BLOCKING SETS IN DESARGUESIAN PROJECTIVE PLANES

A. BLOKHUIS and A. E. BROUWER

Abstract

Using theorems of Redéi, and of Brouwer and Schrijver, and Jamison, it is proved that a non-trivial blocking set in a desarguesian projective plane of order q has at least $q+\sqrt{ }(2 q)+1$ points, if q is at least 7 , odd and not a square and $q \neq 27$. Further one can show that non-trivial blocking sets in the desarguesian planes $\operatorname{PG}(2,11)$ and $\operatorname{PG}(2,13)$ have at least 18 resp. 21 points, and this is best possible. In addition a nice description of a blocking set of size $q^{t}+q^{t-1}+1$ in the desarguesian plane $\operatorname{PG}\left(2, q^{t}\right)$ is given, where q is some prime power.

Introduction

A blocking set in a linear space is a set S of points, such that each line intersects S in at least one point. S is called non-trivial, if no line is completely contained in S, in the case of a projective plane. In this note we want to derive lower bounds for the cardinality of S.

Two useful theorems

The following construction yields interesting blocking sets in the desarguesian plane $\operatorname{PG}(2, q)$:
Let $f: \mathrm{GF}(q) \rightarrow \mathrm{GF}(q)$ be any non-linear function. Form a blocking set consisting of
(i) the q points forming the graph of f in $\operatorname{AG}(2, q)$,
(ii) the directions determined by f on the line at infinity, say m points.

Example 1. Let $q=p$ be a prime, $f(x)=x^{\frac{1}{2}(p+1)}$. This yields a blocking set of $\frac{3}{2}(p+1)$ points, which is conjectured to be best possible ([7], see also [6]).
2. Let $q=q_{1}^{t}(t>1)$, then $\operatorname{GF}\left(q_{1}\right)$ is a subfield of $\operatorname{GF}(q)$. Let f be the trace map from $\operatorname{GF}(q)$ to $\operatorname{GF}\left(q_{1}\right)$. Then $S=q+q / q_{1}+1$. This is also the best known, if q_{1} is chosen maximal (compare [$\mathbf{2}, \mathbf{4}$]).

The following theorem gives lower bounds for m, where $q=p^{n}, p$ prime.
Theorem. ([8, p. 237], see also [6]).

$$
m \geqslant \frac{q-1}{p^{\frac{1}{2} n}+1}+1, \quad \text { and } \quad m \geqslant \frac{p+3}{2} \quad \text { if } n=1 .
$$

Corollary. Let X be a set of q points in the desarguesian affine plane of order q, determining m directions. Then m satisfies the above inequalities.

Proof. Either X determines all directions, or there is a parallel class all of whose lines contain exactly 1 point of X.

Let S be a minimal blocking set; then each point of S is on at least one tangent. Let $p \in S$ be a point on t tangents, call one tangent l, and form a blocking set of $\mathrm{AG}(2, q)=\mathrm{PG}(2, q) \backslash l$ with $|S|-1+t-1$ points in the obvious way.

Theorem ([1,5]). A blocking set of a desarguesian affine plane $\mathrm{AG}(2, q)$ has at least $2 q-1$ points.

As a consequence of this, one has that $t \geqslant 2 q+1-|S|$ for each point in S. Using these two results it is now a trivial exercise to show that a blocking set in the desarguesian plane $\operatorname{PG}(2,11)$ has at last 18 points, and a rather tedious one to prove $|S| \geqslant 21$ for $\operatorname{PG}(2,13)$.

Blocking sets in the desarguesian plane $\operatorname{PG}(2, q)$

It is well known, and due to Bruen [2], that $|S| \geqslant q+\sqrt{ } q+1$, with equality if and only if q is a square and S a Baer-subplane. When q is not a square this bound can be improved.

Let S be a blocking set of size $|S|=q+m$. If S contains an m-secant the corollary gives a lower bound for the cardinality of S. The next theorem treats the remaining case.

Theorem. Let S be a blocking set of size $q+m$ without an m-secant. Then

$$
|S| \geqslant q+\sqrt{ }(2 q)+1 .
$$

Proof. Since each line contains at most $m-1$ points of S, it follows that each point is on at most $q-1$ tangents. Counting incident pairs (tangent, point not in S) in two ways, using the second theorem, one gets

$$
q(q+m)(q-m+1) \leqslant\left(q^{2}-m+1\right)(q-1)
$$

or, rewriting,

$$
2 q \leqslant(m-1)^{2}+(m-1) / q, \quad \text { whence } m \geqslant \sqrt{ }(2 q)+1
$$

Corollary. Suppose q is odd, not a square, at least 7 and not 27. Let S be an arbitrary non-trivial blocking set of the desarguesian plane $\operatorname{PG}(2, q)$. Then $|S| \leqslant q+\sqrt{ }(2 q)+1$.

Final remarks

If $q<7$ everything is known; if $q=27$ we only get $|S| \geqslant 35$; if $q=2^{2 t+1}$ one obtains $|S| \geqslant 2^{2 t+1}+2^{t+1}$.

The first paper relating Redéi's theorem to blocking sets seems to be [3]. We wonder whether Redéi's theorem can be improved to $m \geqslant 1+q / q_{1}$, where q_{1} is the order of maximal subfield of $\mathrm{GF}(q)$.

References

1. A. E. Brouwer and A. Schrijver, 'The blocking number of an affine space', J. Combin. Theory Ser. A 24 (1978) 251-253.
2. A. A. Bruen, 'Blocking sets in finite projective planes', SIAM J. Appl. Math. 21 (1971) 380-392.
3. A. A. Bruen and J. A. Thas, 'Blocking sets', Geom. Dedicata 6 (1977) 193-203.
4. J. W. P. Hirschfeld, Projective geometries over finite fields (Oxford University Press, 1979).
5. R. Jamison, ‘Covering finite fields with cosets of subspaces’, J. Combin. Theory Ser. A 22 (1977) 253-266.
6. L. Lovasz and A. Schriver, 'Remarks on a theorem of Redéi', Studia Sci. Math. Hungar. 16 (1981) 449-454.
7. J. di Paola, 'On a restricted class of block design games', Canad. J. Math. 18 (1966) 225-236.
8. L. Redél, Lückenhafte Polynome über endlichen Körpern (Birkhäuser Verlag, Basel, 1970).

Techn. University Eindhoven
P.O. Box 513

5600 MB Eindhoven
Netherlands
C.W.I.

Kruislaan 413
1098 SJ Amsterdam
Netherlands

