks Erx—m)=
k,led

> (k —mB)(k —m (1= BYE ~m > Excje —m)

8m +n0 L2
ke

For m >0 we get

O +n, 0 i (k —mB)k—m(1—B)=08m +n0 2.
k=1 k=1

(k* —mk + B(1— B)m?)

The case m <0 is similar. Combining the two results, we have proved the
lemma. [

The lemma shows that the ‘shifted energy’ operators I}n = H, +%68,,6(1—PB)I
satisfy the commutation relations

(H B, 1= (m =) 1 + 8 40, 00m° —m)e g1 (5.10)
The algebra on a basis {D, },ez U {¢y;r} With commutation relations
(D Dal= (M =1)Dpy 1 + - (m> =m)siss [DpG]=0, (511

is called the Virasoro algebra. It is a one-dimensional central extension of the
conformal algebra, i.e., the algebra spanned by elements d,, n€Z with commu-
tation relations [d,,,d,]= (m —n)d, +,. From (5.10) we see that the assign-
ment D, — H, is a representation of the Virasoro algebra in which the central
element c,;, 1s represented by cgl.

In the next section it will be crucial that cg=1 or, equivalently, that =12
In this case one has (see (5.7)):

[H, /2)] = 2" [z-f; + —n|Wa),
(H, W (2)] = 2" {Zé‘ + —nl Y (2 (5.12)

These relations express that the fermionic fields y(z) and ¢ (z) have conformal
welights /2 (see, e.g., [8]).

Right now we can also give another explanation for choosing B= %. For
this we recall that the semi-infinite wedge space can be equipped with an inner
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product, which 1s uniquely detern

a) Wk) =y (k),
b) (VO,VO): 1. (5E3)

ined by the requirements

mmutation relations of the conformal algebra can of course be realized
by choosing d,:= —A” T1(d/dN). If we read A as e'° this becomes d,:=
ie’™%(d/d#), so it is natural to demand that any H

[1ilbert space representation of
this algebra satisfies d},=d_,. Motivated by this we also require for the
Virasoro operators H,:

H=H_ (5.14)

A representation of the Virasoro algebra satisfying this requirement will be
called unitary. It 1s clear that with the inner product determined by (5.13), this
can only be achieved if B= 4.

6. BOSONS
Here we introduce the operators a(k), k €Z by:

a(k) := S W (G +k): =m [EEW_,{],, (6.1)

Jjel jek
With the inner product on A C* determi

ned by (5.13) one easily verifies:
a(k) = a(—k) (6.2)

Notice that the Hermitian operator a(0) 1s simply the charge operator (see
(3.15) and (4.4)) on the fermionic Fock space.

The commutation relations between the a(k)’s are given by the following
lemma.

LEMMA 6.1.
[a(k), a(j)] = ko +,01- (6.3)

PROOF. The operator a(k) corresponds to the k-th diagonal in the algebra
gl(o0). Since the k-th and the j-th diagonal commute in g/(o0), we only get a
contribution from the two cocycle p; for kK >0 this becomes:

“( 2 Em,m + Kk ZEn,n +j):' 2 8n,m +k8m,n +jl-"(Em,m +k:Em +k,m)

melZ nef mneld

0
— 8/( +J, 0 E F(Em,m +kaEm +k,m)
m=—k+1

= kOg +,0-

The case k <0 1s similar. ]

The relations (6.3) are the quantum mechanical commutation relations for a

33



[f one leaves out the ‘zero mode’ a(0), which is
e for £k >0 pp:= a(k), g(k):=

rite:

ant on a fixed charge sector, one can defi

N a( — k). In terms of these operators we can w

[Pr> g1 = Okl (6.4)

[hese relations are known as the | mmutation relations in physics.
Notice that they can easily be realiz the ring of polynomials in all vari-
ables X1,X92,X3, ..., by the ;.'l iment Pk a/axk, di > X[ .
[here 1s a standard recipe to construct a representation of the Virasoro alge-
bra from a system of bosonic oscillators.

