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The following is an attempt to provide a general idea of the closely related
areas of index theory and anomalies. Our account is directed towards
mathematicians with some background in functional analysis and diftferential
geometry, but we presuppose no previous acquaintance with Atiyah-Singer
type theorems and anomalies (or with theoretical physics, for that matter).

'he mathematical side of the subject matter is described 1in Section 2. After
some preliminaries concerning Fredholm operators we illustrate index
theorems by detailing the simplest case (Toeplitz operators on the circle). Our
survey of the far-reaching generalizations of this result which now constitute
index theory is however very sketchy. We recommend [3] for further browsing
and a host of annotated references, [9] for a recent and elegant introduction,
and [6] for a lucid overview of index theorems and the geometric structures
associated with this area. We have no occasion to say anything about noncom-
mutative index theory; for information on this setting, see [2].

In Section 3 the physical side of the coin is pictured, mainly by means of a
rather detailed discussion of an explicit example. This example has been
selected for several reasons. First, it pertains to a situation where various phy-
sically important objects can be dealt with in a mathematically rigorous way.
Second, 1t clearly illustrates how index theorems can help in answering ques-
tions that naturally arise in quantum field theory. Third, the example can be
compared to the so-called chiral anomaly in two space-time dimensions. Last
but not least, the context in which the example is set is the only ‘anomaly con-
text’ the author understands to his satisfaction and hence feels competent to
explain. (The last reason 1s not unrelated to the first; we do present our lim-
ited understanding of other contexts towards the end of the paper.)

Since we are not assuming any background in quantum field theory, Section
3 1ncludes a sketch of some basic constructs in this area. This is one reason
why much remains to be said about anomaly theory proper. In particular, its
applications to real world physics are left out altogether. (There are quite a
few.) For more information and a plethora of references one might consult the
reprint collection [5] and the Conference Proceedings [1]; to read up on string
theories and their (absence of) anomalies we recommend [8].

2. WHAT IS INDEX THEORY ALL ABOUT?

2.1. Fredholm operators and their indices

Let JC be a (separable, complex) Hilbert space and let A: 5(— I be a Fredholm
operator. That 1s, 4 1s a bounded (linear) operator with finite-dimensional ker-
nel K and cokernel C. Then the Fredholm index of A4 is defined by

index A = dim K —dim C. (1)

In particular, any bounded operator having a bounded inverse is Fredholm
with 1index O.

If % has finite dimension, then it follows from elementary linear algebra that
any operator on J 1s Fredholm and has vanishing index. It is an equally
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Then 1t 1s clear that L” and R - - ex n and —n, respec-
tively. Note that R is the Hi P

It is not hard to see that the set F (30 of all ] redholm operators on ¥ 1s
closed under taking adjoints, and that

index A~ = —index A, VAeF (J0). (3)

It 1s less immediate, but true, that F(3() is also closed under operator composi-
tion and that

index A IA - index A i + 1ndex A 7, VA hA . EF(S‘O (4)

Other salient facts include (we assume dim %= oo from now on):

- Equipped with the topology derived from the operator norm F(X) is an
open subset of B(J() (the bounded operators) with connected components
labeled by the index;

- Addition of a compact operator changes neither the ]

nor the index:

index (4 +C) = index A, VAeF(¥), VCeK(%. (5)
-  For any A € F () there exist Qe F(90) and Cg,C; € K(H) such that
AQ =1+Cgr, 04 =1+ (. (6)

As a consequence, any two Fredholm operators with the same index can be
connected by a norm continuous path in F(90).

