Nancy A. Lynch & Mark R. Tuttle

massachusetts Institute of Technology
Cambridge, Mass. 021397

We describe the input/output automaton model, a model for concurrent and
distributed discrete event systems. We define the model, illustrate the model
with several examples concerning vending machines and a leader election
algorithm, and survey the ways in which the model has been used.

1. INTRODUCTION

The input/output automaton model has recently been defined, in [26,27], as a
tool for modeling concurrent and distributed discrete event systems of the sorts
arising in computer science. Since its introduction, the model has been used for
describing and reasoning about several different types of systems, includin g
network resource allocation algorithms, communication algorithms, concurrent
database systems, shared atomic objects, and dataflow architectures.

This paper is intended to introduce researchers to the model. It is organized
as follows. Section 2 contains an overview of the model. Section 3 defines the
model formally and examines several illustrative examples concerning candy
vending machines. Section 4 contains a second example, a leader election algo-

rithm. Finally, Section 5 contains a survey of some of the uses that have so far
been made of the model.

2. OVERVIEW OF THE MODEL |

I/0 automata provide an appropriate model for discrete event systems consist-
ing of concurrently-operating components. Such systems are often character-
1zed by the fact that, instead of simply computing some function of their input
and halting, they continuously receive input from and react to their

T This research was supported in part by the National Science Foundation under Grant CCR-86-
11442, by the Office of Naval Research under Contract N00014-85-K-0168 and by the Defense
Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125. The second
author was also supported by a GTE Graduate Fellowship and an IBM Graduate Fellowship.

Copyright © 1989, Stichting Mathematisch Centrum, Amsterdam
Printed in the Netherlands

219



action, but 1t 1s un
[he fact that our automa

mputs Suppose, however, th
bits some bchavwr only when tl

mPMS we permit these mputs to occur, but pe rmit tl

form “9f th Y then the automaton behaves

correctly’. Al tematively, our correctness condiﬁon may require th

to detect bad inputs and rcspond to th

we have sim

input-blockin 104
l/ O automata ma y be DODdCEC rInin Sﬁc and indeed

important part of the modcl’ s descriptive

quite general since m any results about nondeterministic al

f OmOH to all al ithms Ob tain ed by Tresi C

se of nondeterminis

uOns are often of th

the nondeterminism 1is
power. Describi mg algon thms

the nondeterministic choaces

I/ O automata can be composed to yield other I/0 automata. W]
pose a collectmn Of automat& we identifv th . o o o]

t The shared-memory model described in [21] has had a strong influence on the present work. In
particular, the inability to block inputs appears as the ‘read-anything’ property in [21].

220



- ‘ ucnces Of a.CUOHS 210

A proble y

imple: essentially, an automaton is said to ° solve’ a problem P provided th
its set of fair behaviors is a subset of P. It migh "
that this definition is nontnvml for exam ple 1f an auto maton had no fair

| N g squcnce of actions is in the proble m set P. That 1s, the automaton is
required to respond appropriately to every possible input pattern.

The model permits description of algorithms and systems at different levels
of abstraction. Abstraction mappings are defined, mapping automata that
include 1.mplementat10n detail to more abstract automata that suppress some of

ul. Such mappings can be used as aids in correctness proofs for algo-
thms: if automaton A4 is an image of B under an appropriate abstraction
mapping and A4 solves problem P, then B also solves P.

The model all ful and readable descrip tions of particul
current al gorithms. We have developed a sim ple langua ge for describi
mata, based on precondmon and eﬂ' ect’ specifi cations for actions. Thi

: yry1] M) r1arded has proved sufficcent for
However, the model does

descnbm g ithms we have attem pted so f ar.

not depend 11

Our modl also allows precise statements of the problems that are to be
221



ﬂﬁu OHS Of u .l aﬂd abs Uac“on

G carrymsg out complexn:y An

rmally define our model of computation, show how it can
| to model a system, how it can be used to construct a problem
"' : used to prove that a system satisfi

3.1. Input/output automata
We begin with the definition of an automaton. As previously mentioned, an
automaton’s actions are partitioned into sets of input, output, and internal
actions. This set of actions and its partition determines an interface between
the automaton and its environment. We refer to this interface as the action sig-
nature of the automaton. Formally, an action signature S is a partition of a set
acts(S) of actions into three disjoint sets in(S), out(S), and int(S) of input
actions, oulput actions, and internal actions, respectively. We denote by
ext(S)=in (S)Uout(S) the set of external actions, those actions visible to the
environment of any automaton have S as its action signature. An extemal
action signature 1S an action signature S with no imemal actions; th
int(S)= 3 or acts(S)=ext(S). Given an action signature S, we defin
extsig(S) to be external action signature S’ with in(S)=in(S) and
out (S$')=out (S). We denote by local (S) out (S)Uint(S) the set of locally-
controlled actions, those actions under the local any automaton hav-
ing S as its action signature. Gwen an automaton 4 with action signatus

will frequently abuse notation and denote in (S) by in (A) etc.
An nput/output automaton A (also called Z
automaton) consists of five components:

222