LEMMA 6.2. Let {a;};cz be a collection of operators on a vector space V, such
that [a;,a;]= i0; +; oI and a;(v)= 0,VveV and i>0. Define normal ordering by

a,a;:= a;a; if i<j and .q;a;:= a;a; if i >]. Then the operators Ly, defined by

1
Ly:==75 2 a—;a 1, (6.5)
jelk

satisfy the commutation relations for the Virasoro algebra:
. 1
[Li, Lj]= (K — )Ly +; + Ti“(k3 ~k)Ok +,01 (6.6)

Moreover, we have:

[Lx,a;] = —ia; 4. (6.7)

PROOF. See, e.g., [6]. L]

In our situation we take V= A®C* and g;= a(i). In this case the relation

(6.2) guarantees that we have again a unitary representation of the Virasoro
algebra;

Ll=L_, Vnel

[he condition that the a(k)’s annihilate an arbitrary fixed vector for k large
enough 1s easily verified with the definition (6.1). Notice that we have intro-
duced a normal ordering on the bosons, which, by abuse of notation, is again
denoted by : ..

We now have two unitary representations of the Virasoro algebra with
¢yir — I; 1n the previous section we have introduced the operators H, 1n terms
of normal ordered products of the fermionic oscillators Y(k) and ¢ (k). Here
we have defined operators L, in terms of normal ordered products of the

bosonic oscillators a(k), which in turn can be written as a normal ordered pro-

duct of fermions. In particular the H,’s are quadratic and the L,’s are quartic

in the fermions and it is a priori not at all clear that these operators are
related.

Let us further investigate this situation by computing the commutation

(6.8)
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relations of the H,’s with the oscillators a(i) (the comn
and «a(i)’s are given by (6.7)).

utators between L;’s

PROOF.
[H;,a(i)]= [ [ 2, (k — BV, VEy k|, [ > E+ i] ]
ked led

1 .
T Z (km?J)“(Ek —j,kvEI,l-i-i)

1 .
— 7 { 2> (k “E"J)[Ek — ks Epr+i]
kleZ klcZ
|

1 . 1 .
= qr [Z(k“‘“z‘j)Ek —J,k +i“(k““5J)Ek”i“JLk
kel

X

1 .
+ 2 (km“i-.])skfsk _j,l-l*ip‘(Ek “j,k:Ek,k '"'_/)
k,leZ

NPT 1 .
= —ia(i +j)+0, +,0 E(k“""f])ll(Ek -——j,k:Ek,k ---j)-
ked
For j >0 the central term becomes §; ;. ; ¢Zf = (k — %j)= — %i8§; . i,0- The case
J <O 1s similar. ]

The lemma suggests of course to replace a(k) by a(k): = a(k) + %8,,. It is
clear that the commutation relations (6.3) of the oscillators are not affected by
this replacement. We can now use Lemma 6.2 again and construct Virasoro

operators L, in terms of the a(k)’s. Let us summarize what we have achieved
sofar 1in a lemma.

LEMMA 6.4. Define

ak):= 3 W G +K): + -8l (6.10)

jelk
then the a(k)’s satisfy

[a(k),a(j)]1= ki + - (6.11)
Let
Le i= = :&(— jag + k).,
2jEZ

Fal

H, := Z(jmé“k) YA ---k)x,(f(j): +~é—-8k0. (6.12)

jel
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A

then both the L.’s and the Hy’s define a c,;, I representation of the Virasoro
algebra. Moreover, we have:

F

(L, a(i)]= —iali +))= [H;,a())

[he next step is to consider the difference A := H,
mma states some crucial properties of Ay.

A 6.5.
a) (B, B1= (k=) +>
b) Az — A._. ko
¢) Aj>=0, Vk>0 Vj, o
d) Aolj>=N|j> NER V).