The concepts and results mentioned so far belong to the area of abstract
functional analysis, and little more can be said in this general context. How-
ever, 1t has turned out that they can be used to great advantage in a variety of
other areas in mathematics and physics, including algebraic topology,
differential and algebraic geometry, quantum field theory and string theory.
The link with these areas is forged via theorems of Atiyah-Singer type.
Roughly speaking, such theorems express the index of Fredholm operators
which naturally occur in concrete geometrical or physical contexts in terms of
topological invariants. We proceed by discussing this in more detail for Toe-
plitz and Dirac operators.

redholm property

2.2. Index theorems for Toeplitz operators
Denote the continuous functions on the unit circle by C(S ). Each feC(S')

defines a bounded multiplication operator M, on L*(S'). Writing FeL?(S")
as



(7)

we set

(8)

Thus we have a direct sum decomposition
L3(S") =~ 9, ®H_, ¥y = PsL*(S'), 6=+,— (9)

and functions in 9C, (9_) are L*-boundary values of holomorphic functions in
lz|<1 (|z]|>1). Operators of the form

T, =P ,MP,, feC(S) (10)

are called Toeplitz operators, and 1t is not hard to see that they are Fredholm
(viewed as operators on 3, ), provided f does not vanish on § L Assuming this
from now on, the curve f(S')CC" has a well-defined winding number w (f)
with respect to the origin. The equality

index Ty = —w(f) (11)

between objects from the area of analysis on the one hand and from the areas
of topology and geometry on the other is the simplest example of an Atiyah-
Singer type theorem. Note that the special case f=:z', /€Z, has already
occurred above: The Fourier transforms of 7, with /=1,—1 are just the one-
sided shifts R and L, respectively. Therefore, (11) 1s an easy consequence of
the above-mentioned properties of Fredholm operators.

In this example the Fredholm operators arise from continuous multipliers on
the Lz-space over S': the compression (10) of M, to J; 1s needed to get a
non-zero index (note M, has a bounded inverse M, f when Oe¢f (S')). The
splitting (9) may be viewed as a decomposition of L (S') into the positive-
and negative-energy spaces of the Dirac operator D on S', which reads

d
D =z o (12)
in the variables used above.

This picture can be generalized to (2N +1)-dimensional oriented compact
Riemanman manifolds 91 that admit a spin structure. (We assume N >0 from
now on.) This 1s a hfting of the transition functions of the tangent bundle
TON (which may be assumed to take values in SO(2N +1)) to the simply-
connected two-fold covering group Spin (2N +1) of SO2ZN +1). T he spin
group has a faithful irreducible representation on C? and correspondingly one
obtains a C* -bundle over 9, the spinor bundle. The connection on TON
derived from the metric can now be lifted to a connection on the spinor bun-
dle, and from the covariant derivative corresponding to the spin connection
and the generators of a Clifford algebra one can then construct a first order
eliptic differential operator that acts on sections of the spinor bundle.

The Dirac operator thus obtained depends on the choice of spin structure,
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297
index Ty = — [ df/2wif (13)

2.3. Index theorems for Dirac operators
On 2N-dimensional compact oriented Riemannian manifolds admittin % a spin
structure a spinor bundle can be defined, too. In this case the fibre C* splits
into a direct sum of even and odd spinors. correspondmg to two different
irreducible representations of SO(2N) on C? . V his decon

sition the Dirac operator can now be written

s of Clifford

again first order elliptic differential operators expressed in tern
algebra generators and the spin connection. Tensoring the spinor bundle with
a (complex) vector bundle equipped with a connection A4, one can define a

Dirac operBt,or on the tensor product which involves 4 and which takes the
0 Dy
D, 0 with respect to the even/odd spinor decomposition. Again the

form

index of D, (which can be viewed as a Fredholm operator between two
different Hilbert spaces) can be expressed as an integral over 9L involving
characteristic classes that depend on the curvatures of the two connections.

Probably the simplest example of this situation is the torus Mm=S! XS
with its flat metric. Employing the above coordinates on S' and the obvious
spin structure (‘periodic boundary conditions’) one can take

d 0
1 821 822

Since the curvature vanishes, the index theorem implies index D =0. (In fact,
this 1s always the case when N is odd, as can be read off from the relevant
cohomology class. Moreover, in the case at hand this is immediate from (14):
both the kernel and the cokernel of D are spanned by the constant sections.)

= L*(SHRL*(SHRC?, D = ;

(14)
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However, when one tensors the spinor bundle with a line bundle with connec-

tion A, the index theorem reads

index D, = "‘"“51,;;‘ F (15)

M

where F' 1s the curvature 2-form corresponding to A.

