Catuscia Palamidessi

Dipartimento di Informatica
Corso Italia 40, 56100 Pisa, Iltaly

The paper presents a scheme for defining the declarative semantics of real
logic languages whose operational behaviour can be modelled by partial or-
ders. We delineate a uniform framework in which the construction of van
Emden and Kowalski can be extended while preserving their basic results
(existence of a minimal model, equivalence with the fixpoint semantics, and
equivalence with the operational semantics based on SLD-resolution). In prac-
tice, we delineate a ‘semantics theory scheme’, parametric with respect to
some notions depending on the particular language. It consists of some fixed
properties to be veritied in order to obtain the above mentioned results. We
also investigate the possibility of getting stronger resuits. Then, we show some
instances of this scheme: the semantics of a logic+functional language, the
semantics of a class of concurrent logic languages, and the (extended) seman-
tics of pure Horn Clause Logic.

1. INTRODUCTION

Logic languages, 1.e. languages based on Horn Clause Logic (HCL), have
become very popular in the last few years, mainly because of their high level
nature. In fact, HCL 1s based on assertions that have declarative interpreta-
tions. In other words, they can be seen as a formal description of the problem
to be solved and they can be understood without any reference to the
behaviour of any particular machine. Moreover, HCL has the advantage of
being founded on a rnigorous and well-established mathematical theory (a sub-
set of the First Order Logic). This allowed van Emden and Kowalski to define
a clear, simple and elegant formal semantics [7], based on the results of Tarski
and Herbrand. Unfortunately, the real logic languages, such as Prolog, the
concurrent logic languages, and the functional +logic languages, present some
characteristics that make the above semantics inadequate. In thus paper we
analyse the possibility of extending the construction of van Emden and Kowal-
ski to real logic languages. We use a two-level approach, in the sense that we
use some methodologies typical of the denotational approach (in particular,
partial orderings) in the framework of the declarative approach. The

* Part of this research was done while the author was staying at CWI. Her permanence at CWI
was financially supported by the Consighio Nazionale delle Ricerche.

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

and therefore the
ied. We 1nvesti-
in such a way
of a minimal
LD-resolution) are preserved. Moreover, we
powerfull results. In practice, we de-
ametric with respect to some notions
(such as the ordered structures underlying the semantic domains, the notion of

th, etc.). This scheme can be applied to a ifferent languages, i order to

ain their semantics, by defining the above mentioned notions, and by vern-
fying some fixed properties.

also of pure HCL), 1n

" The scheme >

HCL-based Languages

-

, larative sem

The basic ideas of our approach are similar to the ones developed 1n [1 1,12,13]
for HCL on equalities theories, but they are more general. In fact, our
approach is based on the notion of partial ordering, that includes the notion of
equality as a subcase. This is particularly clear in the case of the
logic + functional languages. As Section 4 shows, our scheme is applicable not
only to languages interpreted on algebraic structures (i.e. equality models), but
also to the ones interpreted on more complex structures (like algebraic Com-
plete Partial Orders). In general, our scheme is applicable to all those
languages in which the operational difference between goals can be described
in terms of ‘different amount of information that they can produce’ and this
can be modeled by an ordering. The concurrent logic languages whose

332

Sync hronization mechanism is based on pr oducer-consumer relation

between atoms are instances of this paradigm. Finally, also in the case of the

pure Horn Clause Logic, our scheme gives some interesti: g results. Namely, it

gives a declarative semantics more powerful than the standard one, in the

sense that it allows to get a stronger completeness theorem.

2. THE HORN CLAUSE LOGIC
We recall some basic notions about HCL. See [21,1] for details.

The language alphabet 1s given by a set D of constructors symbols a,b,c,..., a
set P of predicate symbols p,q,r,..., and a set V of variable symbols x,y,z,.... We
denote by T the set of all the terms built on D and V. The HCL basic con-
struct 1S the atomic formula (or atom) p(i,,...,t,,), where peP, and ¢,,...,t,,€T.
Let U be the subset of T consisting of all the terms containing no variables
(ground terms). A definite clause 1s a construct of the form
A«B,,...,B, (n=0), where A and the B,;’s are atomic formulas. A is the head
of the clause and B,,...,B, i1s the body. If the body 1s empty the clause is a
unit clause. An HCL program is a finite set of definite clauses W= {C,,...,C, }.
A goal statement 1s a construct of the form A4,,...,4,,, where each A4; 1s an
atomic formula. Definite clauses and goals can be seen as particular first order
logic formulas: ‘«~’ and °,” denote logic implication and conjunction respec-
tively, and all variables are seen as umiversally quantified.

