Using theorems of Rédei, and of Brouwer and Schrijver, and Jamison, it is proved that a non-trivial blocking set in a desarguesian projective plane of order q has at least $q + \sqrt{2q} + 1$ points, if q is at least 7, odd and not a square and $q \neq 27$. Further one can show that non-trivial blocking sets in the desarguesian planes $PG(2, 11)$ and $PG(2, 13)$ have at least 18 resp. 21 points, and this is best possible. In addition a nice description of a blocking set of size $q^t + q^{t-1} + 1$ in the desarguesian plane $PG(2, q^t)$ is given, where q is some prime power.

Introduction

A blocking set in a linear space is a set S of points, such that each line intersects S in at least one point. S is called *non-trivial*, if no line is completely contained in S, in the case of a projective plane. In this note we want to derive lower bounds for the cardinality of S.

Two useful theorems

The following construction yields interesting blocking sets in the desarguesian plane $PG(2, q)$:

Let $f: GF(q) \to GF(q)$ be any non-linear function. Form a blocking set consisting of

(i) the q points forming the graph of f in $AG(2, q)$,

(ii) the directions determined by f on the line at infinity, say m points.

Example 1. Let $q = p$ be a prime, $f(x) = x^{(p+1)}$. This yields a blocking set of $\frac{q(q+1)}{2}$ points, which is conjectured to be best possible ([7], see also [6]).

2. Let $q = q_1^t$ ($t > 1$), then $GF(q_1)$ is a subfield of $GF(q)$. Let f be the trace map from $GF(q)$ to $GF(q_1)$. Then $S = q + q/q_1 + 1$. This is also the best known, if q_1 is chosen maximal (compare [2, 4]).

The following theorem gives lower bounds for m, where $q = p^n$, p prime.

Theorem. ([8, p. 237], see also [6]).

$$m \geq \frac{q}{p^n + 1} + 1, \quad \text{and} \quad m \geq \frac{p + 3}{2} \quad \text{if } n = 1.$$

Corollary. Let X be a set of q points in the desarguesian affine plane of order q, determining m directions. Then m satisfies the above inequalities.

Proof. Either X determines all directions, or there is a parallel class all of whose lines contain exactly 1 point of X.

Received 1 June 1984.

1980 *Mathematics Subject Classification* 05B25.

Let S be a minimal blocking set; then each point of S is on at least one tangent. Let $p \in S$ be a point on t tangents, call one tangent l, and form a blocking set of $AG(2, q) = PG(2, q) \setminus l$ with $|S| = t + 1 - 1 = t$ points in the obvious way.

Theorem ([1, 5]). A blocking set of a desarguesian affine plane $AG(2, q)$ has at least $2q - 1$ points.

As a consequence of this, one has that $t \geq 2q + 1 - |S|$ for each point in S. Using these two results it is now a trivial exercise to show that a blocking set in the desarguesian plane $PG(2, 11)$ has at last 18 points, and a rather tedious one to prove $|S| \geq 21$ for $PG(2, 13)$.

Blocking sets in the desarguesian plane PG(2, q)

It is well known, and due to Bruen [2], that $|S| \geq q + \sqrt{q} + 1$, with equality if and only if q is a square and S a Baer-subplane. When q is not a square this bound can be improved.

Let S be a blocking set of size $|S| = q + m$. If S contains an m-secant the corollary gives a lower bound for the cardinality of S. The next theorem treats the remaining case.

Theorem. Let S be a blocking set of size $q + m$ without an m-secant. Then

$$|S| \geq q + \sqrt{(2q) + 1}.$$

Proof. Since each line contains at most $m - 1$ points of S, it follows that each point is on at most $q - 1$ tangents. Counting incident pairs (tangent, point not in S) in two ways, using the second theorem, one gets

$$q(q + m)(q - m + 1) \leq (q^2 - m + 1)(q - 1)$$

or, rewriting,

$$2q \leq (m - 1)^2 + (m - 1)/q, \quad \text{whence } m \geq \sqrt{(2q) + 1}.$$

Corollary. Suppose q is odd, not a square, at least 7 and not 27. Let S be an arbitrary non-trivial blocking set of the desarguesian plane $PG(2, q)$. Then $|S| \leq q + \sqrt{(2q) + 1}$.

Final remarks

If $q < 7$ everything is known; if $q = 27$ we only get $|S| \geq 35$; if $q = 2^{2t+1}$ one obtains $|S| \geq 2^{2t+1} + 2^{2t+1}$.

The first paper relating Redei’s theorem to blocking sets seems to be [3]. We wonder whether Redei’s theorem can be improved to $m \geq 1 + q/q_1$, where q_1 is the order of maximal subfield of GF(q).

References

Techn. University Eindhoven
P.O. Box 513
5600 MB Eindhoven
Netherlands

C.W.I.
Kruislaan 413
1098 SJ Amsterdam
Netherlands