[he framework just exemplified 1s very general. It encompasses such results
as the Gauss-Bonnet-Chern theorem, the Hirzebruch signature theorem and
(when 9T 1s a Kihler manifold) Riemann-Roch type theorems. The index
theorems can be used to obtain information on various geometric questions,
such as the existence of positive scalar curvature metrics or zeros of vector
fields on the given manifold 9. Other applications include conclusions con-
cerning topological invariants of manifolds obtained from ‘simple’ manifolds
(for example, spheres and tor1) by glueing or covering operations; This hinges
on the additive properties of the index that are evident from its being given by
an Integral over the manifold. In the other direction, the fact that Fredholm
indices are integral can be used to conclude that certain rational cohomology
classes are actually integral on manifolds admitting the structure necessary for
the relevant index theorem to apply, or that certain manifolds do not admit
such structures, since one knows already that the relevant characteristic class is
not integral.

The scope of applications of index theory and its unifying character can be
further enhanced by generalizing 1t to pseudo-differential operators and fami-
lies thereof, and to a noncommutative setting. However, we shall not go into
this and refer instead to the literature cited in the introduction.

3. WHAT ARE ANOMALIES ALL ABOUT?

3.1. Preamble

The notion of anomaly currently plays an important role in theoretical elemen-
tary particle physics. This is the case not only in the well-established area of
relativistic quantum field theory, but even more so in string theories, which are
sweeping (but so far highly speculative) generalizations of relativistic quantum
field theory.

Here, we shall restrict ourselves to the context of quantum field theory. This
may be viewed as a generalization of quantum mechanics accomodating the
phenomenon of creation and annihilation of elementary particles, which is
experimentally observed in cosmic radiation and high energy colliders. For the
quantum field models that are most relevant for the description of such real
world processes a nonperturbative and mathematically rigorous grip on the
dynamics and scattering is not likely to be achieved in this century. However,
physicists cannot afford to wait til mathematics catches up and, moreover, they
have a good reason not to worry much about existence questions: Perturbative
quantum field theory yields numbers that agree very well with experiment (to
an accuracy of better than one part in 10’ in some cases). Furthermore, per-
turbative field theory is in great shape from a mathematical viewpoint, too.
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classical

ed rm refers to a two
Dirac particles, cf. below.) The physical
interaction of Dirac particles on the lin
field. T] an be described at the lev

3.2. Scattering at a gauge field: classical version
At the classical level one is concerned with ed fun
Minkowski space-time i ; the (mas SEeSS, poO sitive chii

equation

[id, + id, — AA(z,x)W(t,x) = O. (16)

Here, A€R is the coupling constant and the external field A4 is a given smooth
real-valued function on R* with compact support in x for fixed 7.

The object that is most relevant to the present discussion is the scattering
operator S associated to the hyperbolic partial differential equation (16). In

order to introduce S we first rewrite (16) as a Hilbert space evolution equation

i S = (Ho+ MW, Ho = —i 2 (17)

dx
in L*(R,dx). Then a uniquely determined unitary evolution operator
U(T,,T)) exists satisfying

U(T5, T)U(T,,T,) = U(Ts,T,), UT,T)=1 (18)
and solving (17) in the sense that
0, U(t,s = (Hog+AA (@, )U(t,s W (19)

This propagator can be obtained by iteration from the integral equation associ-
ated with (17) and is norm continuous in A. The S-operator is then defined by




. * —isH
S = lim " U (t,s)e ",

[~ OO

(20)
S 0Q

whenever the (strong) limit exists. The operator S codes the change in the
wave function ¢ of the Dirac particle due to its scattering at the external field

AA. Note, in particular, the special case
A=0=U@s)=e 7 s=1 (21)

Next, we impose the further restriction

a(x)eCy(R) t>T>0
A(t,x) = {

0 t<<—T (22)

Hence, A4 is a smooth interpolation of two time-independent fields. The
assumption (22) suffices for S to exist, as will now be shown. Note first that
one has

H=H, + Aa() = M HyM (23)

where M denotes the unitary operator of multiplication by

M(x) = exp(“i?\fa(y)dy).. (24)

Since U(t,T)=e "“"DH for t>T, it now follows from (18) that
Ut,s) = M e "D pmquT, =)' T 12T, s<—T (25)

itH, . . . .
Next, note e’ ° is just translation over a distance ¢, so that
. itH x —JtH |
s-lime™° M e " = 1. (26)
[ —» 00

Therefore, § exists and 15 given by
s = M pmu(T, — Ty ™. (27)

At this point there is still no hint that the upshot (27) of our reasoning is
related to index theory or that it has anything anomalous about it. However,

this can only be made clear after we have discussed the second-quantized,
many-particle framework.