A substitution i1s a mapping 0 : V—T such that Dom(f) i1s finite, where
Dom (6) is the set {xeV|0(x)s%~x}. A substitution 6 is called renaming 1if
Vx(f(x)e V) and 0 is bijective. Let E be an expression (term or formula). We
denote by Var(E) the set of variables occurring in E. Given an expression
E, 0| 5 1s the substitution whose domain is D = Var(E) N Dom(#) and such that
for all variables in D, is equal to 6. The composition of substitutions is

defined in the obvious way, and induces a preorder on substitutions

01 “-<-02 1ff 37(01 7102)*

The application of a substitution § to an expression E, denoted by E6, is
defined as the simultaneous replacement of every variable x in E with 6(x). If
f is a renaming, then E@ is a variant of E. The application of substitutions
induces a preorder on expressions, called more-generality preorder:

EIQEZ Lﬁ'Ha(Elﬂ“:-“Ez)

Two expressions, E; and E, are unifiable 1il 30(E 6=E,0). If 6 is a mimumal
substitution that makes E, and E, syntactically equal, then it is called the
mgu (most general unifier) of £, and E, (mgu(E,, £ 5))-

The operational semantics of HCL programs is based on the notionﬁ of refu-
tation. Let G be the goal , 4,,...,4,, and let C=A<«B,,...,B, be a vartant of a
clause of W. Assume that 4 and A; are unifiable, and let 6 be their mgu. Then
the goal

G = <(Ay, ..., Ai_1 B1, ... By Aix1s .- An)0
is derivable from G, by using C with substitution 6. Briefly: G % G’ By
333

a derivation:

pplications of this step we obtain
2y - - G-y =15 G,

Briefly: G H95* Gy, where 6=0, - - - O, —;. If Gx is empty (null clause, denoted
by U), then G 1s refutable in W and 6 is the computed answer substitution.
' icates this type of refutation together with a

The name SLD-resolution ind
selection rule that chooses, for every goal, the atom to be resolved.

'he operational meaning of a program W lefined as

SS={p(t1, - s t)ltrs. .. 1,€U & F0(p(ty, - . . ,1)—A F>* O)).

[he other standard semantics (model-theoretic and fixpoint), defined by van
Emden and Kowalski [7], characterizes an HCL program W from a declarative
point of view. Both of them are based on Herbrand interpretations (subsets of
the Herbrand base B, defined as the set of the ground atoms). The model-
theoretic semantics has to do with the notion of (standard) Herbrand model.
A Herbrand model 1s a Herbrand interpretation which satisfies (4 la Tarski,
see, for instance, [24]) the program. The meaning of a program W is defined as
the minimal Herbrand model M of W (i.e., the set of the ground atoms that
are logical consequences of W).

The second semantics is given as the least fixpoint (/fp) of a transformation

I (one step inference operator) on the Herbrand interpretations, defined as

T()={A€B|3(A'«<B,, ...,B,)sW,30(B,0, ... ,B0cl & A'0=A)).

In [7] the equivalence of model-theoretic, fixpoint and operational semantics is
proved (M =[fp(Ty)=SS). This result gives the soundness and completeness
of SLD-resolution for HCL. However, it is worth noting that the operational
semantics definition given above does not reflect entirely all the features of the
language. In fact, the above set characterizes only the ground atoms which are
refutable in (and which are logical consequences of) the program. A more ade-
quate operational semantics should consider the refutability of non ground
goals and the computed answer substitution (see [9]). Unfortunately, it turns
out that M and /fp(Ty) are not powerfull enough to model this notion. As a
matter of fact, to formulate a stronger completeness result it is necessary to

consider the general models of a program (i.e., all the models defined on any
kind of domain) [4].

3. A MORE GENERAL APPROACH TO THE DECLARATIVE SEMANTICS. THE SCHEME

In this section we give a method to generate the declarative semantics of
HCL-based languages. The method is applicable to languages whose opera-
tional behaviour can be described in terms of ‘amount of information that can
be produced’, and then modelled by ordered structures. This construction is, of
course, parametric with respect to the features of the particular language (and
for this reason we call it schema). In particular, it depends on the particular
ordered structure reflecting the operational ability to produce information. It
depends also on the particular class of formulae to which we want to give
meaning. Finally, the notion of truth and the notion of valuation can be

334

extended in different ways. The scheme consists of

ameters of the schen

some general properties ((¢ 7)) that express the conditions to
ed so that our construction is applicable,

define, if the above conditions are satisfied.