PROOF. Relations b), ¢) and d) are immediate from the corresponding proper-
ties of H, and L,. To prove a) we remark that the operators 4, commute with
all oscillators a(j);

[Ag,a()]= [Hy, ()] — [Ly,a(j)]= 0.
Because f,k is defined entirely in terms of the a(i)’s, we conclude:

(A, L]=0 VK, j

Hence:

M

[, A51= (A, H; — L]
— [Akaf{j]
= [H,H;] — (L, L;] — [L,A]
= (k —j)Hy+; — (k — )L+,
= (k —j)A + - L]

Notice that the proof of both a) and b) requires that = 2.

The lemma means essentially that the operators A, provide a unitary
representation of the conformal algebra on the semi-infinite wedge space. It
can be shown (see, e.g., [7]) that this representation must be trivial, 1i.e.
A, = 0 Vk. Hence, we have the following theorem, which is really the crucial
result in boson-fermion correspondence and the representation theory of 4 .

THEOREM 6.6.

H =1L, Vk (6.15)
Notice that with the bosonic field defined by

a(z) := YWz (2): = S ak)z (6.16)

kel

36



[he theorem can be reformulated in a way which is more familiar to physi-
C1StS;

1.1,4 « N1 a e o1 5 1

5 [z 7 Y(z)| ¢ (2): 5 YAz) {z dz"b (z)}. =5 a(z): + 2a(z). (6.17)

7. VERTEX OPERATORS
Let u and v be formal parameters and introduce the vertex operator for the
algebra A4 ,, as the following formal operator:

Xu,v):= 3 m(E;u'v. (7.1)
i,jed

One should think of X(u,v) as a formal operator valued power series, which
generates the projective action of the Lie algebra gl(oc) on the semi-infinite
wedge space; extracting the coefficient of u'v ™/ yields the operator w(£;). In
this section we will derive a well-known expression for X (u,v) in terms of the
bosonic oscillators.

Notice that (7.1) is equivalent to

Xuv)= 3 W () u'v ™I = Yup (v): (7.2)
i,jek
Using the definition (4.11) of normal ordering, this can also be written as

X(u,v) = Yup () — —

1 —v/u

* (7.3)

where the power series (1—v/u)™" has only formal meaning;

1 = > [-—Y--] . (7.4)

1—v/u >0 | U

In order to find an alternative expression for the fermionic fields y(z) and
Y (z), we consider the commutation relations of these fermionic fields with the

bosonic oscillators.

LEMMA 7.1.
[a(k), (2)] = z"(2),
[a(k), " (2)] = —z%¢ 7 (2). (7.5)

PrOOF. Using the definition (6.1) of the oscillators and the normal ordering
prescription (4.10), we write

[a(k). ¥ ()] = — X W IHNDAPDI+ 3 WO (U +k),4()]
[+ k<0 [+k>0
— 281-1-}(,]4/(1) = Y(j — k).
lel
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e first relation of the lemma is clear. The second can be

['he relations (7.5) can be seen as formal eigenvalue equations for the adjoint
action of the oscillator algebra. It is easy to find solutions for (7.5); define

exp | — S~z *a(k)
k>0 k

1

2

EM)(2)

ETNe):=exp |— 3 -z *a(k)
k <( k

1

, (7.6)

then one easily checks that the product E(7)(2)E(*)(z) satisfies the first rela-
tion of (7.5) for all k540 (recall that a(k) = a(k) Vk=£0). In other words: the
operator Q(z):= E'7)(z2) " 'Y(z)E")(z2) 7! commutes with all oscillators except
with the zero mode;:

[a(k), Q(2)] = 8r0 Q(2). (7.7)
With this remark it 1s clear that we can write

Wz) = QE)ETI)E T (2), (7.8)
For the Hermitian conjugate field one easily derives a similar expression;

¥ (2)=Q ET ()T EM(@)7. (7.9)

It remains to determine Q(z) and Q" (z). To do this, we use the commuta-

tion relations (5.12) of the fermionic fields with the Virasoro operators
H k— Lk-

LLEMMA 7.2. We have:

0(z) =20,
Q' (z) =z7°O7 10", (7.10)

where the Hermitian conjugate operators Q,Q : A®C® > A®C>® are deter-
mined by the relations