3.3. Dirac’s second quantization

To this end we begin by pinpointing the reason why the first-quantized
description 1s inadequate (physically speaking): The one-particle Dirac Hamil-
tonian H, has a spectrum that is not bounded below, but particles with nega-
tive energies have never been observed. The quantum field description arises
naturally in curing this physical disease of the one-particle Dirac theory. The
picture that leads up to a many-particle framework is referred to as the ‘Dirac
sea’: since no negative energy states are observed, Dirac postulated that the
negative energy states are all filled by a sea of unobservable particles. Annihi-
lating such a negative energy particle with a given charge should then amount
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to creating a ‘hole in the sea’, which can be observed as a new type of positive
energy particle with an opposite charge. This highly intuitive picture led Dirac
to predict that charged particles described by his equation (such as electrons)
have oppositely charged partners (antiparticles), a prediction that has been
abundantly confirmed by experiment.

The mathematical arena in which all this can be formalized is the so-called
termion Fock space %,(3(0), where ¥ is a Hilbert space that may be viewed as a

one-particle space. This Fock space is defined by
F(3) = (COHBA*HBA3USD..)~, (28)

1.e., 1t equals the completion of the antisymmetric tensor algebra over % in the
obvious inner product. The tensor (1,0,0,..) is viewed as the vacuum (the
filled Dirac sea’) and denoted by Q. To get around in Fock space one
employs the creation and annihilation operators ¢ (F) and c¢(F), Fe¥. The
former operator acts by wedging with F, entailing

¢ (F))...c (F)Q2 = FyA..AF,. (29)

and ¢ (F) is its adjoint (contraction with F).
In the Dirac theory ¥ is an L*-space on which the Dirac operator 1S a mul-
tiplication operator, and one usually writes

¢c(F) = a(P+F) + b(P_F), Fe¥X (30)

where 3 = P;J(, 6 =+, —, are the positive and negative spectral subspaces of
J. Thus, @ and b are to be viewed as particle and antiparticle annihilators,
respectively. The subspace of F,(30 spanned by tensors of the form

)] k=l =g, fie¥,, gek-, 5D
J=1

s called the charge-g sector and the operator Q with eigenvalue g on this sec-
tor 1s called the charge operator, in keeping with the physical picture sketched
above.

Let us now return to the special Dirac equation (16). In the free case A=0
any of its L*-solutions can be written

Wt,x) = 2m)~ "2 [dp[e?* "Da(p)+e T PE0p (p)] (32)
- 0

where a,b e L*([0, cc),dp). Correspondingly one can take
¥ = L*([0,00),dp), § = +,—. (33)

The transform of H to JC (again denoted H,) then acts as multiplication by p
on 3 and by —p on ¥_. Dirac’s second quantization of the first-quantized
field (32) 1s now given by

W,x) = 2m)~ % [ dp[eP>"Va(p) + e P DB (p)] (34)
0
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lere, a(p) and b (p) are quadratlc forms that may be viewed as the densities
of the operators a(f) and b"(g) on F,(30), defined above: One has, e.g,

b™(g) = f dpb™(p)g (), geIH-. (35)

(The integrals in (34) and (35) have a nigorous meaning as quadratic form
1ntegrals on a dense subspace of F,(J0), but only in the second case the result-
ing form is the form of an operator.)