T .
N g: E
a 1 .
e

1tics that is possible to

language. See [24] for the basic terminology concerni

ng Tarski’s
theoretic semantics (domain, interpretation, valuation, truth, etc.)

(D1) The first step 1s the choice of the ordering structure, that we will call O
The domains of the interpretations are required to have this structure. Ord
must reflect the relation between the informations produced by different goals.
in a given program. For instance, Ord can be the class of the Algebraic Com

plete Partial Orders, as in the case of K-LEAF (see Section 4).

(D2) Next, we must define a suitable notion of valuation. The standard one,
in which each occurrence of a given variable i1s replaced by the same value, 1s
usually too weak. In some concurrent logic languages, for instance, the shared
variables can be seen as communication channels between processes, where
more than one process is allowed to produce data. Then, these languages can
better be modelled by allowing valuations to assign different values to different
occurrences of the same variable. Of course, these values must be compatible
(i.e. they must admit a common upper bound). This corresponds to saying
that different occurrences of the same variable can give different approxima-
tions of the same value.

ExAMPLE 3.1. Let W be the concurrent logic program

W = {p(x)eqg(x), r(x)
r(c(a,y))<«.
q(c(z,b))}
where p,g and r are seen as processes able to produce values on the
variable x. They produce on x different informations: Xx: =c(a,b), x:=c(a,y)

and x:=c(z,b) respectively. However, c(a,y) and c¢(z,b) can be seen as
different parts of the same data structure c(a,b).

335

According to the requirements expressed in (D1), the interpretations of c(a,))
and c(z,b) (in Ord) are elements smaller than the interpretation of c(a,b).
[hen, we could adopt the notion of compatible substitution, namely a function
that assigns compatible values (i.e. having a common upper bound) to different
occurrences of the same vanable. L]

(D3) The notion of truth for a formula can also be extended. Consider the
following example.

\MPLE 3.2. Consider the first clause of the program in Example 3.1.

p(x)e—g(x), r(x).

The process p produces on x the data that can be obtained by combining the
ones produced by g and r. Then, such a formula can be defined to be rrue it

for all the possible valuations 6 that assign to the occurrence of x in p
the least upper bound of the values assigned to the ones in q and in r,
if g(x)0 and r(x)8 are true, then also p(x)@ is true.

We use the notation Ik, ,F to denote that the formula F'is true (with respect
to the notion defined in (ID3)) in the interpretation I (satisfying (D1)). We
write simply /kF when Ord is clear from the context. The following definition
1s the natural extension of the standard one.

DErFINITION 3.1. Let W be a program. An interpretation / 1S a model of
W (Iep,aW) ff for every clause Ce W, Ikg,,C holds. A formula F 1s a logic

consequence of W, (Wep4F) iff, for every interpretation I, if Ikp W then
Iep,4F holds.

3.2. The special model
Now we characterize a model that represents the notion of being a logical

consequence, at least with respect to a particular class 11 of formulae (II-
formulae).

336

(D4) We consider a special domain D
satisfies the order structure re Q uired in (ID1).
definition of Herbrand interp -
(D-model) follows from (ID2) and (I
that F is true in all the D-models of W. Given a class of formulae II, the D-
models characterize in tha the property of being a logical consequence, if
the following variant of the Léwenheim-Skolem theorem holds.

(C) VFe H(WEord F < WEp F)
1) if the condition (C3) holds (see

and UmVCI'SC, Ehat

It i1s not necessary to prove condition (¢
below).

(DS) Let DI denote the set of the D-interpretations for a given program W.
DI has to be equipped with an ordering relation << consistent with the notion of
truth with respect to the Il-formulae. Namely, if I,I’ are D-interpretations,
and /<7, then

VI, I'e DI VFell((I<I'&IeF) =I'EF).

The basic property that the ordering < has to satisfy, is the existence of the
ninimal model. This generalizes the model-intersection property. Formally:

The following result holds.

THEOREM 3.1. Let W be a program. If properties (C1) and (C2) hold, then
(P1) VFell(Wep i F < M ik F).

PROOF.

(=) Let F be a formula in II. If Wep,uF then, by property (C1), F'is true in
every D-model, and, in particular, in the minimal one.