OUz) =z~ 'Y 2)Q,

QY (z) = z¢ (2)Q,
Q|0> = y(1)|0>,

Q0> =’(0)|0>. (7.11)
Moreover, these operators are unitary:
Q' =07 (7.12)
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~,

PROOF. Consider the commutator [Hg,(z)]. Using (5.12), the definition
(6.12) of Ly= Hg and the expression (7.8) for y(z), we |

[= S ra(—k)ak):, Q2)ET(2)E T (2)]= 2 ' (2)ET)(2)ET)(2)) (7.13)
2, o7 dz

utation relations (6.3) for the oscillators it is easily seen that:

&(—k)ak):, ED@E @)= 22 (E@ED @), (7.14)

utes with all

Substituting this relation in (7.13), and recalling that Q(z) comn
oscillators except with the zero mode, we find

1 A d
[0y, Q(2)]= z—~0(2) (7.15)

Using (7.7), this can be rewritten as
24-0() = [&(O)w --2‘-] 0(2) = «(0)Q(2) (7.16)

This differential equation is solved by
Q(z) = z°VQ, (7.17)

where Q is some operator independent of z. The expression for Q (z) can be
derived from this formula by Hermitian conjugacy.

The proof of the other relations of the lemma is somewhat more technical.
We refer to the paper [7] for a detailed derivation. []

Combining Lemma 7.2 with the relations (7.8-9), we find the following impor-
tant corrollary:

COROLLARY 7.3.
W(z) = z°OQET (2)ET)(2),
Y (z) =z O ED ) TTEM ()7, (7.18)

It 1s clear that Q 1s an operator that ‘translates’ the charge k sector into the
charge k +1 sector. Therefore, we will call it a fermionic translation operator.
In the expression for the vertex operator X (u,v) the Q’s cannot occur since the
operators 7(L;;) map the charge k sector into itself. In fact, we find:

1

Xu,v)=W/w) " OEOWEDWET) (W) TEM W)™ — ——
—V/U

I (7.19)

With a calculus of formal variables developed in [9] one derives:

1
l—v/u

EMDWETD W TTEM @)™ =

EC)»™ L (7.20)

Using this result, we obtain the following theorem:
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| HEOREM 7.4. The formal opemtor X (U,V)I ~— E,-, jeZ T (E, )u’v —J can be
expressed in the oscillators as follows:

— a(0) B 1
X(uy)= Y1 EO )EC) )N EO@ED ) — I 21
1 —v/u 1—v/u
v/u)” %0 —k _ ., —k |
= € —v Da(k)| — __
l—v/u P o I=v/u

We stress that this 1s a remarkable result; 1t means that the action of the
algebra g/(o0) on the semi-infinite wedge space can be completely expressed In
terms of the action of the subalgebra consisting of all oscillators. Combining
this with the fact that the charge k sector is an irreducible g/(c0) module, we
conclude that A\ °C* must remain irreducible under the action of this oscilla-
tor algebra. In other words: 1t 1s a bosonic Fock space. This result is usually
derived using (a specialization of) the Weyl-Kac character formula (see, e.g.
[10]). Here we have followed a different approach; we have derived the formula
for X(u,v) from the expressions (7.18) of the fermionic fields. The essential
ingredient in the derivation of these expressions is Theorem 6.6: the result
Q(z)=z*“Q was found with the commutator [H 0-¥(z)] and the fact that
Hy= L,.

As was already mentioned in Section 6, we can construct an irreducible

representation of the oscillator algebra on the ring of polynomials in all vari-

ables xj,x;,... . Restriction to the charge zero sector, where a(0)= 0, yields
formula (1.5).

8. MULTI-COMPONENT FERMIONS

Here we briefly discuss recent work on multicomponent fermionic construc-
tions of the semi-infinite wedge space. The interested reader is referred to the
paper [7] for more details and proofs.