The unsmeared free Dirac field (34) may be viewed as an operator-valued
tempered distribution: Smearing with a function f (f,x) in the Schwartz space
S (R?) yields a bounded operator that can be written

a(P.F)+ b (P_F)=®F), Fek (36)

(The bar denotes complex conjugation; the antilinearity of ® in F 1s conven-
tional.) The ‘abstract’ Dirac field ®(F) and its adjoint generate a C" -algebra,
the so-called CAR algebra (CAR = canonical anticommutation relations).
Unitary operators U on I give rise to automorphisms ®(F)-®(UF) of the
CAR algebra, and whenever a unitary operator AU on Y,(¥) exists satisfying

UD(F) = ®UF), VFeX (37)

it is regarded as the many- parucle version of U. In particular, the “unphysical’
one-particle Dirac dynamics e is implemented by a unitary one-parameter
group on %,(30), whose generator (the second-quantized Dirac Hamiltonian)
has positive spectrum.

The (heuristics of the) formalism just sketched has been standard fare in
physics for half a century. Dirac’s ‘hole theory’ substitution b(p)—b”(p) turn-
ing ¢ (F) into ®(F) is a key step: It is not only indispensable for the great suc-
cess of interacting relativistic quantum field theory in describing high energy
physics phenomena, but 1s also responsible for the highly singular character of

quantum field theory and for its intimate relations to seemingly disconnected
parts of mathematics, such as index theory.

3.4. Scattering at a gauge field: quantum version

We are now prepared to return to our example. Recall we have a unitary
operator S on L*(R,dx) that codes the single partlcle scattenng Transforming
to JC and denoting the resulting operator again by S, the first question to
answer 1s whether a unitary Fock space operator & exists implementing the
automorphism ®(F)-»®(SF), cf. (37).

The necessary and sufficient condition for this is that the off-diagonal parts
of

S++ S4+-

S~ S_. S__ (38)

be Hilbert-Schmudt (HS). (Here, S+ stands for P SP ., e.g. Recall that an
operator A is HS when 4 A4 has finite trace.) Whenever this holds, S, ;. is
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an operator on J(; ). Indeed, by unitarity one has
S++874 =P, — Sy-S_.
” * 39
S+4+8+4+ =Py —8;.8 4, (39)

implementer & stron g

S + +: It maps the cha.rge-q sector 1n %,(J() onto the charge-(¢ —i) sector.

[0 1nvestigate these issues for the case at hand, let us recall that S is expli-
citly given by (27). Under our assumptions on A it can be shown that the
operators U(T, —T)s s are HS. Moreover, the index of U(7, —T),. van-
ishes, since the propagator is norm continuous in A and equals 1 for A=0.
Since the off-diagonal parts of the free Dirac evolution vanish, the operators
S 5,—s and Sg5 are HS and Fredholm, respecti vely, if and only if M _5 and
Vs are. Furthermore, one has

nvertible
ture of the unitam

1t 1S now that the stru
y dep ends on the Fredholm index i of

index S L4 = index M 4 l l

whenever both operators are Fredholm, in view of the properties of the
Fredholm index mentioned in Subsection 2.1.

To establish whether the diagonal and oﬁ-dlagonal parts of M are Fredholm
and HS, respectively, it i1s expedient to unitarily transform ﬁ'om L*(R) to
L*(ShH by usmg the Cayley transform S' >R, z-(z —i)/(z +i). Then the
splitting of L*(R) associated with H transforms into the splitting of L3(S")
associated with D, cf. (9), (12). (Recall that functions holomorphic in the unit
disc turn into functions holomorphic in the upper half-plane under the Cayley

transform.) Moreover, M turns into multiplication by a smooth function on
L*(S") if and only if

A

(41)

(recall (24) to see this). It is also readily verified that M has HS off-diagonal
parts when (41) holds. (If n€Z, one can show Mjs _5 is not even compact.)
Invoking now the index theorem (11) and recalling (40) one concludes

ned— S+ + Fredh()hn, index S++ — — . (42)

I'he above chain of arguments exemplifies how index theory naturally emerges
from quantum field theoretic considerations, but the relation to a breakdown
of gauge invariance at the quantum level is not yet apparent. Before coming to
that, we would like to mention that the representation theory of Virasoro and
Kac-Moody algebras is also closely tied up with the one-dimensional, massless,
single churality Dirac theory considered thus far. The crux is, that the central
extensions that characterize these algebras naturally arise in the transition from
the classical to the quantum level, aga.m as a consequence of the ‘hole theory’
substitution b(p)~b (p). Physicists view such central extensions as anomalies
in quantum commutators (‘Schwinger terms’), but since this type of anomaly is
less directly related to index theorems, we shall not work this out any further.
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(A recent account in the spirit of this paper can be found in [4].)