(<) Let F be a formula in Il, and assume M . rF. By property (C2), for each
D-model I we have M, <I. Since the ordering among D-interpretations
preserves the notion of truth, we have that I'tF. Therefore, WkpF holds.
Then, by property (C1), Wep,qF holds. [

This theorem shows that M_;, characterizes the II-formulae that are logical
consequences of a program W. Then we can use M, to define the declarative
semantics of the II-formulae in W. Formally, for Fell:

Sp(F)={F €Il |36valuation(FF =F0 & F €M)}

3.3. The fixpoint semantics and the relation with the declarative semantics

We characterize now a mapping 7p on the set of the D-interpretations of a
given program W. Tp extends (on the II-formulae) the standard one step infer-
ence operator. The least fixpoint of this mapping gives the so-called fixpoint
semantics.

337

(CHF—F)) = I'tF)).

Fell(IeF&3C e W

c.on'ec@ness of the defin -uf Ehe cmsaence of such 2 Mnin?
pretation I ' derives f rTom a propemy "
sufficient conds tions for the exastence of the least fixpoint of TD

C3) (DI, <) is a Co: Partial Order (CPO).

(C4) T)p 1s continuous.

llowing result 1s a general property of continuous functions defined on

REM 3.2. If the properties (C3) and (C4) hold, then
(P2) There exists the least fixpoint of Tp, lfp(Tp).
) fp(Tp)=lub,Tp' (I L),

where lub means least upper bound and I | is the minimal element in the CPO
(DI, <).

Thanks to the result (P2) of the previous theorem, we can use T to define the
(fixpoint) semantics of the II-formulae in W. Formally, for FeIl:

Sp(F)={F 11|30 valuation (FF=F60 & F €lfp(Tp)))}.

Note that if (DI, <) 1s a complete lattice, then to ensure (P2) it would be
sufficient to have the monotonicity of T, (Knaster-Tarski theorem). On the
other side, the continuity of T allows to obtain the property (P3), that will be
usefull in order to relate the fixpoint semantics to the operational one.

[he equivalence between the fixpoint semantics and the declarative one is
ensured by the following condition, whose structure is more general than the
standard equivalence between Herbrand models and interpretations closed
with respect to the one step inference operator. In fact, we only require the
fixpoints of T)p to be D-models, and the D-models to be closed with respect to
I'p (namely, to satisfy the condition Tp(/)<<I). Formally:

(CS)VIeDI (I=Tp(I)=1eW) & (IeW = Tpr(I1)<1)).
HEOREM 3.3. If property (C5) holds, then

(P4) lip(Tp)=M i

ProoF. Let I be a D-interpretation such that Tp(J)<<I. Then, by monotonicity
of Tp, we have, for each n,Tp'(I,)<Tp'(I)<I. Therefore Ifp(Tp)=
lub,Tp'(I)<<I. On the other side, Tp(lfp(Tp))=Ifp(Tp). Therefore Ifp(Tp) is
the minimal interpretation closed with respect to 7. By (C5) we have that

{p(Tp) 1s a D-model of W and that it is the minimal one.

338

3.4. The operational semantics and the relation with the declarative semantics
(1 tions that are sufficient to ensure the soundness an

SSnu = {Gell|((«G |
where € 1s the empty substitution.

(C6) VG,G eTI((—G FL* G') = (CHG'—GH))),

[HEOREM 3.4. If properties (C6)
(P5) SSu = {Gell|M kG }.

Depending on the class IT we can get stronger results. For instance, if II 1
the set of the ground atoms B, then we get the standard ones:

(P6) Each computed answer substitution is correct, and each correct answer
substitution admits a more general substitution that can be computed. For-
mally:

1) VA € B((—A F2>* 0O) = (Cro,446)), and
2) VA €B((CrogAdB) =30, y By =0 & —A >+ O))

6)-(1) expresses the soundness, and (I
ness result, due to [4].
If I is the set of all the atoms At, then we get a result stronger than (F6):

6)-(2) is the so-called strong complete-

(P6’) The computed answer substitutions for a goal «A are the most general
unifiers (mgu) of A4 and some of the atoms true in M ;. Formally:

VA e At, Vo (HA’ cAr (M mint:OrdA, & mgu (A,A’) A= 9)
o 30 («aFD* O) & (mgu(4,4"),=6)))

It is possible to show that (P6") implies (P6). Note that (P’6") allows to avoid
the use of all the models (necessary to get the strong completeness result of
Clark). Namely, the minimal model M y;, is powerfull enough to characterize
the declarative semantics of all the formulas with respect to which we want to
get the completeness result.