Recall that the fermionic Fock space A*C* can be constructed from the
action of the creation and annihilation operators (k) and ¢ (k) on the
vacuum |0>. In Section 5 we have seen that the label k is related to the
eigenvalues of the energy operator Hy. This means that we are dealing with
fermions of only one type, e.g. an electron and its antiparticle, the positron. To
describe a system of n different types of fermions, one introduces the Clifford
algebra C/ on generators y;(k), Y; (k), 1<<i<n, k €Z with relations

(i), 4 (D} = 88 (k). (D}= 0= {y; (k), ¥} (])). (8.1)

Let V' be the unique irreducible C/-module, which contains a vacuum vector

0> such that
Yi(k)I0>=0 Vk<O,
Y (K)|0>=0 Vk>0. (8-2)

In fact thuis Clifford algebra is isomorphic to the one we had before. To see
this, we define the relabelings:




Yi(k):=Wi+nlk — 1)) ; (k)=¢ (@ +n(k —1)). (8.3)

and the defining relations (8.2) of the space V, it is clear that

. So from a mathematical point of view the 1-component construc-
tion 1s equivalent to the n-component construction. It is also clear that the nor-
mal orderi: g prescription (4.10) can be transferred to the multi-con ponent fer-
mions as follows:

def (Wil W;()  if 1>0,
{ (3.4

N (D=1 s (g k) i 1<0

The next step is to introduce fermionic fields ¥;(z) and y; (z) by:

i(2) 1= X i(k)z",

kel

Yi(z) 1= D (k)z k. (8.5)

kel

Bosons can be introduced 1n this picture analogous to (6.16);

def .
a;(z)= Zai(k)zmk = iz W, (z):. (8.6)

kel

With this definition one easily verifies the oscillator commutation relations

[a;(k),a;(1)]= 6,;0k +4 0. (8.7)

We are now ready to formulate the following analog of Lemma 7.2 and the
expressions (7.18).

THEOREM 8.1.

¥i(z)= 2% 0, exp {-——- S iz““a,(k)] exp {---— > --Lz“ka,»(k)},
k<0 X k>0 kK

i (2)=z —aO - cXp Lgo-}c—z ~k (k) eXp [kgo-;l:z "kaf(k)]. (3.8)
where the operators Q; : V—V are defined by

Qi|0> = ;(1)[0>,

Qii(k) =ik +1)Q;,

Qi (k) = i (k +1)Q;,

Qiyi(k) = —¢;(k)Q; I iz~

Qi (k) = —y;(k)Q; if ij (8.9)
These operators satisfy:

{Qi,Q;} =0 1if i%) (8.10)

The normal ordered products :y;(u)};(v): are again generating operators for
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the representation = of gl();

G, ) = S W (1) uky !

kilel

= 3 Wi +nk—DW' G +nl— D) ukv
kled

2, M(E; +nk -1, j+n(l— UV g (8.11)
kleZ

For i = the product W (uW; (v): is simply the bosonic field «;(z), while for
is=j we can derive after some formal calculations:

* ) — -1, 1+e(0) —a(0)
Y(up;(v): = Q:Q; u Py X

_ilc_ ( 1k a(—k)—v k o j( —k ))] cXp [ —

TR
L

2 '/i"(“mkai(k)“vmkaj(k)) . (8.12)
k >0

EXp | 2
k >0

It is important to notice that the Q’s do not cancel 1in this formula, simply
because there are n different types of them. This means that the charge k sec-
tor AL C® is not irreducible anymore under the action of the algebra consist-
ing of all oscillators a;(k), 1<i<n, keZ. Consequently, this oscillator algebra
cannot be equivalent to the one consisting of the oscillators a(k), k €Z!

In fact there are many other inequivalent oscillator subalgebras in A4 .
They are associated to more general relabelings of the fermions than (8.3). To
each equivalence class corresponds a vertex operator construction of the space
AL C*. It is an open problem how to parametrize the equivalence classes of
oscillator subalgebras of 4 . In [7] we have systematically studied the oscilla-
tor subalgebras, which come from the representation theory of the affine alge-
bra gl,(C). In this context the algebra of a(k)’s is the well-known ‘principal’
oscillator subalgebra of g/,(C), while the algebra of a;(k)’s is the ‘homogene-
ous’ oscillator subalgebra of g/,(C).
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