3.5. The chiral anomaly in two dimensions

Let us now come to the two-dimensional chiral anomaly and its relation to the
example just discussed. To this end we need to consider massless Dirac parti-
cles of positive and negative chirality (even and odd spinors) in interaction
with external vector and axial vector fields 4, and A4y, p=0,1. These terms
refer to transformation properties under the Lorentz group that are tied up
with Clifford algebra lore, but for brevity we shall not spell this out. Rather,
we choose a representation of the two-dimensional Clifford algebra such that
the corresponding classical Dirac equation reads

idg+i0; —AY — A} — A8 — A° 0
0 19, —id; —AY +A" + A8 —A°

y = 0. (43)

(Here and from now on we use x° =1, x' =x as space-time coordinates.) We

make assumptions on 4, and A4; that parallel those on the above external field
A. This guarantees the existence of the classical evolution and scattering opera-
tors as unitary operators on L*(R,dx)®C?.

Clearly, (43) is invariant under separate gauge transformations of the poten-
tials (connections) 4, and A;. That 1s, if ¢ solves (43), then

- |exp(iA” + iA%) 0 as

Y = 0 exp(iA” —iA%) v ()
solves (43) with

AL!—-—)AL -9, A", i=va (45)

Note that these transformations do not change the field strengths (curvatures)
F, =9d,4,—0,4,, i=va. (46)

These mnvariance properties can also be formulated in a Lagrangean frame-

work and imply via a standard variational argument (‘Noether’s theorem’) that
the vector and axial vector currents j, and jy given by

===y + Yy
Jo=—J1 = Yy “J-—-‘P—-—-»

are conserved (i.e., 9yjo —9;/1 =0). This in turn leads via Gauss’ theorem to
the corresponding charges

(47)

g’ = j dx jb(t,x), i=v,a (48)

being time-independent. (Of course, both properties can be directly verified
from (43), as well.)

Next, let us pass to the quantum level. The relevant Fock space is now the
tensor product of two copies of the previous one, corresponding to the two-
fold churality degree of freedom. It is expedient to introduce two chiral charge

14



set

- referring to the two species of Dirac particles, and to

= Q4+ +Q0_, Q9°"=Q0; — 0 (49)

As before, an appropriate choice of the time-independent fields to which A,
and A4, reduce for :>T7T>0 ensures existence of the Fock space S-operator.
Moreover, the winding numbers of the corresponding multipliers determine the
charge changes AQ” and AQ“ effected by S.

We are finally ready to connect all this to the notion of ‘breakdown of gauge
Invariance at the quantum level’. First, let us point out that the rigorous and
nonperturbative approach followed thus far does not fix the phase of the uni-
tary implementer defined by (37). In particular, the phase of S is left undeter-
mined. This constitutes a crucial difference with the formal approach, which
uses perturbation theory. Here, one obtains an expression for the logarithm of
the expectation value E of § with respect to the vacuum vector £,

E = (,59). (50)

This loganithm is given by a series of integrals associated with closed loop
Feynman diagrams with n vertices, which code an n-fold scattering at the
external fields. Thus, the imaginary part of the series formally fixes the phase
of o.

However, the integral corresponding to the n =2 loop turns out to be diver-
gent, and a renormalization must be made to render it finite. It is at this point
that the anomaly arises: There is no choice of renormalization guaranteeing
that the imaginary part of the integral is invariant under gauge transformations
of both A" and A4°. Physicists interpret the corresponding gauge variations of
iIn E' as the divergences of the second-quantized currents, and it is customary
to 1nsist on vector current conservation

- J%, = 0. (51)

The price one then pays is that the divergence of the axial vector current is
non-zero (anomalous). For instance, when 49 =0 one finds

B“Jﬂ — ....7..1;}7“’01 (52)

Hence, under scattering at the external field 4, one expects (using Gauss’
theorem) a charge change

AQ? = —qlr—f dt dxFy, (t,x). (353)

This 15 precisely what happens when one has 45 =0, 45 =0 and
A

A1, x) = Aa(x), n = E- dy ay)eZ, t>T (54)

in addition to the previous conditions. Indeed, as we have seen above (cf. (41),
(42))  then maps the (g +,q - )-sector onto the (g + +n, g_ —n)-sector, so that
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AQ’ =0, AQ?=2n. Since Fj; =d9A} in the case at hand, the right-hand side of
(53) can be evaluated and yields 2n, too.