339

R

4. APPLICATIONS TO EXISTING LANGUAGES

In this section we show some applications of the method described above. We
discuss three cases, namely K-LEAF, pure HCL, and concurrent logic
languages, whose semantics can be obtained as instances of the scheme we

suage K-LEAF

+ functional (first order) language based on H
the syntax 1s essentially HCL, enriched with the special sym-
! inism consists of two steps:

am and goal. |
alled presentation of this language see [3,19,20]. The distin guishing

feature of K-LEAF, with respect to other kinds of logic + functional languages,

1s that function calls are seen as possibly infinite processes. So, for example, if

the function f is defined by the equation (unit clause) f (x)=c(f (x))«, then

the intended meaning of J (a) is the infinite structure c (c(c(...))). To model

this kind of semantics, therefore, it is necessary to use structures in which the

imit of an infinite computation can be adequately represented. We have

chosen the algebraic Complete Partial Orders (see, for instance [2]). ¥

marize the basic choices, according to the scheme:

(D1)Ord: the class of the algebraic Complete Partial Orders.

(D2) The notion of valuation: the standard one.

(ID3) The notion of truth: the standard one.

(D4 rierbrand universe enriched with a new symbol

4) The special domain D: the
340

lowing conditions:

g on D 1s obtained b y P OSI1n g

@ the constructors are monoton 1C.
(DS)ordering on DI: I<I' iff the interpretation of each function symbol is
maller in / than in I’ (with respect to the natural function ordering)

We 1ndicate by D 4, the subset of the algebraic maximal elements of D. Con-
ditions (C1)-(C7) can be proved to hold with respect to the following set of
f ormulae:

1 = {P(dl, - . ,dn)ldl, . . adnEDAM}*

[hen, the properties (P A result stmilar to (IP6

proved.

4.2. Pure Horn Clause Logic
The operational semantics of HCL can be interpreted not only as a procedure
to prove relations, but also as a method of generating the substitutions under
which a given relation 1s dernivable. The standard declarative semantics 1s not
adequate to fully characterize this behaviour, namely the strong completeness
result [4] (see Section 3) is still too weak. A more powerfull semantics 1s
presented in [8] and [9]. The basic idea 1s to enrich the Herbrand domain with
terms containing variables, in order to interpret ‘syntactically’ the umversal
quantifier. The construction is still an instance of our scheme. We consider the
class II of all the atoms. Then, according to Section 3.4, the step (D1) 1s not
necessary. The other choices are:

(ID2) The notion of valuation (only on D, see (D4)): the substitution.

(ID3) The notion of truth (only on DI): a clause 1s said to be true in / if whenever
the body matches with elements in I, giving a most general unifier 6, then
the head, instantiated by 6, belongs to I.

(D4) The special domain D: the set of all the terms, ordered by the more-
generality relation, i.e. d<<d’ iff there exists a substitution ¢ such that
do=d.

(D5)ordering on DI: the set inclusion.

The properties (C2)-(¢

') can be proved to hold with respect to II. Therefore

PS) hold. Moreover, the stronger result (P6") holds.

4.3. Concurrent logic languages

In this section we consider the concurrent logic languages whose synchroniza-
tion mechanism is based on input-mode constraints, namely on some restric-
tions on unification. The most famous languages that belong to this class are
Concurrent Prolog [22,23], PARLOG [5,6,10] and Guarded Horn Clauses
[25,26]. These languages have a common structure, the basic construct being
the guarded clause:

341

, .. .,B, 1s the body parr).

fied [heir role 1s essentiall

prevent the use of the clause, during the refutation procedure, i gu

process interpretation [22,17] a goal can be seen as a network of processes com-

municating via the shared variables (channels), producin g and consuming data

on them. A constraint can then be seen as the requirement, for a consumer, to

receive some data on certain variables.

in order to define the declarative semat

producer/consumer process has to be modeled.] ing

the atoms (processes) with respect to their ability to produce data. The seman-

tics proposed in [18] meets these requirements, and can be seen as an instance

of our schema (a variant of the instance described in Section 4.2).

(D2)The notion of valuation (only on D): the compatible substitution (see exam-
ple 3.1).

(D3)The notion of truth (only on DI): similar to the one defined in example 3.2.

(D4) The special domain D: the set of all the terms, built on the annotated con-
structors. Constructors can be annotated ‘+°, (produced) or ‘—’ (con-
sumed). D 1s ordered by the more-generality relation, and by the ordering
induced by defining ¢ ~ <<¢ " for each constructor c.