Readers who got their feathers ruffled by the formalities leading from (50) to
(53) are hopefully somewhat reassured by this agreement. On the other hand,
the heuristic arguments just referred to (which are not seriously questioned in
particle physics) also lead to the conclusion that the charge changes efiected by

S need not necessarily be integers, and depend on how a divergent integral 1s
rendered finite. This is at variance with the rigorous result: Whenever & exists,
it can only change both Q" and Q¢ in integer units, and these changes are
independent of the (arbitrary) phase choice. In fact, whenever charge changes

are involved, perturbation theory cannot be rigorized.

3.6. Generalizations and outlook
The above gauge fields can be viewed as two-dimensional Maxwell (elec-
tromagnetic) fields, the gauge group being U(1l). Generalization to a nona-
belian gauge group amounts to a consideration of external Yang-Mills gauge
fields. For instance, when the gauge group equals U(k) for k>1, then the
gauge potentials A4,(t,x) are kXk matrix-valued multipliers on
L*(R)®C*®C*. The above considerations can be generalized to this situation,
and one again concludes that at the quantum level insistence on vector current
conservation entails nonconservation of the axial vector current.

At the level of Feynman perturbation theory the same phenomenon occurs
in any even space-time dimension D. The axial vector anomaly can be calcu-

lated, and one finds again a gauge-invariant density expressed in terms of the
k X k matrix-valued field strength

F, =08,4,—8,4, + [4,,4,] (55)

If one makes assumptions on the gauge potentials 4, that parallel those made
above for D =2, then F,, has compact support and the integral of the anomaly
density 1s finite.

This formal result can again be compared to a nonperturbative analysis of
the scattering along the lines sketched above for D =2. The classical S-
operator exists when the Yang-Mills potential A, is pure gauge and time-
independent for +>T, and just as for D=2 one finds that the chiral parts of
S + + have Fredholm indices g+ = —g_, which are determined by a general-
ized winding number of the relevant unitary matrix multuplier. Moreover, the
relation of the winding number to the integrated anomaly [ is known, and 1n
this way one obtains g —q_ =1, just as for D =2.

However, for D>2 there are two important changes compared to the D =2
situation. First, the off-diagonal parts of S are never Hilbert-Schmidt when
homotopically nontrivial multipliers are involved. Hence, a umtary Fock space
S-operator does not exist in that case. (However, a quadratic form o imple-
menting the CAR automorphism in quadratic form sense does exist and has

the same charge structure as for D =2.) Second, for D>2 the above assertions
concerning the chiral Fredholm indices of S, cannot be reduced to the

index theorems discussed in Section 2, since these all hinge on compactness of
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mad 10 1C , Wiener-] . operator M 4 . from
Ehai of equwalet loephitz operator T),. In point of fact, the
index theorem needed to substantiate our D>>2 assertions has only recently
been proven [10].

So far, our account of anomalies and their relation to index theory has
emphasized Mi

inkowski space scattering theory. As regards the chiral anomaly,
this setting has been predominant in physics til the late seventies. However, at
that time the connection was made with the

flamboyant world of index
theorems for Dirac operators on compact Riemannian manifolds, and ever
since the austere Minkowsk:

A1 space setting appears to play a minor role in the
particle theorist’s views on anomaly theory.

[he connection just mentioned involves two steps, and we proceed to sketch
these. First, one perforn Oix?=x?, turning Minkowski

S a Wick rotation x'six

space mto Euclhidean space. Domg0 this e.g. 1n the l equation (43) with
]
A'=A%=0 and multiplying by [___1 O} , one obtains an equation that can be

written

Ny = 0, o) =

O D

Thus the hyperbolic evolution equation turns into a zero-mode equation for
the elliptic Dirac operator D on R*. More generally, in the Euclidean world it
1S customary to consider the zero-mode equation
0 D
GDAIIJ — 0, GDA — DA 0

(57)

with gauge potentials that are coupled in the same way as the connections
dealt with 1n Subsection 2.3; moreover, one views the determunant of ), as the
analytic continuation of the vacuum expectatlon value (50).

This first step may appear quite baffling: There is no reason why the exter-
nal fields should have any analyticity properties in x°, and the appearance of
det’D4 seems a deus ex machina. Therefore, we must shightly digress to render
the above more plausible. First of all, it should be pointed out that to a parti-
cle theorist the external field picture 1s only a preliminary: He really wants to
understand the theory in which the second-quantized Dairac field 1s coupled to
a Yang-Mills field that is second-quantized, too. This fully interacting quantum
field theory 1s now reduced to a consideration of the theory where the Yang-
Mills field 1s viewed as a classical field (a function on space-time) by using
Feynman path integrals. The path integral 1s a widely used tool in theoretical
physics, which rests on the i1dea that it 1s possible to view quantum mechanical
transitions between an mitial and a final state as being obtainable by summing
over all classical trajectories connecting the given states. In this way physicists
can exploit various features of the classical world to gain insight into the quan-
tum world. In the path integral formalism the above Wick rotation can be
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med an N rminant then arises when one fixes the classi-
Mills field and integrates out the classical Dirac fields.

_ mir | like to mention that the formal-

ities just sketched have been given a rigorous mathematical interpretation for

t interacting quantum field models. An

nd difficult results obtained

N d in [7). One lesson that can
anch of mathematics (called constructive field theory) is
that the measure in the path integral assigns zero weight to the set consisting
of continuous classical configurations. For constructive field theory this form
a so far unsurmountable barrier in using the rich and well-studied geometry of
classical gauge field theories (which hinges on continuity, if not smoothness) to
obtain rigorous conclusions about their quantum versions. However, at this
point in time constructive field theory is by and large ignored. It is a long and
venerable tradition in physics not to be daunted by analysis when 1t gets in the
way, and the second step (to which we now turn) is another case in point.

Euclidean space-time R® is not compact and topologically uninteresting.
Therefore, it would appear that after the first step one i1s still very far removed
from the compact manifold context of the index theorems described 1n Section
2. Moreover, on R” the Dirac operator has continuous spectrum, so that the
expression detD, is a bit problematic even to a particle theorist. The second
step which cures both problems 1s a great stride indeed: Omne sin
compactifies Euclidean space-time! Then 6)4 has discrete spectrum, but since
the eigenvalues are not bounded, det®), is still i1ll defined. However, via a zeta
function renormalization one can now tie in det®), with solid mathematics:
The result is, that the gauge variation of In (det %)) can on the one hand be
interpreted as twice the difference of the positive and negative chirality zero
modes of %), or, equivalently, as twice the Fredholm index of D,; On the
other hand, the variation can also be calculated explcitly via path integral
techniques, and in this way one can ‘prove’ the index theorems described in
Subsection 2.3. (The curvature of the D-dimensional compact manifold can be
taken into account, too; its contribution to the index density 1s referred to as
the gravitational anomaly.) For instance, if R is compactified to a torus, then
one can obtain (15) in this way. |

All this may strike an analyst as having the advantage of theft over honest
toil. Just the same, using quantum field theory 1n a systematic way, physicists
are able to redenve the integrands that occur in the index theorems (after a lot
of toil, to be sure), and this 1s certainly a spectacular and intriguing achieve-
ment. As a consequence of these developments and the related development of
‘instanton physics’ particle theorists and geometers have become increasingly
aware of each other’s existence since the mid-seventies. This interaction has
been beneficial not only to the physicists but also to the mathematicians. A
prime example of this 1s the dramatic progress in differential topology due to
the use of instantons. Staying with the subject of this paper one can mention
e.g. that the simplest rigorous proof of the Atiyah-Singer theorem for Dirac
operators now available (by Getzler) uses some ideas that are borrowed from
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