(D3)Ordering on DI the set inclusion.

tics of these languages the notion of
[hus can be done by orde:

L he properties (C2)-(C7) can be proved to hold with respect to the set IT of all
the annotated atoms (with a notion of operational semantics slightly different

from the original one). Therefore, for this class of formulae, (P2)-(P5) hold.

5. CONCLUSION AND FUTURE WORKS
[his paper is a first step in the attempt to defining a scheme for the declarative
semantics of languages based on HCL. The approach 1s analogous to (but
more powerful than) the one defined in [11,12,13]. What is still missing is a
theory allowing to derive the validity of the conditions (C1)-(C7

_ ') from few
simple properties of the notions that are the parameters of the scheme. This is
not so easy, because it is necessary to find a good compromise between the
generality and flexibility of these notions, and the simplicity of the properties
to be verified.

Possible relations with the theory developed in [14,15] (that generalizes the
previous mentioned one) are also under Investigation.

REFERENCES

1. K.R. ApT (1988). Introduction to Logic Programming, Report CS-R8826,
CWI, Amsterdam. To appear in Handbook of Theoretical Computer Sci-
ence, North Holland.

2. H.P. BARENDREGT (1984). The Lambda-Calculus: Its Syntax and Seman-
tics, Revised edition, North-Holland.

342

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

M. BELLIA, P.G. Bosco, E. GIOVANNETTL, G. Lgvi, C. Moiso, C. |

MIDESSI (1987) A two-level approach m IOQC plus functional proam--

ming integration. Proc. PARLE Conference, Sprin ger-Verlag.

(1979). Predicate Logic as a Computational Formalism,
Report DOC 79/59, Department of Computing, Imperial Col-

;. (GREGORY (1985) Notes on the ; .. entation of P

LOG J ournal of Logic Programming 2 (1), 1'7-42

ARK, S. GREGORY (1986). PARLOG: parallel programn

10 glc ACM Trans on Progr. Lang. and Syst. 8 1-49.

FMDEN R A. KOWALSKI (1976) Ll he semantics of predlcate
amming lan guage. J ACM 23, 733.742.

. FarascHi, G. Levi, M. MARTELLL, C. Payamipesst (1988). A new

declarauve semantics for logic languages. Proc. 1988 International Confer-

ence and Symposium on Logic Programmzng, Seattle, U.S.A.

M. FarascHi, G. Levi, M. MARTELLI, C. ParaMiDgessl. Declarative

Modeling of the Operational Behaviour of Logic Languages. To appear in

Theoretical Computer Science.

S. GREGORY (1987). Parallel Logic Programming in PARLOG, Interna-

tional Series in Logic Programming, Addison-Welsey Pub. Comp.

J. JAFFAR, J.-L. LAssez, M.J. MAHER (1934). A theory of complete logic

programs with equality. J. Logic Programming], 211-223.

J. JAFFAR, J.-L. LASSEZ, M.J. MAHER (1986) A loglc g

language scheme. D. DE GROOT, G. LINDSTROM (eds.). Logzc Program-

ming: Functions, Relations and Equations, Prentice-Hall, 441-468.

J. JAFFAR, J.-L. Lassez, M.J. MAHER (1986). Some issues and trends in

the semantics of logic programming. Proc. of Third Int. Ul Conf on Logic

Programming, LNCS 225, Springer-Verlag, 223-241.

J. JAFFAR, J.-L. LASSEZ (1986) Constraint L,ogzc Programmjng’ Internal

Report, Department of Computer Science, Monash University.

J. JAFFAR., J.-L. LASSEZ (1987). Constraint Logjc , mn Proc. of

the SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, ACM, 111-119.

J. JAFFAR, J.-L. L.ASSEZ, M.J. MAHER (1987). Pro]og II as an instance of

the logic programming language scheme. M. WIrsING (ed.). Proc. IFIP

Conf.

G. {EVI, C. PALAMIDESSI (1985). The declarative semantics of logica]

T ead-only variables. Proc. 1985 IEEE Symposium on Logic Programming,

IEEE Comp. Society Press, 128-137.

G. Levi, C. PaLaMIDESSI (1987). An approach to the declarative seman-

tics of synchronization in logic languages. J.-L. Lassez (ed.). Proc. 1987

Conference on Logic Programming, MI'T Press, 877-893.

G. Levy, C. PaLAMIDESSI, P.G. Bosco, E. GiovannerTi, C. Moiso (1987).

A complete semantics characterization of K-LEAF, a logic language with

partial functions. Proc. 1987 Symp. on Logic Programming, 1IEEE Comp.

Society Press.

343

|

